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Abstract—This paper presents an energy-efficient technique on the frequency ordering. In this paper we provide a new
for data aggregation in periodic sensor networks. We investigate prefix filtering method to study the sets similarity in sensor
the problem of finding all pairs of nodes generating similar data networks. We propose frequency filtering optimization tech

sets such that similarity between each pair of sets is above a . hich loits th deri f t di
threshold ¢. We provide a frequency filtering approach to solve nique, which explolts the ordering o measurements acogrd

this problem. Our experiments demonstrate that our algorithm tO their frequencies. A frequency of a measure is defined by
outperforms existing prefix filtering methods in reducing energy the number of occurrences of this measure in the set defined at

consumption. o ) the first aggregation level. We show through the result that o
_Index Terms—periodic sensor networks; data aggregation; anproach offers significant data reduction by eliminating i
similarity functions; frequency filtering; optimization; . . .
network redundancy and sending only necessary information
to the sink.
The rest of the paper is organized as follows, Section Il
In this paper we present a hierarchical multilevel datdescribes our periodic data aggregation scheme, the local
aggregation scheme for periodic sensor networks. It aimsdggregation level and our proposed frequency filtering-tech
optimize the volume of data transmitted thus saving energjgues. Experimental results are given in Section Ill. Sec-
consumption and reducing bandwidth on the network level. #on IV concludes the paper with some directions to a future
first level in-sensor process is done by the nodes themselugsrk.
Instead of sending each sensor node’s raw data to a base
station, the data is cleaned periodically by the sensor node
itself before sending it to an aggregator node for a secorad le Our data aggregation method works in two phases, the first
of aggregation. At this level, we are interested in explgrinone at the nodes level, which we call local aggregation aed th
a new part of the filtering aggregation problem, by focusingecond at the aggregators level. At each pefiogach node
on identifying the similarity between data sets generated Bends its aggregated data set to its proper aggregator which
neighboring nodes and sent to the same aggregator. Ourobfatbsequently aggregates all data sets coming from differen
tive is to identify similarities between near sensor noges] Sensor nodes and sends them to the sink.
@ntegratg the_ir captured data into one record while préserv A. Local aggregation
information integrity.

Most of the extant work [1] has studied the data aggregation’ " * h ol K h q
as the computation of statistical means and moments, ' e: at each slos takes a new measuremeyt. Then node

well as other cumulative quantities that summarize the ddt orms a new set of captured mea_sur_ema‘lit,swnh period
obtained by the network. Other works, are query based meﬂﬁ—and sends it to the aggre_ggtor. Itis likely that a sensoen_od
ods [2]. A query is generated at the sink and then broadcasiBes _thlf Sa?e ((_)r very ﬁ'm'lalr) T\gast;remer}ts several_tlmes
through the network. Some nodes are selected to procgggemay whens Is too short. In this phase of aggregation,
the query, while others propagate it, receive partial tesul Ve are interested in |d¢nt|fy|ng duplicate data megsurefsnen
aggregate results, and send them back to the sink. Varidﬁsord_er,:o redL:)ce the size of the ge. Therefore, tgdlderr:tlfy
algorithmic techniques have been proposed to allow eficigffe Similarity between two measures, we provide the two

aggregation without increasing the message size [3]. So S(:\liii:%ic()jr?ﬁlni¢ti'0rl1cs1iunction)' We define thelink function
works, such as [4], use the clustering methods for aggwathstween "o mZeT;surements. A m

data packets in each cluster separately. In [5], a learni .
automaton-based data aggregation method in sensor natwork ik (Yisy, Yis,) = 1 if ||yi§1 — Yiso || <0,
is provided. In our previous work [6], we have shown that o g 0  otherwise

existing prefix filtering methods are very complex and NQfnere 5 is a threshold determined by the application. Fur-
suitable for sensor networks and we proposed a heuristedbag,ermore, two measures are similar if and only if thigiek

978-1-4673-0269-2/12/$31.00) 2012 IEEE function is equal to 1.

I. INTRODUCTION

II. PERIODIC DATA AGGREGATION

In periodic sensor networks, we consider that each sensor



Definition 2 (Measure’s frequency)fhe frequency of a scan each one, probe the indices using every measure intthe se
measuremeny; is defined as the number of the subsequenit/, and obtain a set of candidates; merging these candidates
occurrence of the same or similar (according to flwek together gives us their actual overlap with the currentidet
function) measurements in the same set. It is representedfiogal results can be extracted by removing sets whose overlap
[ (yis)- with M is less than 1%5.(|M;] + |M;|)](Equation 1).

