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Abstract. In this paper we present a Model-Based Testing approach
with which we generate tests from an abstraction of a source behavioural
model. We show a new algorithm that computes the abstraction as an
under-approximation of the source model. Our first contribution is to
combine two previous approaches proposed by Ball and Pasareanu et al.
to compute May, Must+ and Must- abstract transition relations. Proof
techniques are used to compute these transition relations. The tests ob-
tained by covering the abstract transitions have to be instantiated from
the source model. So, following Pasareanu et al., our algorithm addition-
ally computes a concrete transition relation: the tests obtained as se-
quences of concrete transitions need not be instantiated from the source
model. Another contribution is to propose a choice of relevant param-
eters and heuristics to pilot the tests computation. We experiment our
approach and compare it with a previous approach of ours to compute
tests from an abstraction that over-approximates the source model.

Keywords: Model-Based Testing, Abstraction, Over and under-approximations.

1 Motivations

The process of software testing can be automated by means of a Model-Based
Testing (MBT) approach [1]. A formal behavioural model is designed from which
a set of tests is computed that ensure a given coverage of the model. An adap-
tation layer fills the gap between the model and the implementation to produce
executable tests. The conformance of the implementation to the model is assessed
by comparing, modulo the adaptation layer, the outputs of the executable tests
with the ones as predicted by the model. A frequent limit to the scalability of
this approach is the size of the state space defined by the model: it can be infinite
or very large, thus making its coverage impossible in practice.

An abstraction of the behavioural model can be used to overcome this limita-
tion. Abstraction techniques [2–4] allow for making finite or drastically reducing
the state space representation of a formal specification (or of a program), for
example by gathering into one single abstract state several concrete states. Our
framework is that of predicate abstraction [2, 3], where the states and the tran-
sition relation of the abstraction are defined according to a set of predicates over
the model variables.



Once computed from the abstraction, the tests have to be instantiated on
the concrete model. This may not be possible for some of the tests if the ab-
straction is an over-approximation of the source model, thus defining execution
paths that may not exist concretely. We have previously defined and presented
in [5] a method where this could happen. The abstraction was computed by
a theorem-prover that tried to prove the potential feasibility of the transitions
rather than their reachability. As a result, time could be spent uselessly to search
for an instantiation that does not exist. We adopt another approach in this pa-
per by considering only under-approximations. Since all the paths of an under-
approximation exist in the concrete model, it is possible to instantiate every test
from it on the concrete model.

We present in this paper a new algorithm, based on previous works from
Ball [6] and Păsăreanu et al. [7], to compute abstract transition relations based
on predicate abstraction for test generation. Our algorithm combines the two
approaches of Ball and Păsăreanu et al., and applies to behavioural models
instead of programs. We use SAT-solving techniques to compute the transition
relations. We also compute a concrete transition relation and try to directly
connect concrete states to each other, so as to obtain concrete tests that need
not be instantiated from the model. This complements the tests obtained by
covering the abstract transition relation, for which an instantiation is required.

But what part of the behavioural model will be covered by tests computed
from an under-approximation of it? We have implemented the algorithm, and
used it to compute tests for six case studies. These experimental results are
compared in terms of coverage of the abstraction with the ones obtained by
our over-approximation method of [5]. We consider a set of optimisations of the
concretisation computed by the algorithm, and evaluate experimentally their
practical impact on our case studies. We also provide a set of parameters to the
user as well as heuristics to improve the method.

The paper is organised as follows. Section 2 presents the process for gener-
ating tests from an abstraction. The background required for reading the paper
is given in Sec. 3. Two examples to illustrate our approach are described in
Sec. 4. The algorithm for computing the abstraction as well as its properties
are described in Sec. 5. Section 6 presents the experimental results. We present
in Sec. 7 the works to which ours are related. We conclude and indicate future
research directions in Sec. 8.

2 Test Generation Process from an Abstraction

In a previous work [5], we have presented a test generation method based on ab-
straction. The abstraction was computed as an over-approximation of a formal
behavioural model M of the system, written by a validation engineer. The engi-
neer also wrote a test purpose, by means of a language proposed in [8], to describe
how he intended to test the system, according to his know-how. A set of abstrac-
tion predicates was automatically deduced from the test purpose, from which the
abstraction was computed. The tests issued from the over-approximation had to



be instantiated afterwards on M, which was not always possible since an over-
approximation defines more executions than the concrete model. We improve in
this paper the test generation method of [5] by computing an abstraction that
is an under-approximation of M rather than an over-approximation. This guar-
antees that every test generated from it can be instantiated on M. Also, we now
instantiate the tests on-the-fly, and not a posteriori as was done in [5].

We sketch our process in Fig. 1. Notice that the abstraction predicates on
input of the “Predicate Abstraction and Concretisation” box could be obtained
from a test purpose, identically to what was proposed in [5]. We also could
synchronise such a test purpose with M before the abstraction computation, to
reduce the state space of the resulting abstraction. But we adopt in this paper a
more generic presentation of our process. We combine predicate abstraction and
SAT-solving for generating the under-approximation. The tests are generated
from it by applying a selection criterion that ensures a coverage of the states, of
the transitions or of the paths of the abstraction. In our implementation of the
process, we have used a chinese postman algorithm to compute tests by covering
all the transitions of the abstraction. The tests obtained are valid executions of
M, intended to be executed, via the adaptation layer, on the implementation of
the system.
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Abstraction
Predicates

Behavioural
Model M

Predicate Abstraction
and Concretisation
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approximation

A

Test
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Structural
Selection
Criteria

Tests

Fig. 1. Process of Test Generation from Test Purpose by Abstraction

3 Background

Our behavioural models are described as B event systems, for which we provide
the necessary background. We also present the concept of predicate abstraction
and formalise the abstraction notions by means of Symbolic labelled Transition
Systems (STS), that define the semantics of the abstractions of event systems.

