arXiv:1112.0950v1 [cs.CR] 5 Dec 2011

Class of Trustworthy Pseudo-Random Number Generators

Jacques M. Bahi*, Jean-Francois Couchot*, Christophe Guyeux*and Qianxue Wang*
*University of Franche-Comte
Computer Science Laboratory LIFC, Belfort, France
Email:{jacques.bahi, jean-francois.couchot, christophe.guyeux, gianxue.wang}@univ-fcomte.fr

Abstract—With the widespread use of communication tech-
nologies, cryptosystems are therefore critical to guarantee se-
curity over open networks as the Internet. Pseudo-random
number generators (PRNGs) are fundamental in cryptosystems
and information hiding schemes. One of the existing chaos-based
PRNGs is using chaotic iterations schemes. In prior literature,
the iterate function is just the vectorial boolean negation. In
this paper, we propose a method using Graph with strongly
connected components as a selection criterion for chaotic iterate
function. In order to face the challenge of using the proposed
chaotic iterate functions in PRNG, these PRNGs are subjected
to a statistical battery of tests, which is the well-known NIST in
the area of cryptography.

Keywords-Internet security; Chaotic sequences; Statistical
tests; Discrete chaotic iterations.

I. INTRODUCTION

Chaos and its applications in the field of secure commu-
nication have attracted a lot of attention in various domains
of science and engineering during the last two decades. The
desirable cryptographic properties of the chaotic maps such
as sensitivity to initial conditions and random behavior have
attracted the attention of researchers to develop new PRNG
with chaotic properties. Recently, many scholars have made
an effort to investigate chaotic PRNGs in order to promote
communication security [3] [10] [14]. One of the existing
chaos-based PRNGs is using chaotic iterations schemes.

A short overview of our recently proposed PRNGs based on
Chaotic Iterations are given hereafter. In Ref. [1], it is proven
that chaotic iterations (ClIs), a suitable tool for fast computing
iterative algorithms, satisfies the topological chaotic property,
as it is defined by Devaney [7]. The chaotic behavior of CIs
is exploited in [2f], in order to obtain an unpredictable PRNG
that depends on two logistic maps. The resulted PRNG shows
better statistical properties than each individual component
alone. Additionally, various chaos properties have been es-
tablished. The advantage of having such chaotic dynamics
for PRNGs lies, among other things, in their unpredictability
character. These chaos properties, inherited from Cls, are not
possessed by the two inputted generators. We have shown that,
in addition of being chaotic, this generator can pass the NIST
battery of tests, widely considered as a comprehensive and
stringent battery of tests for cryptographic applications [13]].
Then, in the papers [3], [4], we have achieved to improve the
speed of the former PRNG by replacing the two logistic maps:
we used two XORshifts in [3], and ISAAC with XORshift
in [4]. Additionally, we have shown that the first generator
is able to pass DieHARD tests [[11l], whereas the second one
can pass TestUO1 [9].

In spite of the fact that all these previous algorithms are
parametrized with the embed PRNG, they all iterate the same
function namely, the vectorial boolean negation later denoted
as —. It is then judicious to investigate whether other functions

may replace the — function in the above approach. In the
positive case, the user should combine its own function and its
own PRNGs to provide a new PRNG instance. The approach
developed along these lines solves this issue by providing
a class of functions whose iterations are chaotic according
to Devaney and such that resulting PRNG success statistical
tests.

The rest of this paper is organized in the following way.
In the next section, some basic definitions concerning Cls are
recalled. Then, our family of generators based on discrete
CIs is presented in Section with some improvements.
Next, Section gives a characterization of functions whose
iterations are chaotic. A practical note presents an algorithm
allowing to generate some instances of such functions. These
ones are then embedded in the algorithm presented in Sect.
where we show why generator of Sect. is not convenient
for them. In Section various tests are passed with a goal
to decide whether all chaotic functions are convenient in a
PRNG context. The paper ends with a conclusion section
where our contribution is summarized and intended future
work is presented.

II. DISCRETE CHAOTIC ITERATIONS: RECALLS

Let us denote by [a;b] the interval of integers: {a,a +
1,...,b}. A boolean system (BS) is a collection of n com-
ponents. Each component i € [1;n] takes its value x; among
the domain B = {0,1}. A configuration of the system
at discrete time ¢ (also called at iteration t) is the vector
zt = (zf,...,2!) € B".

