
FESCA 2012

Assembling Components using SysML with
Non-Functional Requirements

Samir Chouali, Ahmed Hammad, Hassan Mountassir 1

Laboratoire d’Informatique de l’Université de Franche-Comté - LIFC
16, route de Gray - 25030 Besançon cedex, France

Abstract

Non-functional requirements of component based systems are important as their functional requirements,
therefore they must be considered in components assembly. These properties are beforehand specified
with SysML requirement diagram. We specify component based system architecture with SysML block
definition diagram, and component behaviors with sequence diagrams. We propose to specify formally
component interfaces with interface automata, obtained from requirement and sequence diagrams. In this
formalism, transitions are annotated with costs to specify non-functional property. The compatibility
between components is performed by synchronizing their interface automata. The approach is explained
with the example of the electric car CyCab, where the costs are associated to energy consumption of
component actions. Our approach verifies whether, a set of components, when composed according to the
system architecture, achieve their tasks by respecting their non-functional requirements.

Keywords: component based systems, interface compatibility, I/O automata.

1 Introduction

The idea in component based software engineering (CBSE) is to develop software
applications not from scratch but by assembling various library components. A com-
ponent is a unit of composition with contractually specified interfaces and explicit
dependencies, [14]. An interface describes the offered and required services without
disclosing the component implementation. It is the only access to the information of
a component. Interfaces may describe component information at signature (method
names and their types), behaviour or protocol (scheduling of method calls), seman-
tic (pre and post conditions), and quality of services levels. The success of applying
the component based approach depends on the interoperability of the connected
components. The interoperability can be defined as the ability of two or more en-
tities to communicate and cooperate without anomalies, [16]. The interoperability
holds between components when their interfaces are compatible.

The SysML language is a UML profile, that is a language for documenting and
graphically specify all aspects of a system consisting of hardware and/or software

1 Email: {schouali, ahammad, hmountassir}@lifc.univ-fcomte.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:{schouali, ahammad, hmountassir}@lifc.univ-fcomte.fr

blocks. SysML enjoys unprecedented popularity both in industry and academia. It
is in the form of graphical models, used to harmonize the different actors contribut-
ing to the achievement of a system, and to ensure consistency and quality of design.
It is a well suited language to model embedded systems.

In this paper, we focus on assembling components in SysML specifications and
we model components interaction by interface automata. The interface automata
based approach was proposed by L.Alfaro and T.Henzinger, [7,8]. They have speci-
fied component interfaces with automata, which are labelled by input, output, and
internal actions. These automata allow to describe component information at sig-
nature and protocol levels. An interesting verification approach was also proposed
to detect incompatibilities at signature and protocol levels between two compo-
nent interfaces. The verification is based on the composition of interfaces, which is
achieved by synchronizing shared actions.

The first essential drawback of the interface automata approach is to consider
non-functional properties in component interface specification and in the verification
of components interoperability in order to obtain a reliable assembly. In our work
we propose a solution by specifying non functional requirements of a system with
SysML requirement diagram, and also specifying formally this diagram by associ-
ating a cost (an integer positive value) for action to describe some non-functional
property as energy consumption or time. Also we propose a verification approach
that takes into account this property in components assembly.

The second drawback is that the interface automata approach is unable to accept
as an input a set of interface automata, more than two, associated to all compo-
nents composing a component based system, and also consider system architecture.
Interface automata are proposed to specify component behaviour only and therefore
are unable to describe the connection between primitives components and compos-
ites (composed of others components), and the hierarchical connections between
composites and their subcomponents, which also influences component behaviors.
Therefore, we propose to exploit the SysML block definition diagram which specifies
the component based system architecture.