3.1 Model Syntax

Introduced by J.-R. Abrial [9], a B event system defines a closed specification
of a system by a set of events. This syntax is used as an example to present the
results in this paper. But these results are generic in the sense that this syn-
tax is a concise form that has the same expressivity as some generic modelling



languages as the guarded actions of [10, 11] or the labelled transition systems.
In the sequel, we use the following notations: x, y, z are variables and X , Y , Z
are sets of variables. I is an invariant and P is used to denote other predicates.
The actions of modification of the variables are called substitutions in B, follow-
ing [12] where the semantics of an assignment is defined as a substitution. In B,
substitutions are generalized, i.e. the semantics of every kind of action is defined
by a substitution calculus that allows to compute the weakest precondition of a
substitution a to satisfy the predicate P , denoted [a]P in B. We use a, a1 and
a2 to denote B generalized substitutions, and E and F to denote B expressions.

All the substitutions allowed in B event systems can be rewritten by means
of the five B primitive forms of Def. 1. Notice that the multiple assignment can
be generalized to n variables and that all the substitutions terminate.

Definition 1 (Substitution). The following five substitutions are primitive:

– single and multiple assignments, denoted as x := E and x, y := E, F
– substitution with no effect, denoted as skip
– guarded substitution, denoted as P ⇒ a
– bounded non-deterministic choice, denoted as a1[]a2

– substitution with local variable z, denoted as @z.a.

The substitution with local variable is mainly used to express the unbounded
non-deterministic choice denoted by @z.(P ⇒ a). Let us specify that among
the usual structures of specification languages, the conditional substitution IF

P THEN a1 ELSE a2 END is denoted by (P ⇒ a1)[](¬P ⇒ a2) with the
primitive forms.

Definition 2 defines correct B event systems. The events are defined by an
equation e =̂ a where e is the name of an event and a is a generalized substitu-
tions modifying the state variables.

Definition 2 (Correct Event System). A correct B event system is a tuple
〈X, I, Init,EvDef〉 where:

– X is a set of state variables,
– I is an invariant predicate over X,
– Init is a substitution called initialisation, such that the invariant holds in

any initial state, i.e. [Init]I is valid,
– EvDef is a set of event definitions in the shape of e =̂ a such that every event

preserves the invariant, i.e. I ⇒ [a]I is valid.

3.2 Predicate Abstraction

Predicate abstraction [2] is a special instance of the framework of abstract in-
terpretation [3] that maps the potentially infinite state space C of a transition
system onto the finite state space Q of a symbolic transition system via a set
of predicates P =̂ {p1, p2, . . . , pn} over the model variables. A state of C is a
valuation of the state variables of the model. The set of abstract states Q con-
tains at most 2n states. Each state is a tuple q =̂ (q1, q2, . . . , qn) with qi being



equal either to pi or to ¬pi, and we also consider q as the predicate
∧n

i=1 qi. We
define an abstraction function αP : C → Q such that αP(c) is an abstract state
q where c satisfies qi for all i ∈ 1..n. By a misuse of language, we say that c is
in q.

The predicate abstraction is based on five primitive functions denoted as
follows. We denote by wp(a, q′) the weakest precondition [11] of an action a to
reach a target state defined by a predicate q′. The weakest precondition wp(a, q′)
is the largest set of states from which the execution of a necessary leads to a
state that satisfies q′. In B, wp(a, q′) can be computed by substitution calculus,
denoted by [a]q′. The weakest conjugate precondition [13], denoted by wcp(a, q′)
is equal to ¬[a]¬q′ in B, i.e. ¬wp(a,¬q′). The conjugate weakest precondition
wcp(a, q′) is the largest set of states from which the execution of a can lead in
a state that satisfies q′. Since the events always terminate in B, wcp is identical
to wp for the deterministic subset of B. In contrast, for a non deterministic sub-
stitution, wp(a, q′) ⇒ wcp(a, q′) because there may exist states for which a non
deterministic choice leads to q′ or not, depending on the chosen branch. These
states satisfy wcp(a, q′) but not wp(a, q′). We denote by sp(a, q) the strongest
postcondition of an action a from a source state defined by a predicate q. It is
the smallest set of states reached by the execution of a from a state that satisfies
q. We denote by grd(a) the condition under which the action a is triggerable. It
is defined as in B: grd(skip) =̂ true, grd(x, y := E, F ) =̂ true, grd(P ⇒ a) =̂
P ∧ grd(a), grd(a1[]a2) =̂ grd(a1) ∨ grd(a2), grd(@z.a) =̂ ∃z.grd(a). Last, we
denote by SAT (P ) the satisfiability value of a predicate P .

Let us now define the abstract transitions as may-transitions. Consider two
abstract states q and q′ and an event e. There exists a may transition from q
to q′ by e, denoted by q

e
→ q′, if and only if there exists a concrete transition

c
e
→ c′ where c and c′ are concrete states with αP(c) = q and αP (c′) = q′. If

we assume the event e to be defined by an action a, there is a may transition
q

e
→ q′ iff SAT (wcp(a, q′) ∧ q).

As in [6], we define two other kinds of abstract transitions: must- and must+.
The must+ transitions are may transitions that are triggerable from all the
concrete states of the abstract source state. The must- transitions are may
transitions that reach all the concrete states of the abstract target state. Let
e =̂ a be an event definition. There exists a must+ transition q

e
→ q′ iff

q ⇒ wp(a, q′) ∧ grd(a) is valid, i.e. ¬SAT (¬(wp(a, q′) ∧ grd(a)) ∧ q). That is,
for any state c concretising the abstract state q, there is a concrete state c′ in q′

such that c
e
→ c′. There exists a must- transition q

e
→ q′ iff q′ ⇒ sp(a, q) is valid,

i.e. ¬SAT (¬sp(a, q)∧q′). That is for any concrete state c′ for which αP(c′) = q′,

there is a concrete state c for which αP (c) = q and such that c
e
→ c′.