The dynamics of the system is described according to a
function f : B™ — B" such that: f(z) = (f1(2),..., fu(x)).

Let be given a configuration x. In what follows the con-
figuration N(i,z) = (z1,...,Ti,...,2Tp) is obtained by
switching the i—th component of . Intuitively, = and N (i, x)
are neighbors. The discrete iterations of the f function are
represented by the so called graph of iterations.

Definition 1 (Graph of iterations) In the oriented graph of
iterations, vertices are configurations of B™ and there is an
arc labeled i from x to N(i,x) iff fi(x) is N(i,x) (we
consider 1-bit transitions).

In the sequel, the strategy S = (S*)*<N is the sequence of
the components that may be updated at time ¢, S? denotes the
t—th term of the strategy S.

Let us now introduce two important notations. A is the
discrete Boolean metric, defined by A(z,y) =0 < x =y,
and the function Fy is defined for any given application f :
B™ — B” by

Fy:[1;n] x B”

(s,2)

— B"
— (xj.ms,j) + fj(x)-m)

jelin]’

where the point and the line above delta are multiplication and
negation respectively. With such a notation, configurations are
defined for times t = 0,1,2,... by:

2 € B” and)
= Fy (St 2t)

Finally, iterations of (I) can be described by the following
system

XO — ((St)telN,zO) c Hl;nﬂ]N x IB™)
Xk+1 — Gf(Xk), ()

such that
Gy (SN, 2) = (o (")), Fr(S°,2))

where o is the function that returns the strategy (S%)*N where
the first term (i.e., S°) has been removed. In other words, at
the t*" iteration, only the S*—th cell is modified; the resulting
strategy is the initial one where the first £ terms have been
removed.

A previous work [[1]] has shown a fine metric space such
that iterations of the map Gy are chaotic in the sense of
Devaney [7]] when f is the negation function —. This definition
consists of three conditions: topological transitivity, density of
periodic points, and sensitive point dependence on initial con-
ditions. Topological transitivity is established when, for any
element, any neighborhood of its future evolution eventually
overlap with any other given region. On the contrary, a dense
set of periodic points is an element of regularity that a chaotic
dynamical system has to exhibit. This regularity “counteracts”
the effects of transitivity. Finally, a system is sensitive to initial
conditions if future evolution of any point in its neighborhood
are significantly different. This result theoretically implies the
"quality" of the randomness.

The next section formalizes with chaotic iterations terms
the PRNG algorithm presented in [2].

III. CHAOS BASED PRNG

This section aims at formalizing a PRNG algorithm already
presented in [2] and gives some improvements.

First of all, Let us intorduce XORshift, generator. Xorshift
is a category of pseudorandom number generators designed
by George Marsaglia [[12] that repeatedly uses the transform
of exclusive or on a number with a bit shifted version of itself.
A XORshift operation is defined as follows.

Input: the internal state z (a 32-bits word)
Output: y (a 32-bits word)

z4+ 28 (2 < 13);

2+ 2@ (2> 17);

2+ 2® (2 <5);

Yz

return y;

Algorithm 1: An arbitrary round of XORshift algorithm

Then the design procedure of this generator is summed up
in Algorithm 2]

Let be given a seed as the internal state z. This algorithm
outputs a random configuration . It is based on the XORshift,
generator which is called in two situations. The first one

Input: an initial state z° (n bits)

Output: a state x (n bits)

z +— 2°;

k <« reallocate(XORshift() mod (2" —1));

x + iterate_G(neg, XORshift, k, x);

return z;
Algorithm 2: An arbitrary round of the (XORshift, XORshift)
generator

occurs while generating the parameter of the reallocate func-
tion that aims at computing the number k& of time a function
has to be iterated. The second one occurs as a parameter of
iterate_G, which executes the iterations of G as defined in (2)),
with f = neg, S = XORshift,z as initial state, and k for
the number of iterations.

Firstly, let us focus on the reallocate function, which is

defined by:
n
0 if 0 <k<
1 (6)
1
n n
1 if <
o) <= 20
reallocate(k) = i=0

2n -1

i=0

Formally, the set [0,2" — 1] is partionned into subsets
1570 (3) it (") [where j € [0,n—1]. Each interval bound
is a binomial coefficient: it gives the number of combinations
of n things taken j. In our context, it is the number of
configurations (z1,...,x,) that can be built by negating j
elements among n. The function reallocate allows to compute
a distribution on [0, n] that permits to reach configurations in
[0,2™ — 1] uniformly.

