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Abstract—This paper presents an energy-efficient technique
for data aggregation in periodic sensor networks. We investigate
the problem of finding all pairs of nodes generating similar data
sets such that similarity between each pair of sets is above a
threshold t. We provide a frequency filtering approach to solve
this problem. Our experiments demonstrate that our algorithm
outperforms existing prefix filtering methods in reducing energy
consumption.

Index Terms—periodic sensor networks; data aggregation;
similarity functions; frequency filtering; optimization;

I. I NTRODUCTION

In this paper we present a hierarchical multilevel data
aggregation scheme for periodic sensor networks. It aims to
optimize the volume of data transmitted thus saving energy
consumption and reducing bandwidth on the network level. A
first level in-sensor process is done by the nodes themselves.
Instead of sending each sensor node’s raw data to a base
station, the data is cleaned periodically by the sensor node
itself before sending it to an aggregator node for a second level
of aggregation. At this level, we are interested in exploring
a new part of the filtering aggregation problem, by focusing
on identifying the similarity between data sets generated by
neighboring nodes and sent to the same aggregator. Our objec-
tive is to identify similarities between near sensor nodes,and
integrate their captured data into one record while preserving
information integrity.

Most of the extant work [1] has studied the data aggregation
as the computation of statistical means and moments, as
well as other cumulative quantities that summarize the data
obtained by the network. Other works, are query based meth-
ods [2]. A query is generated at the sink and then broadcasted
through the network. Some nodes are selected to process
the query, while others propagate it, receive partial results,
aggregate results, and send them back to the sink. Various
algorithmic techniques have been proposed to allow efficient
aggregation without increasing the message size [3]. Some
works, such as [4], use the clustering methods for aggregating
data packets in each cluster separately. In [5], a learning
automaton-based data aggregation method in sensor networks
is provided. In our previous work [6], we have shown that
existing prefix filtering methods are very complex and not
suitable for sensor networks and we proposed a heuristic based

on the frequency ordering. In this paper we provide a new
prefix filtering method to study the sets similarity in sensor
networks. We propose frequency filtering optimization tech-
nique, which exploits the ordering of measurements according
to their frequencies. A frequency of a measure is defined by
the number of occurrences of this measure in the set defined at
the first aggregation level. We show through the result that our
approach offers significant data reduction by eliminating in-
network redundancy and sending only necessary information
to the sink.

The rest of the paper is organized as follows, Section II
describes our periodic data aggregation scheme, the local
aggregation level and our proposed frequency filtering tech-
niques. Experimental results are given in Section III. Sec-
tion IV concludes the paper with some directions to a future
work.

II. PERIODIC DATA AGGREGATION

Our data aggregation method works in two phases, the first
one at the nodes level, which we call local aggregation and the
second at the aggregators level. At each periodp each node
sends its aggregated data set to its proper aggregator which
subsequently aggregates all data sets coming from different
sensor nodes and sends them to the sink.

A. Local aggregation

In periodic sensor networks, we consider that each sensor
nodei at each slots takes a new measurementyis. Then node
i forms a new set of captured measurementsMi with period
p, and sends it to the aggregator. It is likely that a sensor node
takes the same (or very similar) measurements several times
especially whens is too short. In this phase of aggregation,
we are interested in identifying duplicate data measurements
in order to reduce the size of the setMi. Therefore, to identify
the similarity between two measures, we provide the two
following definitions:

Definition 1 (link function): We define thelink function
between two measurements as:

link(yis1 , yis2) =

{

1 if ‖yis1 − yis2‖ ≤ δ,
0 otherwise.

where δ is a threshold determined by the application. Fur-
thermore, two measures are similar if and only if theirlink
function is equal to 1.978-1-4673-0269-2/12/$31.00c© 2012 IEEE



Definition 2 (Measure’s frequency):The frequency of a
measurementyis is defined as the number of the subsequent
occurrence of the same or similar (according to thelink
function) measurements in the same set. It is represented by
f(yis).
For each new sensed measurement (at each slot), a sensor
nodei searches for the similar measure already captured. If a
similar measurement is found, it deletes the new one while
incrementing the corresponding frequency by1. For more
details of this algorithm see [6].