3.3 Abstraction Formalisation

We define in Def. 3 a kind of STS well suited to represent abstractions. Defini-
tion 4 associates an abstraction defined by an STS to an event system.



Definition 3 (Symbolic Labelled Transition System (STS)). Let Ev be a
finite set of event names. Let A be a finite set of symbolic states on P. Let C be
a finite or infinite set of concrete state and αP an abstraction function from C
to A. A tuple 〈Q, Q0, C0, ∆, ∆+, ∆−, Γ, ∆c〉 is an STS if it satisfies the following
conditions:

– Q(⊆ A) is a finite set of states,

– Q0(⊆ Q) is a set of abstract initial states,

– C0(⊆ C) is a set of concrete initial states,

– ∆(⊆ Q × Ev × Q) is a may labelled transition relation,

– ∆+(⊆ Q×Ev×Q) is a must+ labelled transition relation such that ∆+ ⊆ ∆,

– ∆−(⊆ Q×Ev×Q) is a must- labelled transition relation such that ∆− ⊆ ∆,

– Γ (⊆ Q × C) is a concretisation relation that associates concrete states to
any abstract state such that (q, c) ∈ Γ ⇒ αP(c) = q,

– ∆c(⊆ C × Ev × C) is a concrete transition relation such that c
e
→ c′ ∈ ∆c

iff c ∈ C ∧ c′ ∈ C ∧ q
e
→ q′ ∈ ∆ ∧ (q, c) ∈ Γ ∧ (q′, c′) ∈ Γ .

Definition 4 (STS associated to an ES). Let ES = 〈X, Init, {e =̂ a|e ∈
Ev}〉 be an event system and P = {p1, p2, ..., pn} be a set of n predicates defining
a set of 2n abstract states A = {p1,¬p1} × {p2,¬p2} × ... × {pn,¬pn}. A tuple
〈Q, Q0, C0, ∆, ∆+, ∆−, Γ, ∆c〉 is an STS associated to ES and P if it satisfies
the following conditions:

– Q0 =̂ {q|q ∈ A ∧ SAT (sp(Init, true) ∧ q)} ,

– C0 =̂ {c|∃q0.(q0 ∈ Q0 ∧ c ∈ C ∧ c = SAT (wcp(Init, q0)))},

– ∆ =̂ {q
e
→ q′|q ∈ A ∧ q′ ∈ A ∧ e ∈ Ev ∧ SAT (wcp(a, q′) ∧ q)},

– Q =̂ {q|∃(q′, e).(q
e
→ q′ ∈ ∆ ∨ q′

e
→ q ∈ ∆)},

– ∆+ =̂ {q
e
→ q′|q ∈ A ∧ q′ ∈ A ∧ e ∈ Ev ∧ ¬SAT (¬(wp(a, q′) ∧ grd(a)) ∧ q)},

– ∆− =̂ {q
e
→ q′|q ∈ A ∧ q′ ∈ A ∧ e ∈ Ev ∧ ¬SAT (¬sp(a, q) ∧ q′)},

– ∆c(⊆ C × Ev × C) is such that c
e
→ c′ ∈ ∆c ⇒ SAT (wcp(a, c′) ∧ c),

– Γ =̂ {(q, c)|q ∈ Q∧c ∈ C∧αP(c) = q∧∃(e, c′).(c
e
→ c′ ∈ ∆c∨c′

e
→ c ∈ ∆c)}.

4 Examples

For the sake of readability, let us now introduce two examples that will be used
to illustrate our propositions. Each one is intended to illustrate a different point
while remaining small and easy to read. The Electrical System example of Sec. 4.1
is a finite state control and command system that illustrates the various kinds
of transition relations ∆, ∆− and ∆+, as represented in Fig. 3. The example of
Sec. 4.2 is a very simple model, but with an infinite state space. Its aim is to
illustrate that combining the two under-approximation techniques gives better
transition and path coverage than each one separately (see Sec. 5.3, paragraph
“Comparison with the other methods”).



(a) Physical Representa-
tion

X b= {H, Sw, Bat}
I b= H ∈ {tic, tac} ∧ Sw ∈ 1..3 ∧ (Bat ∈ 1..3 → {ok, ko}) ∧

Bat(Sw) = ok
Init b= H, Sw, Bat := tac, 1, {1 7→ ok, 2 7→ ok, 3 7→ ok}
Tic b= H = tac ⇒ H := tic
Com b= ∃(i, j).(i ∈ 1..3 ∧ j ∈ 1..3 ∧ i 6= j ∧ Bat(i) = ok ∧

Bat(j) = ok) ∧ H = tic ⇒
@ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ∧ ns 6= Sw ⇒ H, Sw := tac, ns)

Fail b= ∃(i, j).(i ∈ 1..3 ∧ j ∈ 1..3 ∧ i 6= j ∧ Bat(i) = ok ∧ Bat(j) = ok) ⇒
@nb.(nb ∈ 1..3 ∧ Bat(nb) = ok) ⇒

(nb = Sw ⇒ @ns.(ns ∈ 1..3 ∧ ns 6= Sw ∧
Bat(ns) = ok ⇒ Sw, Bat(nb) := ns, ko))

[](nb 6= Sw ⇒ Bat(nb) := ko))
Rep b= @nb.(nb ∈ 1..3 ∧ Bat(nb) = ko) ⇒ Bat(nb) := ok)

(b) Specification

Fig. 2. The Electrical System and its Formal Behavioural Specification

4.1 Electrical System Example

Figure 2(a) shows a device D powered via a switch to one of three batteries
B1, B2, B3. A clock H periodically sends a signal that causes a commutation
of the closed switch. The system has to meet the following requirements: one
switch and only one is closed at a time and a clock signal changes the switch
that is closed. The batteries may break down. If it happens to the one that is
powering D, an exceptional commutation is triggered. We assume that there is
always at least one battery working. When there is only one battery working,
the clock signals are ignored.