Let us present now the iterate_G function. It starts with
computing the strategy S of lenght k as the result of a usual
sample (not detailled here) function that selects k elements
among n following a PRNG 7 given as the first parameter. The
loop next reproduces k iterations of Gy as define in Equ. @

Input: a function f, a PRNG r, an iterations number £,
a binary number z° (n bits)
Qutput: a binary number x (n bits)
x «— 29;
S = sample(r, k,n);
for : =0,...,k—1do
s« S[i];
x < Fr(s,x);
end

return x;
Algorithm 3: The iterate_G function.

Compared to work [2], this algorithm is:

« close to the formal iterations of G¢: strategy is explicitely
computed and there are as many iterations as the number
of executed loops.

« more efficient: in the previous work, loops are executed
untill k£ distinct elements have been switched leading to
possibly more iterations. In the opposite, the function

100 | 10000
Speedup | 10% | 7.8 %

100000 | 1000000 | 1000000
8.8 % 8.1% 9.5%

Table I: Speed up improvement from Algorithm [2]]

iterate_G exactly executes k loops when k iterations are
awaited. However, this improvement moves the problem
into the sample function, which is classically tuned to
speed up its global behavior. In such a context we take
a benefit of this improvement. Table [I] compares these
two algorithms in terms of execution time with respect
to the number of generated elements. The improvement
is about 9%.

However as noticed in introduction, the whole (theoretical
and practical) approach is based on the negation function.
The following section studies whether other functions can
theoretically replace this one.

IV. CHARACTERIZING AND COMPUTING FUNCTIONS FOR
PRNG

This section presents other functions that theoretically
could replace the negation function — in the previous algo-
rithms.

In this algorithm and from the graph point of view, iterating
the function G4 from a configuration z° and according to a
strategy (S?)*€N consists in traversing the directed iteration
graph I'(f) from a vertex z° following the edge labelled with
R L Obviously, if some vertices cannot be reached from
other ones, their labels expressed as numbers cannot be output
by the generator. The Strongly connected component of T'(f)
(i.e., when there is a path from each vertex to every other
one), denoted by SCC in the following [6]], is then a necessary
condition for the function f. The following result shows this
condition is sufficient to make iterations of Gy chaotic.

Theorem 1 (Theorem IIL.6, p. 91 in [8]) Let f be a func-
tion from B™ to B". Then Gy is chaotic according to Devaney
iff the graph T'(f) is strongly connected.

Any function such that the graph I'(f) is strongly connected
is then a candidate for being iterated in G5 for pseudo random
number generating. Thus, let us show how to compute a map
f with a strongly connected graph of iterations I'(f).

We first consider the negation function —. The iteration
graph I'(—) is obviously strongly connected: since each con-
figuration (z1,...,x,) may reach one of its n neighbors,
there is then a bit by bit path from any (z1,...,z,) to any
(2f,...,2,). Let then T be a graph, initialized with T'(—),
the algorithm iteratively does the two following stages:

1) select randomly an edge of the current iteration graph

I' and
2) check whether the current iteration graph without that
edge remains strongly connected (by a Tarjan algo-
rithm [15]], for instance). In the positive case the edge
is removed from G,
until a rate r of removed edges is greater than a threshold
given by the user.

Formally, if r is close to 0% (i.e., few edges are removed),
there should remain about n x 2" edges (let us recall that 2"
is the amount of nodes). In the opposite case, if 7 is close to
100%, there are left about 2" edges. In all the cases, this step
returns the last graph I' that is strongly connected. It is not

Function f f(x), for z in (0,1,2,...,15) Rate
- (15,14,13,12,11,10,9,8,7,6,5.4,3,2,1,0) 0%
@ (15,14,13,12,11,10,9,8,7,6,7,4,3,2,1,0) 2.1%
® (14,15,13,12,11,10,9,8,7,6,5,4,3,2,1,0) 4.1%
© (15,14,13,12,11,10,9,8,7,7,5,12,3,0,1,0) | 6.25%
@ (14,15,13,12,9,10,11,0,7,2,5,4,3,6,1,8) 16.7%
®© (11,2,13,12,11,14,9,8,7,14,5,4,1,2,1,9) 16.7%
® (13,10,15,12,3,14,9,8,6,7,4,5,11,2,1,0) 20.9%
® (13,7,13,10,11,10,1,10,7,14,4,4,2,2,1,0) | 20.9%
® (7,12,14,12,11,4,1,13,4,4,15,6,8,3,15,2) 50%
[©) (12,0,6,4,14,15,7,15,11,1,14,2,7,4,7,9) 75%