The point we want to address in our paper is to show how to combine SysML
and interface automata to verify interoperability in component based systems, by
considering non-functional properties. These properties are obtained by the formal-
ization of the requirements specified in the SysML requirement diagram

The paper is organized as follows. In section 2, we give an overview of SysML
language. In section 3, we present the example of the CyCab vehicle, and we spec-
ify semi-formally system architecture, component behaviors, and non functional
requirements, with SysML diagrams. In section 4, we describe a methodology to
extract a tree from SysML architecture of a component based system. The ob-
tained tree is used to verify the interoperability between components. Section 4
describes the proposed approach combining SysML and interface automata in order
to assemble components and to verify their interoperability by considering system
architecture and non-functional requirements. Related works are described in sec-
tion 6. We conclude our work and trace some perspectives in section 7.

2

2 SysMl Presentation

SysML is a modeling language for systems engineering. This covers complex sys-
tems which include a broad range of heterogeneous domains, in particular hardware
and software. SysML has been proposed by the Object Management Group (OMG)
[1], together with the International Council on Systems Engineering (INCOSE) [2]
and the AP233 consortium [3] with the aim to define a general purpose modeling
language for systems engineering. It is based on the actual standard for software
engineering, the Unified Modeling Language (UML) [4] version 2.0, with some ex-
tensions and it was developed as a response to the request for proposal (RFP) issued
by the OMG in March 2003 [5] and adopted as a standard in May 2006 [6]. SysML
is a modeling language for representing systems and product architectures, as well
as their behavior and structure. It adapts to systems engineering standard model-
ing techniques from software development, and supports the specification, design,
analysis, verification and validation of a broad range of complex systems.

SysML is the first formal UML profile dedicated to the specification of profes-
sional engineering systems. It has been developed during many years but has only
recently been fully agreed and standardized. SysML has meanwhile evolved over
several major iterations, including two separated proposals from different teams. As
a consequence of this long and often confusing evolution, there are many miscon-
ceptions associated with SysML, such as its status as a profile, its autonomy as a
language and how it can be applied in a better way for systems engineering. SysML
significantly extends UML with system-related formal constructs, such as real-world
physical constraints, physical flows and connections between physical components.

3 Modeling a CyCab with SysML

In this section we present an example of component based system, and SysML
diagrams to describe the system.

3.1 CyCab Informal Description

As an example, we consider a CyCab car component-based system (in [9]). The
CyCab car is a new electrical means of transportation conceived essentially for free-
standing transport services allowing users to displace through pre-installed set of
stations.

3.2 Block Definition Diagram

SysML provides a structural element called a block. A block can represent any type
of component of the system, physical, logical, functional, or human. Blocks are
declared within a Block Definition Diagram which describe the structure of the
system. SysML Block Definition Diagram (BDD) is based on the UML Composite
Structure Diagram, which extends the UML Class Diagram. The role of a BDD is to
describe the relationships among blocks, which are basic structural elements aiming
to specify hierarchies and interconnections of the system to be modeled. Required
interfaces (relation uses) and offered (relation implements)of components are also

3

described. Figure 1 shows an example of a BDD with eight blocks. It is the first

Figure 1. Block Definition Diagram of CyCab

level of modeling of the CyCab. The block named CyCab System represents the
system as a whole. It is decomposed into two sub blocks (Vehicle, and Station)
and is linked to them by the composition relationship. The component Vehicle is
divided into three sub-components which are Starter, Vehicle Core (VC) and
Emergency Halt (EH). Station is decomposed into two sub-components that
are Sensor and Computer Unit (CU). In this paper we exploit a BDD to spec-
ify formally the system architecture, and exploit this specification in components
assembly.

3.3 Internal Block Diagram

The Internal Block Diagram (IBD) allows the designer to refine the structural aspect
of the model. The IBD is the equivalent in SysML of the composite structure
diagram in UML . In the IBD, parts are basic elements assembled to define how
they collaborate to realize the block structure and/or behavior. A part in SysML
corresponds to an object in UML . Parts represent the physical components of
the block while flow ports represent the interfaces of the block, through which its
communicates with other blocks. Two types of ports are available in SysML :

4

• standard ports handling requests and invocations of services with other blocks
(basically the same concept as in UML 2.0);

• flow ports which let blocks exchange flows of information.