Figure 2(b) models the system by means of three variables. H models the
clock and takes two values: tic to ask for a commutation and tac when it has
occurred. Sw models the switches by an integer that indicates which one is
closed. Bat models the batteries breakdowns by a total function that associates
ok or ko (for a broken battery) to each battery. The state changes are described
by means of four events: Tic sends a commutation signal, Com changes the
closed switch, Fail breaks down a battery and Rep repairs a battery.

q0

{¬p1, p2}

q1

{¬p1,¬p2}

q2

{p1, p2}

q3

{p1,¬p2}

T ic,−, +

Com,−, +

Fail,−Rep,+

T ic

Fail,−Rep,+

Rep

Fail

Rep

Fail

Fig. 3. STS of the Abstract Electrical System



Figure 3 shows the STS without C0, Γ and ∆c that abstracts the model of
Fig. 2(b) from the set of abstraction predicates P =̂ {p1, p2} where p1 =̂ H = tic
and p2 =̂ ∃(i, j).(i ∈ 1..3 ∧ j ∈ 1..3 ∧ i 6= j ∧ Bat(i) = ok ∧ Bat(j) = ok). All
the transitions belong to ∆. Those followed by ”-” and/or ”+” belong to ∆−

and/or ∆+. In Fig. 7(a) and Fig. 7(b), we see a fragment of C0, Γ and ∆c.

4.2 Simple Illustrative Model

The specification presented in Fig. 4 models a small conditional computation over
a variable x. Its semantics is an infinite state transition system for unbounded
integers. Our abstraction method computes the finite state symbolic transition
system of Fig. 5(a). The variable pc is not abstracted whereas x is abstracted
according to the two predicates x < 3 and x ≥ 3.

X b= {pc, x}
I b= pc ∈ 0..3 ∧ x ∈ Z

Init b= @z.(x ∈ Z ⇒ pc, x := 0, z)
e1 b= pc = 0 ∧ x < 3 ⇒ pc, x := 1, x + 1
e2 b= pc = 0 ∧ x ≥ 3 ⇒ pc, x := 1, x − 1
e3 b= pc = 1 ∧ x < 3 ⇒ pc, x := 2, x + 1
e4 b= pc = 1 ∧ x ≥ 3 ⇒ pc, x := 2, x − 1
e5 b= pc = 2 ⇒ pc := 3

Fig. 4. A Simple Illustrative Model
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{pc = 3,

x ≥ 3}

3
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e1,−

e1

e2

e2,−

e3,−

e3

e4

e4,−

e5,−, +

e5,−, +

(a) Abstraction of the Small Model of Fig. 4

t1 b= q0.0
e1→ q2.1

e3→ q4.2
e5→ q6.2,

t2 b= q0.2
e1→ q3.3

e4→ q4.2
e5→ q6.2,

t3 b= q1.3
e2→ q2.2

e3→ q5.3
e5→ q7.3,

t4 b= q1.4
e2→ q3.3

e4→ q4.2
e5→ q6.2,

t5 b= q1.5
e2→ q3.4

e4→ q5.3
e5→ q7.3.

(b) Concrete Tests

Fig. 5. Abstraction and Tests for the Small Model of Fig 4

Figure 5(a) shows the STS that abstracts the model of Fig. 4 from the set
of abstract states A =̂ {x < 3, x ≥ 3} × {pc = 0, pc = 1, pc = 2, pc = 3}. The



numbered points represent concrete states by defining the x value. The may
existential transition relation ∆ is represented by the dashed arrows. It defines
an over-approximation. The transitions of ∆− and ∆+ are labelled with ”+”
and/or ”-”. A ∆c relation is represented by the full arrows. All the concrete
states in q0 and q1 belongs to C0.

5 Abstraction Computation

We first present in Sec. 5.1 the basic algorithm to compute an existential over-
approximation defined by ∆. Some implementation-dependent heuristics have
been abstracted. This algorithm also computes ∆+ and ∆−, and we improve
it by computing on-the-fly a concrete transition relation ∆c that is an under-
approximation obtained by a partial concretisation of ∆. We improve in Sec. 5.2
the under-approximation computation of ∆c by taking the union with an under
approximation defined in [6] from ∆+ and ∆−. Last, we discuss in Sec. 5.3 the
properties of this combined approach.

5.1 Under-Approximation by Existential Concretisation

The algorithm of Fig. 6 relies on satisfiability evaluations of predicates by means
of a SAT -solver. We consider a SAT -procedure as returning either the false value
if the predicate is not satisfiable, or a concrete state c otherwise, that is also in-
terpreted as the true value. In practice, SAT -solvers may also return an unknown
value when they manage to prove neither the satisfiability nor the unsatisfiability
of a predicate. We liken this unknown value to false in our algorithm.