Table II: Functions with SCC graph of iterations

then obvious to return the function f whose iteration graph
is T

However, such an approach suffers from generating many
functions with similar behavior due to the similarity of their
graph. More formally, let us recall the graph isomorphism
definition that resolves this issue. Two directed graphs I';
and T’y are isomorphic if there exists a permutation p from
the vertices of I'; to the vertices of I'y such that there is an
arc from vertex u to vertex v in I'y iff there is an arc from
vertex p(u) to vertex p(v) in I's.

Then, let f be a function, I'(f) be its iteration graph, and p
be a permutation of vertices of I'(f). Since p(T'(f)) and T'(f)
are isomorphic, then iterating f (i.e., traversing I'(f)) from
the initial configuration ¢ amounts to iterating the function
whose iteration graph is p(T'(f)) from the configuration p(c).
Graph isomorphism being an equivalence relation, the sequel
only consider the quotient set of functions with this relation
over their graph. In other words, two functions are distinct if
and only if their iteration graph are not isomorphic.

Table [[| presents generated functions that have been ordered
by the rate of removed edges in their graph of iterations
compared to the iteration graph I'(—) of the boolean negation
function —.

For instance let wus consider the function (@
from B* to B* defined by the following images:
[13,7,13,10,11,10,1,10,7,14,4,4,2,2,1,0]. In other

words, the image of 3 (0011) by (® is 10 (1010): it is
obtained as the binary value of the fourth element in the
second list (namely 10). It is not hard to verify that T'(@)
is SCC. Next section gives practical evaluations of these
functions.

V. MODIFYING THE PRNG ALGORITHM

A coarse attempt could directly embed each function of
table [[I] in the iterate_G function defined in Algorithm [3] Let
us show the drawbacks of this approach on a more simpler
example.

Let us consider for instance n is two, the negation function
on B2, and the function f defined by the list [1,3,0,2]
(ie., f(0,0) = (0,1), f(0,1) = (1,1), f(1,0) = (0,0), and
f(1,1) = (1,0)) whose iterations graphs are represented in
Fig. {1l The two graphs are strongly connected and thus the
vectorial negation function should theoretically be replaced
by the function f.

In the graph of iterations I'(—) (Fig. [La), let us compute the
probability P! (X) to reach the node X in ¢ iterations from
the node 00. Let Xy, X;, X5, X3 be the nodes 00, 01, 10
and 11. For i € [0,3], P1(X;), are respectively equal to 0.0,
0.5, 0.0, 0.5. In two iterations P?(X;) are 0.5, 0.0, 0.5, 0.0.

I@ Y
Cﬁ Dy
L)
d,%‘)
OERC»
(a) Negation (b) (1,3,0,2)

Figure 1: Graphs of Iterations

Name | Deviation | Suff. number of it.
@ 8.1% 167
® 1% 105
© 18% 58
@ 1% 22
® 24% 19
® 1% 14
® 20% 6
® 45.3% 7
[©) 53.2% 14

Table III: Deviation with Uniform Distribution

It is obvious to establish that we have P?'(X;) = PY(X;)
and P?'+1(X;) = P!(X;) for any ¢t € N. Then in k or k + 1
iterations all these probabilities are equal to 0.25.

Let us apply a similar reasoning for the function f defined
by [1,3,0,2]. In its iterations graph I'(f) (Fig.[Ib), and with
X; defined as above, the probabilities P} (X;) to reach the
node X; in one iteration from the node 00 are respectively
equal to 0.5, 0.5, 0.0, 0.0. Next, probabilities PfQ(X) are 0.25,
0.5, 0.25, 0.0. Next, P?(X) are 0.125, 0.375, 0.375, 0.125.
For each iteration, we compute the average deviation rate R’
with 0.25 as follows.