At the end of the periodp, each nodei will possess a
local aggregated setMi. The second step is to send it to the
aggregator which in his turn aggregates the data sets coming
from different sensor nodes.

B. Frequency filtering aggregation

At this level of aggregation, each aggregator has received
k sets of measurements and their frequencies. The idea here
is to identify all pairs of sets whose similarities are abovea
given thresholdt. For this reason we use a similarity function
which measures the degree of similarity between the two sets
and returns a value in[0, 1]. A higher similarity value indicates
that the sets are more similar. Thus we can treat pairs of sets
with high similarity value as duplicates and reduce the sizeof
the final data set that will be sent to the sink. Researchers can
find various similarity functions [7]. The similarity function
selection primarily depends on the application domain. In this
paper we will focus on the Jaccard similarity, a commonly
used function to define similarity between two setsMi and
Mj as:

J(Mi,Mj) ≥ t⇔ |Mi ∩s Mj | ≥ α =
t

1 + t
.(|Mi|+ |Mj |) (1)

where ”∩s” is a new function for overlapping defined as:
Definition 3: Consider two sets of measurementsM1 and

M2, then we define:
M1 ∩s M2 = {(y1, y2) ∈ M1×M2/link(y1, y2) = 1};

1) Sets similarity computation:In this section we provide
techniques for computing the similarity between the received
sets. A näıve method to compute the similarity of received
data (sets) is to enumerate and compare every pair of sets.
This method is obviously prohibitively expensive for largedata
sets (such the case of sensor networks), as total number of
comparison isO(n2).

To reduce the number of comparisons between sets a prefix
filtering method has been proposed. Several approaches for
traditional similarity join between sets are based on the prefix
filtering principle [8] [6]. This method is based on the intuition
that if all sets of measures are sorted by a global ordering,
some fragments of them must share several common tokens
with each other in order to meet the threshold similarity. An
inverted index maps a given measurementm to a list of identi-
fiers of sets that containmi such thatlink(mi,m) = 1. After
inverted indices for all measures in the set are built, we can

scan each one, probe the indices using every measure in the set
M , and obtain a set of candidates; merging these candidates
together gives us their actual overlap with the current setM ;
final results can be extracted by removing sets whose overlap
with M is less than⌈ t

1+t
.(|Mi|+ |Mj |)⌉(Equation 1).

This intuition is formalized by the followingLemma in-
spired from [9]:

Lemma 1:Consider two sets of sensor measuresMi and
Mj , such that their elements are ordered by a global defined
ordering. Let thep-prefix be the first p elements ofMi. If
|Mi∩sMj | ≥ α, then the(|Mi|−α+1)-prefix of Mi and the
(|Mj |−α+1)-prefix of Mj must share at least one element.

Proof: Lemma 1 can be proven similarly to the lemma
of page6 in [9].

To ensure the prefix filtering based approach does not miss
any similarity set result, as shown in Lemma 1 we need a
prefix of length |Mi| − ⌈t.|Mi|⌉ + 1 for every setMi [6].
The prefix filtering algorithm for finding similarity sets takes
as input a collection of datasets coming from different sensor
nodes already sorted according to a defined ordering. It scans
sequentially each setMi, selects the candidates that intersects
with its prefix. Afterwards,Mi and all its candidates will be
verified against the jaccard similarity threshold to finallyreturn
the set of correct similar measurements sets. For more details
of the prefix filtering algorithm refere to [6].

Prefix filtering algorithm helps prune out unfeasible sets
of measures, however, in practice the number of non-
similar sets surviving after this technique is still quadratic
growth [10]. Following the prefix filtering, many optimization
methods [10], [11] were proposed to prune out further the
unfeasible non-similar sets. A trade-off of these prefix filtering
optimizations is that usually require more computational ef-
forts which is unsuitable by heavy resources sensor networks.
In our approach, we provide some optimizations for prefix
filtering techniques based on measures frequency while taking
into account this trade-off.