The algorithm computes an abstraction (an STS) in two steps. Lines 1-5
compute the initial abstract and concrete states Q0 and C0 while lines 7-33
compute the set Q of reachable abstract states and the transitions of ∆, ∆+, ∆−

and ∆c. QR is the set of source states whose successors have to be computed,
either because they are initial, or target states of reachable transitions of ∆.
To compute the successors of a state q (lines 9-32), the algorithm enumerates
all the possible target states q′ (line 10) and all the events (line 11) that could

lead to q′. The transition q
e
→ q′ is added to ∆ when wcp(a, q′) ∧ q is satisfiable

(lines 12-14). Lines 15-19 search for a concretisation c′ of the target state q′, that
would be the target of an existing concrete state c of the source state q. If such
a c′ is found (line 20), the transition c

e
→ c′ is added to ∆c (line 21), otherwise

a transition nc
e
→ c′ is added (line 23-24) where nc is the new concretisation

of q resulting of the satisfiability condition SAT (wcp(a, q′) ∧ q) that guarantees
its existence in lines 12-13. Line 26 stores the concretisation of the target state
in Γ . If q′ was not already known as reachable (q′ /∈ Q), it is added to QR
(line 27). Then, if there exists a may transition, lines 28-29 complete the must+
and must- transitions when they exist. Finally, this algorithm computes a first
under-approximation defined by C0 and ∆c by concretising ∆. After that, a
second step, described in the next section, completes this under-approximation
by concretising ∆+ and ∆−.



Let C be the set of concrete states of all the abstract states of the set Q
Inputs 〈X, Init, EvDef〉 : an Event System where EvDef b= {e b= a|e ∈ Ev}

Results 〈Q, Q0, C0, ∆, ∆+, ∆−, Γ, ∆c〉: a Symbolic Transition System
Variables QR : Set of abstract states remaining to be handled

CR : Set of concrete states remaining to be handled
q, q′ : source and target abstract states of the current transition
c, c′ : source and target concrete states of respectively q and q′

e : event name of the current transition
nc : other concrete state of the source state q

Begin
/* Computation of the initial abstract and concrete states and of a concrete instance */

(1) Q0 := ∅ ; Γ := ∅ ; C0 := ∅ ;
(2) ForAll q ∈ A Do

(3) c := SAT (sp(Init, true) ∧ q) ;
(4) If c Then Q0 := Q0 ∪ {q} ; C0 := C0 ∪ {c} ; Γ := Γ ∪ {(q, c)} EndIf

(5) EndForAll ;

(6) /* Computation of the reachable states Q, the transitions in ∆, ∆+ , ∆− and the concrete transitions in ∆c */

(7) ∆ := ∅ ; Q := ∅ ; QR := Q0 ; ∆c := ∅ ; ∆+ := ∅ ; ∆− := ∅ ;
(8) While QR 6= ∅ Do

(9) Choose q in QR ; QR := QR − {q} ; Q := Q ∪ {q} ;
(10) ForAll q′ ∈ A Do
(11) ForAll e ∈ Ev Do /* e b= a in EvDef */
(12) nc := SAT (wcp(a, q′) ∧ q) ;
(13) If nc Then /* nc is false if wcp(a, q′) ∧ q is not satisfiable, true otherwise */

(14) ∆ := ∆ ∪ {q
e
→ q′} ;

(15) CR := Γ ({q}) ; c′ := false ; /* Γ (Z) is the relational image of the set Z */
(16) While ¬c′ ∧ CR 6= ∅ Do

(17) Choose c in CR ; CR := CR − {c} ;
(18) c′ := SAT (sp(a, c) ∧ q′)
(19) EndWhile ;

(20) If c′ Then

(21) ∆c := ∆c ∪ {c
e
→ c′}

(22) Else /* There is no concrete target state for the existing concrete source states */
(23) c′ := SAT (sp(a, nc) ∧ q′) ; /* we compute one from nc */

(24) Γ := Γ ∪ {(q, nc)}; ∆c := ∆c ∪ {nc
e
→ c′}

(25) EndIf ;
(26) Γ := Γ ∪ {(q′, c′)} ;
(27) If q′ /∈ Q Then QR := QR ∪ {q′} EndIf ;

(28) If ¬SAT (¬(wp(a, q′) ∧ grd(a)) ∧ q) Then ∆+ := ∆+ ∪ {q
e
→ q′} EndIf ;

(29) If ¬SAT (¬sp(a, q) ∧ q′) Then ∆− := ∆− ∪ {q
e
→ q′} EndIf ;

(30) EndIf
(31) EndForAll

(32) EndForAll
(33) EndWhile
End

Fig. 6. Computation of an Existential Concretisation

5.2 Under-Approximation by Universal Concretisation

T. Ball proposes in [6] a method to compute the ∆, ∆+ and ∆− transition re-
lations as defined in Sec. 3. An under-approximation L is defined by the set of
states that are reachable from the initial ones by a sequence of must- transitions,
followed by at most one may transition and a sequence of must+ transitions.
Ball defines a reachability function for an STS to formalise L. Let Q be a set of
states and ∆ a transition relation. The reachability function on ∆ and Q′ ⊆ Q
is defined by R[∆](Q′) =̂ µZ.(Q′ ∪ ∆(Z, Ev)) where µ is the least fix-point and
∆(Z, Ev) is the relational image of the sets Z and Ev by ∆. We adapt the defi-
nition of L as:



L = {q′′ | ∃ (q, e, q′) · (q ∈ R[∆−] (Γ−1(R[∆c](C0)))) ∧

(q′ = q ∨ q
e
−→ q′ ∈ ∆) ∧

q′′ ∈ R[∆+]({q′})}.

For example, this process applied to the specifications of Fig. 2(b) and 4, gives
the transition relations ∆− and ∆+ represented respectively by the transitions
labelled with ”-” and/or ”+” in Fig. 3 and in Fig. 5(a).

A contribution of our paper is to combine a concretisation of the under-
approximation L with the one computed by our algorithm of Fig. 6. After the
existential concretisation performed by our algorithm of Fig. 6, we concretise
the longest executions of L that start in a concrete state that is reachable from
the initial ones. The concretisation of the sequences of must+ transitions is
performed by a forward depth search, detecting the cycles from one concrete
state beginning such a sequence. The concretisation of the sequences of must-
transitions is performed by a backward depth search detecting the cycles from
one of the final concrete states of these sequences. Finally, the relation ∆c is the
union of the relation computed by the algorithm of Fig. 6 with the one computed
by this concretisation of L.