2o | PH(X;) —0.25 |
; :

The higher is this rate, the less the generator may uniformly
reach any X; from 00. For this example, it is necessary to
iterate 14 times in order to observe a deviation from 0.25
less than 1%. A similar reasoning has been applied for all the
functions listed in Table [l The table summarizes their
deviations with uniform distribution and gives the smallest
iterations number the smallest deviation has been obtained.

With that material we present in Algorithm [4] the method
that allows to take any chaotic function as the core of a pseudo
random number generator. Among the parameters, it takes the
number b of minimal iterations that have to be executed to
get a uniform like distribution. For our experiments b is set
with the value given in the third column of Table

Compared to the algorithm [2] parameters of this one are the
function f to embed and the smallest number of time steps
G is iterated. First, the number of iterations is either b or
b+ 1 depending on the value of the XORshift output (if the
next value . Next, a loop that iterates Gy is executed.

In this example, n and b are equal to 4 for easy understand-
ing. The initial state of the system z° can be seeded by the
decimal part of the current time. For example, the current
time in seconds since the Epoch is 1237632934.484088,

R' =

Input: a function f, an iteration number b, an initial
state 20 (n bits)
Output: a state x (n bits)
x «— 20;
k < b+ (XORshift() mod 2);
fori=0,....,k—1do
s < XORshift() mod n;
x <+ Fy(s,x);
end
return x;

Algorithm 4: modified PRNG with various functions

so t = 484088. 2° = t mod 16 in binary digits, then
2% = 0100. m and S can now be computed from XORshift.

o f=114,15,13,12,11,10,9,8,7,6,5,4,3,2,1,0]

o« k=4,5,4,...

e 5=2,4,2,3,4,1,1,4,2,,0,2,3, 1,...
Chaotic iterations are done with initial state 2", the mapping
function f, and strategy s!, s2...The result is presented in
Table Let us recall that sequence k gives the states x! to
return: x4, x5 24544 | Successive stages are detailed in
Table [V1

To illustrate the deviation, Figures [2al and [2b| represent the
simulation outputs of 5120 executions with b equal to 40 for
®© and () respectively. In these two figures, the point (z,y, z)
can be understood as follows. z is the number of times the
value = has been succedded by the value y in the considered
generator. These two figures explicitly confirm that outputs
of functions (f) are more uniform that these of the function
©. In the former each number z reaches about 20 times each
number y whereas in the latter, results vary from 10 to more
that 50.

VI. EXPERIMENTS

A convincing way to prove the quality of the produced se-
quences is to confront them with the NIST (National Institute
of Standards and Technology) Statistical Test Suite SP 800-
22 [13]]. This is a statistical package consisting of 15 tests that
focus on a variety of different types of non-randomness that
could occur in a (arbitrarily long) binary sequences produced
by a pseudo-random number generators.

For all 15 tests, the significance level o was set to 1%. If
a p-value is greater than 0.01, the keystream is accepted as
random with a confidence of 99%; otherwise, it is considered
as non-random. For each statistical test, a set of p-values is
produced from a set of sequences obtained by our generator
(i.e., 100 sequences are generated and tested, hence 100 p-
values are produced).

Empirical results can be interpreted in various ways. In
this paper, we check whether Pp (P-values of p-values),
which arise via the application of a chi-square test, were all
higher than 0.0001. This means that all p-values are uniformly
distributed over (0, 1) interval as expected for an ideal random
number generator.

Table shows P of the sequences based on discrete
chaotic iterations using different “iteration” functions. If there
are at least two statistical values in a test, the test is marked
with an asterisk and the average value is computed to charac-
terize the statistical values. Here, NaN means a warning that