2) Frequency filtering approach:Let us introduce some
definitions and notations which will be the basis of what
follows. In periodic sensor networks, two data sets are similar
if their measurements overlap with each other, and especially
the ones havinghigher frequencies values.

Definition 4 (OrderingO): We define an orderingO which
arranges the measurements of a given set by the decreasing
order of their frequencies.

For two similar measuresmi and mj such that
link(mi,mj) = 1, we denote fmin(mi,mj) =
Min(f(mi), f(mj)) the minimum value of the frequency of
these measures.

Definition 5 (fs(Mi,Mj)): Consider two sets of measures
Mi andMj , we define

fs(Mi,Mj) =
∑Os(Mi,Mj)

k=1 (fmin((mi,mj) ∈ Mi∩sMj)).
In this paper, we consider that all sensor nodes operate with

the same sampling rate, and every node capturesτ measures
with each periodp. Thus we can deduce that for every received
setMi from nodei we have:

∑|Mi|
k=1 (f(mk ∈ Mi) = τ .



Using the Jaccard similarity function, two setsMi andMj

are similar if and only if:Os(Mi,Mj) ≥ α where α =
t

1+t
.(|Mi|+|Mj |) (Equation (1)). Supposing that the sets were

sent to the aggregators without applying the first aggregation
phase and without computing measures frequencies, thus we
can observe that:

|Mi| = |Mj | = τ andfs(Mi,Mj) = Os(Mi,Mj). (2)

Hence, from Equation (1) and Equation (2) we can deduce
that:

Mi andMj are similar iff: fs(Mi,Mj) ≥
2× t× τ

1 + t
. (3)

Lemma 1 states that the prefixes of two sets of measures
must share at least one measure in order to satisfy the prefix
filtering condition (PFC). Nevertheless, in sensor networks
this condition is easily satisfied. In this section, we will present
an extension of the prefix filtering technique making thePFC
condition more difficult to be satisfied.

Lemma 2:Assume that all the measures in the setsMi and
Mj are ordered according to the global orderingO. Let thep-
prefix be the first p elements ofMi. If fs(Mi,Mj) ≥

2×t×τ
1+t

,

thenfs(p-Mi, p-Mj) ≥
∑|p-Mi|

k=1 (f(mk ∈ p-Mi))−
1−t
1+t

× τ .
Proof: We denote byp-Mi the prefix of the setMi andr-

Mi the set of reminder measures whereMi = {p-Mi+r-Mi}.
We have:

fs(Mi,Mj) = fs(p-Mi,Mj) + fs(r-Mi,Mj)

= fs(p-Mi, p-Mj) + fs(p-Mi, r-Mj) +

fs(r-Mi,Mj)
∼= fs(p-Mi, p-Mj) + fs(r-Mi,Mj)

≤ fs(p-Mi, p-Mj) +

|r-Mi|
∑

k=1

(f(mk ∈ r-Mi))

In the second line we can omit the termfs(p-Mi, r-Mj)
because we have assumed that it is negligible compared to
the other terms in the equation. Indeed, if the two sets are
similar then the measures having highest frequencies must
be in the prefix set and not in the reminder, which means
that the overlapping between thep-Mi and r-Mj is almost
empty. From the above equations and equation (3)(similarity
condition) we can deduce:

2× t× τ

1 + t
≤ fs(p-Mi, p-Mj) +

|r-Mi|
∑

k=1

(f(mk ∈ r-Mi)) (4)

From the following equation:
|p-Mi|
∑

k=1

(f(mk ∈ p-Mi)) +

|r-Mi|
∑

k=1

(f(mk ∈ r-Mi)) = τ (5)

We obtain:

fs(p-Mi, p-Mj) ≥

|p-Mi|
∑

k=1

(f(mk ∈ p-Mi))−
1− t

1 + t
× τ (6)

The lemma is proved.
Algorithm 1 describes our method to find similar sets of

measures based on the frequency filtering approach. It is a
hybrid solution, where we integrate our frequency condition
presented in Lemma 2 to the prefix filtering approach.