For the example of Fig. 5(a), the final ∆c relation is represented by the full

arrows. The transition q1.5
e2→ q3.4 concretises the first transition of the following

sequence in L: q1
e2,−
→ q3

e4,−
→ q5

e5,+
→ q7. Notice that this transition does not exist

in the concretisation of ∆, but only in that of L. Finally, the whole under-
approximation made of all the concrete transitions allows for generating the
five test cases shown in Fig 5(b). They cover all the abstract states and all the
concrete transitions of the STS of Fig 5(a). But they do not cover all the may

executions of the abstract model. For example, the abstract execution q0
e1→

q3
e4→ q5

e5→ q7 is not covered, but it is not executable. This shows the interest of
generating the tests from the under-approximation. This avoids generating non
executable tests that give birth to a costly process of searching for an execution
that does not exist.

5.3 Discussion about the Properties of the Algorithm

In this section, we explain why the algorithm of Fig. 6 terminates and is sound.
We then explain that the enumeration order of the states and events in lines 10-
11 impacts the accuracy of the computed under-approximation. Last we compare
our combined method with the two methods of [6, 7].

Termination. Since A is a finite set, the external loop terminates in the worst
case with Q = A. The loops that compute the initial states (lines 1-5) and the two
loops of lines 10-11 terminate because the sets A and Ev are finite. The internal
one (lines 16-19) also terminates because the number of concrete states built for
all the abstract states is finite. This number is bounded by (|A| × |Ev|) × 2 + 1
in the worst case where, for any state, any event is fireable leading to any other
state and is reachable by any event from every other state.



Soundness. The transition relation ∆c is an under-approximation of the concrete
transition system associated to an event system. On the one hand, the algorithm
of Fig. 6 computes a subset of the concrete states of the model associated to an
event system. On the other hand, all the states verify the correction conditions.
For a transition c

e
→ c′ concretising a transition q

e
→ q′, the source state c verifies

the condition SAT (wcp(a, q′) ∧ q), and the target state c′ verifies the condition
SAT (sp(a, c) ∧ q′) (see lines 18 and 23).

Search Order and Accuracy of the Abstractions. The number of reachable con-
crete executions and their size depend on the enumeration order of the events
and concrete states, as Figs. 7(a) and 7(b) illustrate. Two test cases with a total
of five test steps could be generated from the approximation of Fig. 7(a), while
no test could be generated from the one of Fig. 7(b). Indeed, c5, the concrete
initial and reachable state of Fig. 7(b), is not connected to any concrete transi-
tion. There are three reasons for that. Concretising the reflexive transition Rep
before Fail generates the state c4, because Rep is not fireable in the state c5. The
Rep transition does not connect c4 to c5 because c4 has been built by the solver
with an upper limit choice for the connected battery, i.e. battery 3, while the
connected battery in c5 is battery 1 (Rep doesn’t change the connected battery).
Consequently, the state c3 is generated. Then Fail is applied, and as the possible
concrete target states are enumerated in reverse order w.r.t their creation, c3 is
connected to c4 rather than to c5. As a result, no transition is reachable from the
state c5. This illustrates that according to the building order of the abstraction,
the under-approximation contains more or less reachable concrete transitions.
Notice that our implementation optimises the size of the under-approximation
by considering the heuristics and parameters presented in Sec. 6.1.

Comparison with the other Methods. The combined method that we propose
generates under-approximations that are more accurate than with any of the two
methods presented in [6, 7]. These two methods are not comparable as illustrated
by Fig. 5(a) and shown in [7]. The concretisation of the existential abstraction,
as in [7], allows for generating the four test cases t1 to t4 of Fig. 5(b). Our
method additionally generates the test case t5 thanks to the concretisation of
L. In contrast, the method of [6] would only generate the test cases t1 and t5.
Our method finally generates the union of the test cases generated by each of
the two methods.

6 Implementation and Experimentations

We present in this section some optimisations to the algorithm of Fig 6. Our
experimentations show their impact on test generation.

6.1 Implementation and Optimisation

We have used the SMT-solver Z3 [14] to implement the SAT procedure and the
B substitution calculus to implement wp, wcp, grd and sp. Our implementation
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(b) Second Concretisation of q0

Fig. 7. Concretisations of q0 for the Abstract Electrical System

of the algorithm of Fig 6 optimises it in two ways. Firstly, we improve its prac-
tical complexity by not examining all the triplets (q, e, q′). Secondly, we better
connect the concrete transitions to produce longer executions. But the universal
concretisation described in Sec. 5.2 has not been implemented yet.

Improvement of the Practical Complexity. The worst case theoretical complexity
of our algorithm is |A|2×|Ev| when the concretisation is not taken into account.
Taking into account the concretisation, i.e. the loop in lines 16-19 of Fig. 6, the
complexity is |A|3 × |Ev|2 because the maximal size of Γ ({q}) is 2 × |A| × |Ev|
when there is one transition for each event towards each abstract state because
any abstract transition is concretised by one concrete transition. The number of
triplets (q, e, q′) to explore can be reduced by computing on the one hand for
each abstract state the events that can be fired on it, independently of the target
states, and on the other hand, for each abstract state, the events able to reach
it, independently of the source states. Let Fireable be a partial function that
maps each abstract state of A to the set of events fireable on it. Let Reaching be
a partial function that maps each abstract state of A to the set of events able to
reach it. The computation of Fireable and Reaching is in |A| × |Ev| and allows
for the following optimisations.