k 4 5 4
s 2 4 2 3 7 I T] 2 0 2 3 I
fa) f0) f00) f(4) f6) f(n fas) f(m f(0 f(2) f0) f4) f(6)
1 1 1 1 1 1 0 1 1 1 1 1 1
f 0 1 1 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 1 1 0
1 0 0 1 1 0 0 0 0 1 0 1 1
xO CE4 :EQ :E13
4 0 0 4 6 6 7 15 7 7 7 2 0 4 6 14 14
0 0 L1 Lo 0 L1
1] 2o ENS] 1 20 0 =N 1
0 5101 1] 2o 31 1
0 40 0| 51 40 0 0
Table IV: Application example
Table V: NIST SP 800-22 test results (IP7)
Method [@ [6 [0o | @ e [0 | @[&6 [0 |
Frequency (Monobit) Test 0.00000 | 0.45593 | 0.00000 | 0.38382 | 0.00000 | 0.61630 | 0.00000 | 0.00000 | 0.00000
Frequency Test within a Block 0.00000 | 0.55442 | 0.00000 | 0.03517 | 0.00000 | 0.73991 | 0.00000 | 0.00000 | 0.00000
Cumulative Sums (Cusum) Test* 0.00000 | 0.56521 | 0.00000 | 0.19992 | 0.00000 | 0.70923 | 0.00000 | 0.00000 | 0.00000
Runs Test 0.00000 | 0.59554 | 0.00000 | 0.14532 | 0.00000 | 0.24928 | 0.00000 | 0.00000 | 0.00000
Test for the Longest Run of Ones in a Block 0.20226 | 0.17186 | 0.00000 | 0.38382 | 0.00000 | 0.40119 | 0.00000 | 0.00000 | 0.00000
Binary Matrix Rank Test 0.63711 | 0.69931 | 0.05194 | 0.16260 | 0.79813 | 0.03292 | 0.85138 | 0.12962 | 0.07571
Discrete Fourier Transform (Spectral) Test 0.00009 | 0.09657 | 0.00000 | 0.93571 | 0.00000 | 0.93571 | 0.00000 | 0.00000 | 0.00000
Non-overlapping Template Matching Test* 0.12009 | 0.52365 | 0.05426 | 0.50382 | 0.02628 | 0.50326 | 0.06479 | 0.00854 | 0.00927
Overlapping Template Matching Test 0.00000 | 0.73991 | 0.00000 | 0.55442 | 0.00000 | 0.45593 | 0.00000 | 0.00000 | 0.00000
Maurer’s “Universal Statistical” Test 0.00000 | 0.71974 | 0.00000 | 0.77918 | 0.00000 | 0.47498 | 0.00000 | 0.00000 | 0.00000
Approximate Entropy Test 0.00000 | 0.10252 | 0.00000 | 0.28966 | 0.00000 | 0.14532 | 0.00000 | 0.00000 | 0.00000
Random Excursions Test* NaN 0.58707 NaN 0.41184 NaN 0.25174 NaN NaN NaN
Random Excursions Variant Test* NaN 0.32978 NaN 0.57832 NaN 0.31028 NaN NaN NaN
Serial Test* (m=10) 0.11840 | 0.95107 | 0.01347 | 0.57271 | 0.00000 | 0.82837 | 0.00000 | 0.00000 | 0.00000
Linear Complexity Test 091141 | 0.43727 | 0.59554 | 0.43727 | 0.55442 | 0.43727 | 0.59554 | 0.69931 | 0.08558
Success 5/15 15/15 4/15 15/15 3/15 15/15 3/15 3/15 3/15
Computational time 66.0507 | 47.0466 | 32.6808 | 21.6940 | 20.5759 | 19.2052 | 16.4945 | 16.8846 | 19.0256

test is not applicable because of an insufficient number of
cycles. Time (in seconds) is related to the duration needed by
each algorithm to generate a 10® bits long sequence. The test
has been conducted using the same computer and compiler
with the same optimization settings for both algorithms, in
order to make the test as fair as possible.

Firstly, the computational time in seconds has increased due
to the growth of the sufficient iteration numbers, as precised
in Table [Tl For instance, the fastest generator is (@ since
each new number generation only requires 6 iterations. Next,
concerning the NIST tests results, best situations are given
by ®, @ and @. In the opposite, it can be observed that
among the 15 tests, less than 5 ones are a successful for other
functions. Thus, we can draw a conclusion that,), @), and
@ are qualified to be good PRNGs with chaotic property.
NIST tests results are not a surprise: ®), @, and () have
indeed a deviation less than 1% with the uniform distribution
as already precised in Table The rate of removed edge in
the graph I'(—) is then not a pertinent criteria compared to the
deviation with the uniform distribution property: the function
@ whose graph I'(@) is I'(—) without the edge 1010 — 1000
(i.e., with only one edge less than I'(—)) has dramatic results
compared to the function (f) with many edges less.

Let us then try to give a characterization of convenient

function. Thanks to a comparison with the other functions, we
notice that 0), @), and (f) are composed of all the elements of
[0;15]. It means that (®), @), and (), and even the vectorial
boolean negation function are arrangements of [0; 2"] (n = 4
in this article) into a particular order.