Algorithm 1 Frequency-filtering based algorithm.
Require: Set of measures’ setsM = {M1,M2...Mn}, t, τ .
Ensure: All pairs of sets(Mi,Mj), such thatJ(Mi,Mj) ≥ t.
S ← ∅
Ii ← ∅ (1 ≤ i ≤ total number of measures)
for each setMi ∈M do

p← |Mi| − ⌈t× |Mi|⌉+ 1
Fs← empty map from set id to int
sumFreq ← 0
for k ← 1 to p do

sumFreq ← sumFreq + f(mk ∈ p-Mi)
end for
for k ← 1 to p do

w ←Mi[k]
if (Iws exists such thatlink(w,ws) = 1) then

for each Measurement(Mj [l]), f(Mj [l]) ∈ Iws do
Fs[Mj ]← Fs[Mj ] + fmin(Mi[k],Mj [l])

end for
Iws ← Iws ∪ {Mi}

else
createIw
Iw ← Iw ∪ {Mi}

end if
end for
for eachMj such thatFs[Mj ] > sumFreq − 1−t

1+t
× τ do

if Os(Mi,Mj) ≥ α then
(S ← {(Mi,Mj)})

end if
end for

end for
returnS

III. E XPERIMENTAL RESULTS

To evaluate our approach, we conducted multiple se-
ries of simulations using the discrete event simulator OM-
NET++ [12]. The objective of these simulations is to confirm
that our frequency filtering technique can successfully achieve
desirable results for data aggregation in periodic sensor net-
works. Therefore, in our simulations we used real readings
collected from45 sensor nodes deployed in the Intel Berkeley
Research Lab [13]. Every 31 seconds, sensors with weather
boards were collecting humidity, temperature, light and voltage
values. Each node senses an average of90000 values of
each measurement per day and per field. For the sake of
simplicity, in this paper we are interested in one field of sensor
measurements: the temperature1. We performed several runs
of the algorithms (an average of 15 runs).

In the first series of simulations, each node runs local
aggregation with every new reading. Then, it generates an ag-
gregated set composed of non-similar measurements assigned
by their frequencies. We varied the thresholdδ and the number

1the others are done by the same manner
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Fig. 1. τ = 2.E + 03
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Fig. 2. τ = 4.E + 03
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Fig. 3. τ = 6.E + 03

of total readingsτ and we computed the cardinality of each
generated set. The results are shown in Figure 4.
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Fig. 4. Sets cardinality after first aggregation

We noticed the cardinality decreases whenδ increases,
which means that when we stretch the similarity constraint we
eliminate more similar measurements. The goal of this stage
is to reduce the number of measurements sent by nodes. The
experimental results show that at least w reduced the sent set
by 30%.

We compared the number of candidates (number of compar-
isons) generated respectively by our frequency filtering tech-
nique, the prefix filtering algorithm and the results obtained
after applying the Jaccard similarity function. In these series
of simulations we varied the parameterτ (the size of datasets)
while fixing the thresholdδ to 0.05. The obtained curves are
shown in figures 1, 2 and 3. Observing the obtained result, we
divide them into two groups according toτ . First, consider
the results on small dataset whereτ = 2.E + 03 as shown
in figure 1. We notice that, when the similarity threshold
increases from0.7 to 0.9, the number of comparisons of the
frequency filtering and the prefix filtering becomes closer. In
the next step, consider another group of datasets with big size
(τ = 4.E + 03 and τ = 6.E + 03). The obtained results are
shown in 2 and 3. We observe that when the sets cardinality
increases the number of candidates also increases.

IV. CONCLUSION AND FUTURE WORK

In this paper we proposed a new frequency filtering ap-
proach and several optimizations using sets similarity func-

tions to find similar data sets generated by sensor nodes. The
objective of our approach is to reduce the number of redundant
data sent to the end user while preserving the data integrity. It
was shown through simulations on real data measurements that
our method reduces drastically the redundant sensor measures
and outperforms the existing prefix filtering approaches. Thus,
it saves energy and improves the overall network lifetime. A
direction for future work is to develop a new suffix frequency
filter algorithm beside the frequency filtering approach pro-
posed in this paper. Our goal is to use additional filtering
method that prunes erroneous candidates that survive after
applying the prefix and frequency filtering technique.
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