– In the third loop, on line 11, instead of enumerating all the events in Ev, it
is possible to enumerate only the events in Fireable(q)∩Reaching(q′): they
are both fireable on q and able to reach q′.

– In the second loop (line 10), it is sufficient to enumerate the set of reachable
states (domain of Reaching) instead of the set of all the abstract states in
A.

Improvement of the Connectivity Between the Concrete Transitions. To get a
“good” connectivity of the concrete transitions, the algorithm tries to concretise
an abstract transition (q

e
→ q′) by considering all the existing pairs of concrete

states of q and q′. If it fails, the algorithm asks the solver to find for each concrete
state of q a new concrete state of q′ such that the concrete transition exists. If
it fails again, a new pair of concrete states is built by the solver. Indeed, many
concrete transitions between two different concrete states are transformed into



reflexive may transitions on an abstract state. In practice, to go from an abstract
state to another, it is often necessary to apply these reflexive transitions to
connect inside an abstract state the concrete target state of the incoming abstract
transition to the concrete source state of the outgoing abstract transition. The
concretisation could be improved at no supplementary computing cost by two
implementation choices and three user parameters.

1. Concretise in priority reflexive transitions so as to increase the number of
concrete states of q.

2. Enumerate in priority the concrete states reachable in q (line 17) and un-
reached in q′ (line 18). This requires to mark as reachable or not the concrete
states during their computation and to arrange Γ in order on-the-fly.

3. Enumerate the events in an order that causes the reflexive transition to
chain. For example in the Electrical System, Fail has to be called before
Rep since a battery can be repaired only if it is broken.

4. Indicate the number of repetitions of some of the events, that need to be
consecutively repeated to effectively make the system progress.

5. Provide a partial concretisation of the numerical variables of some targeted
concrete states to guide the global concretisation.

The last three parameters rely on the hypothesis that the tester has a suffi-
ciently good knowledge of the system and its model to be able to provide them.
Knowing the “common sense” sequencing order of the events and their num-
ber of repetitions seems natural. But a partial concretisation is surely a more
difficult thing to know about.

6.2 Experimental Results

In the tables, the symbols “♯”, “Pot.”, “Trans.”, “Inst.” and “Abs.” respectively
stand for number of, Potential, Transitions, Instantiated and Abstract. Table 1
compares two processes of test generation from abstraction. We compare test
sequences that come from the abstraction algorithm defined in Sec. 5 (Process
1) with previous results obtained with a process (Process 2) in which we generate
tests as executions of ∆ and then instantiate them a posteriori. The comparison
is based on the coverage of the abstract transitions and the abstract states. For
Process 1, we give also the coverage of concrete transitions and concrete states
of ∆c. In Process 2, we have used the theorem prover of Atelier B [15] instead
of the SMT-solver Z3.

Since the tools used to generate the abstractions are not the same in Pro-
cess 1 and Process 2, directly comparing their execution times does not make
sense. Except for Demoney, these times are small with both processes. We no-
tice however that the computation of the Demoney abstraction took 1381 s. with
Process 1 vs. and 12917 s. with Process 2. We have observed that 9522 s. was
spent at instantiating the tests a posteriori with Process 2. This indicates that
instantiating the tests on-the-fly is more efficient.

Process 1 gives better coverage ratios for the abstract states (up to 40%) and
transitions (up to 45%), excepted for the small model of Fig. 4, where Process 2



also covers the test t5 that should be found by the second step of Process 1
described in Sec. 5.2.

Model ♯Pot.
Process 1 : Concretisation Process Process 2 : Process with instantiation

(loc) states ♯Tests
♯Tests

Abstract Abstract Concrete Concrete
♯Inst. Tests ♯Tests

Abstract Abstract

Steps
States Trans. States Trans.

/ ♯ Abs. Tests Steps
States Trans.

Coverage Coverage Coverage Coverage Coverage Coverage

Small
∞ 7 13

8/8 8/10 11/15 8/11
4/4 (100%) 12

8/8 10/10
Model (20) (100%) (80%) (73%) (73%) (100%) (100%)

SysAlim
36 1 28

4/4 11/11 8/8 15/15
4/4 (100%) 21

4/4 11/11
(100) (100%) (100%) (100%) (100%) (100%) (100%)

QuiDonc
13 2 90

5/5 22/22 13/13 40/40
2/5 (40%) 16

3/5 14/22
(170) (100%) (100%) (100%) (100%) (60%) (64%)

Robot
384 29 224

4/4 21/31 44/59 50/72
2/4 (50%) 25

3/4 17/31
(100) (100%) (68%) (74%) (69%) (75%) (55%)

Partition
∞ 5 9

4/7 5/23 9/41 5/28
2/14 (14%) 6

3/7 5/23
(80) (57%) (22%) (22%) (18%) (43%) (22%)

DeMoney
∞ 34 591

10/14 237/368 31/161 499/1669
17/18 (95%) 170

9/14 197/368
(330) (71%) (64%) (19%) (30%) (64%) (54%)

Table 1. Efficiency of the Test Generation Methods

The experimental results of Table 2 are about the impact of the parameters
of Sec. 6.1 (items 3, 4 and 5), in terms of number of tests, number of test steps
and coverage of the states and the transitions of both the abstraction and its
concretisation.

We have observed each parameter variation with the two other parameters
fixed at the best value that we found on the examples. The variations are as
follows. There are two events sequencing: intuitive or non-intuitive. Each event
is repeated either once (default parameter) or the number of times indicated
in Table 2. Only Demoney has numerical variables: they are either not at all
(default parameter) or partially concretised.