VII. CONCLUSION

In this work we first have formalized the PRNG already
presented in a previous work. It results a new presentation
that has allowed to optimize some part and thus has led
to a more efficient algorithm. But more fundamentally, this
PRNG closely follows iterations that have been proven to be
topological chaotic.

By considering a characterization of functions with topo-
logical chaotic behavior (namely those with a strongly con-
nected graph of iterations), we have computed a new class of
PRNG based on instances of such functions. These functions
have been randomly generated starting from the negation
function. Then an a posteriori analysis has checked whether
any number may be equiprobabilistically reached from any
other one.

The NIST statistical test has confirmed that functions
without equiprobabilistical behavior are not good candidates
for being iterated in our PRNG. In the opposite, the other
ones have topological chaos property and success all the

IS
S

w
o
Occurrences

(a) Function (©

Occurrences

(b) Function (®

Figure 2: Repartition of function outputs.

NIST tests. To summarize the approach, all our previous
approaches were based on only one function (namely the
negation function) whereas we provide now a class of many
trustworthy PRNG.

Future work are mainly twofold. We will firstly study suf-
ficient conditions to obtain functions with the two properties
of equiprobability and strongly connectivity of its graph of
iterations. With such a condition any user should choose
its own trustworthy PRNG. Dually, we will continue the
evaluation of randomness quality by checking other statistical
series like DieHard[11], TestUO1 [9]...on newly generated
functions.

REFERENCES

[1] J. M. Bahi and C. Guyeux. Topological chaos and chaotic
iterations, application to hash functions. In WCCI’10, IEEE
World Congress on Computational Intelligence, pages 1-7,
Barcelona, Spain, July 2010. Best paper award.

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

J. M. Bahi, C. Guyeux, and Q. Wang. A novel pseudo-
random generator based on discrete chaotic iterations. In
INTERNET’09, 1-st Int. Conf. on Evolving Internet, pages 71—
76, Cannes, France, August 2009.

J. M. Bahi, C. Guyeux, and Q. Wang. Improving random num-
ber generators by chaotic iterations. application in data hiding.
In ICCASM 2010, Int. Conf. on Computer Application and
System Modeling, pages V13-643-V13-647, Taiyuan, China,
October 2010.

J. M. Bahi, C. Guyeux, and Q. Wang. A pseudo random
numbers generator based on chaotic iterations. application to
watermarking. In WISM 2010, Int. Conf. on Web Information
Systems and Mining, volume 6318 of LNCS, pages 202-211,
Sanya, China, October 2010.

S. Behnia, A. Akhavan, A. Akhshani, and A. Samsudin.
A novel dynamic model of pseudo random number gener-
ator. Journal of Computational and Applied Mathematics,
235(12):3455-3463, 2011.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT press, 3rd ed. edition, 2009.

R. L. Devaney. An Introduction to Chaotic Dynamical Systems.
Redwood City: Addison-Wesley, 2nd edition, 1989.

C. Guyeux. Le désordre des itérations chaotiques et leur utilité
en sécurité informatique. PhD thesis, Université de Franche-
Comté, 2010.

P. L’Ecuyer and R. J. Simard. Testu0O1: A C library for empirical
testing of random number generators. ACM Trans. Math. Softw.,
33(4), 2007.

N. Liu. Pseudo-randomness and complexity of binary se-
quences generated by the chaotic system. Communications in
Nonlinear Science and Numerical Simulation, 16(2):761-768,
2011.

G. Marsaglia.
1414203, 1996.

Diehard: a battery of tests of randomness.

G. Marsaglia. Xorshift rngs. Journal of Statistical Software,
8(14):1-6, 2003.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,
M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and
S. Vo. A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications. National
Institute of Standards and Technology, April 2010.

Fuyan Sun and Shutang Liu. Cryptographic pseudo-random
sequence from the spatial chaotic map. Chaos, Solitons &
Fractals, 41(5):2216-2219, 2009.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146-160, 1972.

	I Introduction
	II Discrete Chaotic Iterations: recalls
	III Chaos based PRNG
	IV Characterizing and Computing Functions for PRNG
	V Modifying the PRNG Algorithm
	VI Experiments
	VII Conclusion
	References