For each new sensed measurement (at each slot), a sens®his intuition is formalized by the followinglemma in-
node: searches for the similar measure already captured. I&gired from [9]:

similar measurement is found, it deletes the new one while| emma 1:Consider two sets of sensor measuids and
incrementing the corresponding frequency by For more 7, such that their elements are ordered by a global defined
details of this algorithm see [6]. ordering. Let thep-prefiz be the first p elements af/;. If

At the end of the periocp, each nodei will possess a |Af;N,M;| > a, then the(|M;|—a+1)-pre fiz of M; and the
local aggregated sét/;. The second step is to send it to the{|Mj| —a+1)-prefixz of M; must share at least one element.
aggregator which in his turn aggregates the data sets coming proof: Lemma 1 can be proven similarly to the lemma
from different sensor nodes. of page6 in [9]. u
To ensure the prefix filtering based approach does not miss

) ) _any similarity set result, as shown in Lemma 1 we need a
At this level of aggregation, each aggregator has recelvsgeﬁx of length [M;| — [t.|M;]] + 1 for every setM; [6].

k sets of measurements and their frequencies. The idea NeRa hrefix filtering algorithm for finding similarity sets tek

is to identify all pairs of sets whose similarities are abave 55 jnnyt a collection of datasets coming from different sens
given threshold. For this reason we use a similarity function,,ges already sorted according to a defined ordering. Itsscan
which measures the degree of similarity between the two Sgigy entially each sel/;, selects the candidates that intersects
and returns a value ifo, 1]. A higher similarity value indicates it jts prefix. Afterwards,M; and all its candidates will be
that the sets are more similar. Thus we can treat pairs of Sgfitieq against the jaccard similarity threshold to finaéyurn

with high similarity value as duplicates and reduce the size o set of correct similar measurements sets. For morelsietai
the final data set that will be sent to the sink. Researchears & the prefix filtering algorithm refere to [6].

find various similarity functions [7]. The similarity furioh
selection primarily depends on the application domainhla t
paper we will focus on the Jaccard similarity, a commonl|
used function to define similarity between two sét and
]\/fj as:

B. Frequency filtering aggregation

Prefix filtering algorithm helps prune out unfeasible sets
of measures, however, in practice the number of non-
Yimilar sets surviving after this technique is still qudira
growth [10]. Following the prefix filtering, many optimizati
methods [10], [11] were proposed to prune out further the
; unfeasible non-similar sets. A trade-off of these prefiefitig
J(M;, M) >t & |[M;Ns Mj| > o= I—H.(|Mi| +|M;]) (1) optimizations is that usually require more computatiorfal e

forts which is unsuitable by heavy resources sensor nesvork
In our approach, we provide some optimizations for prefix
filtering techniques based on measures frequency whiladaki
into account this trade-off.

2) Frequency filtering approachlet us introduce some
definitions and notations which will be the basis of what

Lo . . . . follows. In periodic sensor networks, two data sets arelami
1) Sets similarity computationtn this section we provide P

) . Lo - if their measurements overlap with each other, and especial
techniques for computing the similarity between the reseiv L .
sets. A nive method to compute the similarity of receive(}h?:)ozsii’i h:\gng(;l?dh(arirnfrgqge\/nVCIzs ;;gluei rderin® which
data (sets) is to enumerate and compare every pair of S%trsrare1 esothe rﬁeasire%e)ﬁts (ff ae i\;eei1 s(;t S t?l)e de((::reasin
This method is obviously prohibitively expensive for ladgta 9 9 y 9

order of their frequencies.
sets (such the case of sensor networks), as total number oq X q
For two similar measuresm; and m; such that

comparison i0(n?). ,

To reduce the number of comparisons between sets a pré?ﬁ{“(mi’mj) = L we denote finin (i, m;) =
fitering method has been proposed. Several approaches o/ (), f(im;)) the minimum value of the frequency of
traditional similarity join between sets are based on thediyr t ese.mgasures. )
filtering principle [8] [6]. This method is based on the intan  Definition 5 (£ (M;, M;)): Consider two sets of measures
that if all sets of measures are sorted by a global orderinff; @ndM;, we define
some fragments of them must share several common tokengs(M;, M;) = g;(lM""M"')(fmm((mi,mj) € M;Ns Mj)).
with each other in order to meet the threshold similarity. An In this paper, we consider that all sensor nodes operate with
inverted index maps a given measuremento a list of identi- the same sampling rate, and every node capturggasures
fiers of sets that contaim; such thatink(m;, m) = 1. After with each periog. Thus we can deduce that for every received

inverted indices for all measures in the set are built, we capt M; from nodei we have:ZLj\fll(f(mk eM)=r.

where 'N," is a new function for overlapping defined as:

Definition 3: Consider two sets of measurement§ and
Ms, then we define:

My Ng My = {(y17y2) e M1 x MZ/Zan(yl,yQ) = 1},



Using the Jaccard similarity function, two set§ and M
are similar if and only if:Os(M;, M;) > « wherea =

The lemma is proved. [ ]

Algorithm 1 describes our method to find similar sets of

%H.(|Mi\+|Mj|) (Equation (1)). Supposing that the sets wermeasures based on the frequency filtering approach. It is a
sent to the aggregators without applying the first aggregatihybrid solution, where we integrate our frequency conditio
phase and without computing measures frequencies, thus pvesented in Lemma 2 to the prefix filtering approach.

can observe that:

‘Mz| g |MJ| =T andfs(Mi,]\/[j) g OQ(M“MJ) (2)

Algorithm 1 Frequency-filtering based algorithm.