The results show that modifying the sequencing of the events for the Robot
and Demoney examples changes the coverage ratios (up to 4 times more) and the
number of test and test steps (up to 8 times more) very significantly. Repeating
some of the events considerably improves the quality of the results, in terms
of abstraction coverage (up to 10 times more) and of number of tests and test
steps (up to 26 times more). The partial concretisation of the targeted states also
substantially improves the coverage of the abstraction (up to 10 times more) and
the number of tests and test steps (up to 26 times more). We have also noticed
with Demoney that playing with the three parameters at once could be necessary
to better improve the results.

Parameter Model
Parameter

♯Tests
♯Tests

Coverage Coverage

Value Steps
Abstract Abstract Concrete Concrete
States Trans. States Trans.

Events Robot
Loading order 2 16 50% 26% 21% 26%

Enumeration
Inverse loading order 1 2 25% 6% 7% 6%

Order DeMoney
Valid credit order 34 591 71% 64% 19% 30%

Inverse valid credit order 20 422 50% 45% 15% 25%

Events Robot
Part Arrival: 3 29 224 100% 68% 74% 69%

Multiple
Default parameter 7 35 75% 35% 34% 42%

Call DeMoney
Put Data: 4 34 591 71% 64% 19% 30%

Default parameter 1 22 7% 6% 2% 6%

Partial Concrete
DeMoney

A partial concretisation 34 591 71% 64% 19% 30%
Valuation Default parameter 1 22 7% 6% 2% 6%

Table 2. Impact of the Use of Parameters for Test Generation



7 Related Works

Some algorithms that compute over-approximations based on predicate abstrac-
tion can be found e.g. in [2, 16]. Predicate abstraction is also used by Ball in [6,
17] and Păsăreanu et al. in [7] to compute program abstractions that are under-
approximations for generating tests. Ball computes an under-approximation from
the reachable sequences of must- transitions followed by at most one may tran-
sition and a sequence of must+ transitions. Păsăreanu et al. also compute an
under-approximation, but by concretisation of the may transitions. We combine
these two methods in this paper by concretising may transitions and the se-
quences of must transitions. We do not refine the set of abstraction predicates
as in [7, 18] to search for an exact abstraction. But we present a parametrised
algorithm and many optimisations by heuristics to improve the concretisation.

We have defined in [5] a method to extract a set of predicates P from a
test purpose and a behavioural model for generating tests in an MBT approach.
In [6], P is made of all the atomic predicates that appear in the control structure
of a C program. In [18], the set of predicates is iteratively refined in order to
compute a bisimulation of the initial model when it exists. SYNERGY [19] and
DASH [20] also combine under-approximation and over-approximation computa-
tions to check safety properties on programs. As we aim at proposing an efficient
MBT method, our algorithm always terminates because it does not refine the
over-approximation. Moreover, it generates on-the-fly the under-approximations
by using the witnesses of satisfiability proofs to build the over-approximation.

Other works are about generating tests from abstraction. The tools Agatha [21],
DART [22], CUTE [23], EXE [24] and PEX [25] also compute abstractions from
models or from programs, but by means of symbolic execution [4]. This data
abstraction approach computes an execution graph. Its set of abstract states
is possibly infinite whereas it is finite with the predicate abstraction method.
The methods of [26] implemented in STG [27] use abstractions defined by the
user and modelled by IOSTS (Input Output Symbolic Transition System). They
use test purposes synchronised with abstractions, both defined as IOSTS. Then,
the synchronised product allows for generating tests after an optimisation step,
which consists of pruning the unreachable states by abstract interpretation. Our
approach is very similar in that we also use test purposes and abstractions, as
well as synchronisation. But there are three differences. First, our abstractions
are computed from a set of predicates defined from the test purposes, whereas
STG uses user-defined abstractions. Second, an optimisation is performed by the
abstraction computation by using the invariant properties (that do not exist in
an IOSTS) specified in the B models used in our experimentations. It allows,
for the weakest precondition computation, to minimise the symbolic state space
and the feasible transitions. Third, we use SMT solvers, that combine constraint
solving and theories for proof, instead of pure constraint solving to instantiate
the symbolic tests.

Similarly to the concolic execution in [23], we combine concrete execution
with predicate abstraction. But concolic tools use symbolic execution instead of
predicate abstraction. Furthermore, we use a dual combination by performing



predicate abstraction and concretising incrementally the abstract transitions,
whereas concolic execution performs a concrete execution and at the same time
collects the symbolic path constraints. Moreover, hybrid concolic execution [28]
combines random generation of input values.

8 Conclusion and Further Works

We have presented a method of model-based test generation and an algorithm
that combines two under-approximation computations (defined in [6, 7]) by pred-
icate abstraction. Our contributions are this combination and the design of three
adequate parameters to capture the know-how of the tester and the definition
of pertinent heuristics for improving the accuracy of the under-approximations.
Our experimental results indicate that generating the tests from this under-
approximation with an on-the-fly instantiation is more efficient and gives better
coverage ratios than an over-approximation based process with afterwards in-
stantiation. Our experimental results also measure the impact of each parameter
on the test coverage ratios. This work shows that using under-approximations
is decisive for the scalability of the method. This paper also shows that the effi-
ciency of the method depends on capturing of the tester’s expertise. We propose
three parameters to the tester: the order in which the operations are considered,
the number of their consecutive repetition and a subset of the concrete states
to target. The practical usability of these parameters by a validation engineer
has to be assessed by experimentations on larger case studies. Also, we intend as
future works to define better parameters that would depend on the application
domains.

We also have to improve the implementation of the concretisation of the
under-approximation L defined in Sec. 5.2. Additionally, for the SMT-solvers to
be able to deal with our behavioural models, we have by now to restrict our
usage of some of the B set operators. To overcome this limitation, it will be
necessary either to define new theories for the SMT-solvers, or to automatically
rewrite all B predicates as first-order logic formulas.
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