Require: Set of measures’ set®l = { M, Ma...My,}, t, T.
Ensure: All pairs of sets(M;, M;), such that/(M;, M;) > t.

Hence, from Equation (1) and Equation (2) we can deduces « (

that:

S 2xt
M; and M; are similar iff: f,(M;, M;) > % 3)

I; + 0 (1 <14 < total number of measures)
for each setM; € M do
P [Mi| = Tt x [Mi]] +1
F's + empty map from set id to int
sumFreq < 0

Lemma 1 states that the prefixes of two sets of measures for k<1 to p do

must share at least one measure in order to satisfy the prefix
filtering condition (PF'C). Nevertheless, in sensor networks

this condition is easily satisfied. In this section, we wikgent
an extension of the prefix filtering technique making theC
condition more difficult to be satisfied.

Lemma 2:Assume that all the measures in the sefisand
M; are ordered according to the global orderifigLet thep-

prefiz be the first p elements dff;. If f(M;, M;) > QTertT,

then £, (p-M;, p-M;) > ST (f(my € p-M;)) — 1 x 7
Proof: We denote by-M; the prefix of the sef/; andr-
M; the set of reminder measures whéie = {p-M;+r-M;}.

sumFreq < sumFreq+ f(my € p-M;)
or
for k< 1topdo
if (I, exists such thatink(w, ws)
for each MeasuremeritV/;[i]), .
FS[MJ} A FS[MJ} + fmin(Mi[k]v Mj[l])
end for
Ly, < Lo, U{M;}
else
createl,,
Ly «+ L, U{M;}
end if
end for

We have: for eachM; such thatF's[M;] > sumFreq — 3= x 7 do

. 1+t
if OS(MZ',M]') >« then

fs(M;, Mj) Js(p-My, M) + fos(r-M;, M) (S e {(Mr M)
= fo(p-Mi,p-My) + fs(p-My,r-M;) + end if
M. ) end for
Js(r-Mi, M) end for
= fo(p-M;, p-M;) + fs(r-M;, M) return S
|r-M;|
< folp-Mi,p-Mj) + > (f(my € r-M;))
k=1 Ill. EXPERIMENTAL RESULTS

In the second line we can omit the tenfa(p-M;,r-M;) 14 oyajuate our approach, we conducted multiple se-

because we have assumed that it is negligible comparedrigos of simulations using the discrete event simulator OM-

the other terms in the equation. Indeed, if the two sets T++ [12]. The objective of these simulations is to confirm

S|m!lar then the measures ha}vmg hlghgst frequgnmes mH%t our frequency filtering technique can successfullyeaeh
be in the prefix set and not in the reminder, which mea

"Wesirable results for data aggregation in periodic sensobr n
that the overlapping between theM; and r-M; is almost ggreg P

v F the ab i q i 3)(simil works. Therefore, in our simulations we used real readings
emply. From the above equalions and equation (3)(siny arlc'ﬁollected fromd5 sensor nodes deployed in the Intel Berkeley
condition) we can deduce:

Research Lab [13]. Every 31 seconds, sensors with weather
boards were collecting humidity, temperature, light anidage

2XtXT ey values. Each node senses an average)0of)0 values of
14t < fs(p-Mi, p-Mj) + Z (f(mx € 7-Mi)) (4)  each measurement per day and per field. For the sake of
) . k=1 simplicity, in this paper we are interested in one field ofssen
From the following equation: measurements: the temperatdréVe performed several runs
|p-M;| |7-M;] of the algorithms (an average of 15 runs).
Z (f(my € p-M;)) + Z (f(mg € r-M;)) =7 (5) In the first series of simulations, each node runs local
k=1 k=1 aggregation with every new reading. Then, it generates an ag
We obtain: gregated set composed of non-similar measurements adsigne
|p-M;| by their frequencies. We varied the threshéland the number
fs(p-Mi, p-Mj) > (f(my € p-M;)) — T %7 (6)
=1 +1 lthe others are done by the same manner
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of total readingsr and we computed the cardinality of eachions to find similar data sets generated by sensor nodes. The

generated set. The results are shown in Figure 4. objective of our approach is to reduce the number of redundan
data sent to the end user while preserving the data intejrity
. ST was shown through simulations on real data measuremerts tha
Rl — rrese our method reduces drastically the redundant sensor mesasur
_ e Cm | and outperforms the existing prefix filtering approachesisTh
£ Loeml . | it saves energy and improves the overall network lifetime. A
- T LS direction for future work is to develop a new suffix frequency
T el N filter algorithm beside the frequency filtering approach-pro
H . 5 - posed in this paper. Our goal is to use additional filtering
10E403 |- T = method that prunes erroneous candidates that survive after
) *% applying the prefix and frequency filtering technique.
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