Flow ports specify the interaction points among blocks and parts supporting the
integration of behavior and structure. For standard ports, an interface class is used
to list the services offered by the block. For flow ports, a flow specification is created
to list the type of data that can flow through the port.

The figure 2 shows the IBD of Vehicle . For example in Figure 2, the parts
Starter, Vehicle Core (VC) and Emergency Halt (EH) cooperate to achieve
the functionality of the component Vehicle.

Figure 2. Internal block diagram of vehicle

3.4 Requirement diagram

Requirement specifies capability or condition that must be delivered in the subject
(target system). Capability usually refers to the function that the system must
support and we call it functional requirement. Condition usually means that the
system should be able to run or produce the result in specific constraint, and we
call it non-functional requirement The SysML requirement diagram allows several
ways to represent requirements relationships. These include relationships for defin-
ing requirements hierarchy, deriving requirements, satisfying requirements, verifying
requirements and refining requirements. The relationship can improve the specifi-
cation of systems, as they can be used to model requirements. In Figure 3, the
requirement GECC, Global Maximal Energy Consuming of CyCab, contains the re-
quirements ECS, Maximal Energy Consuming of the Station component and ECV,
Maximal Energy Consuming the Vehicle component. For example for in the re-
quirement ECV, the identifier Qhalt is the number of energy resources necessary to
execute the service halt.

5

Figure 3. Requirements diagram

3.5 Sequence Diagram

The sequence diagram is used to represent the interaction between structural ele-
ments of a block, as a sequence of message exchanges, called also component (or
block) protocols. In the CyCab system, the Vehicle sends signals spos! to inform
the upcoming station about its positions and it receives as consequence signals (far !
or halt !) to know if it steels far from the station or not. The two components Sensor
(Ss) and ComputingUnit (Cu) are the subcomponents of the station. The sensor
detects a position signal sent from the vehicle and converts it to geographic coor-
dinates (pos!) which will be used by the ComputingUnit to compute the distance
between the vehicle and the station and decide if they steel far from each other
or not. The vehicle is composed by three primitive components: the VehicleCore
(Vc), the Starter (Sr), and the embedded EmergencyHalt (Eh) device. For ex-
ample, the figure 4 shows the sequence diagram of the part property(component)
ComputingUnit. These diagrams specifies the component protocols, which exhibit
the interaction between the components and their environment. The environment
represent the others components in the system.

4 Extracting a Tree from SysML architecture

We specify the SysML architecture as a graph where nodes are the Blocks of the
system and edges represent both hierarchical relations between composite Blocks
and their subBlocks. The nodes of the graph can be seen as tree if we consider
only hierarchical relations. For a SysML architecture M, we denote by CM all the

6

Figure 4. Sequence diagram of computer unit

(composite and primitive) components composing M.

Definition 7 (Graph Representation of Architecture). A Graph Represen-
tation GM = 〈 NGM

, CpGM
, CnGM

〉 of an SysML architecture M, consists of

• a finite set NGM
of nodes representing CM ;

• a finite set CpGM
of edges representing the relations between the nodes represent-

ing composite Blocks and their subBlocks;
• a finite set CnGM

of edges representing the connections between the nodes repre-
senting subcomponents within a same Block.

In the CyCab example, we associate the graph described in Figure 5, to model
formally the system architecture described by BDD and IBD SysML models. The
continuous edges represent the hierarchical relations between composite Blocks and
their subBlocks. The dashed edges represent the connections between components
at the level of composite Blocks. Two Blocks are connected if and only if there is
at least one interaction between their interfaces.

whole system

Vehicle Station

Vc SrEh SsCu

Figure 5. The graph of the CyCab car system

By traversing this graph, we can easily extract the authorized order in which the

7

components of the whole system (composite system) will be composed, then we
exploit this information in the verification of the compatibility between components.
For example, the order of the composition associated the CyCab system based the
tree described in the figure 5 is:
(Starter ‖ V ehicleCore ‖ EmergencyHalt) ‖ (Sensor ‖ ComputingUnit).
We consider that the symbol ‖ is the operator of composition. We note that the
operation of composition is associative, so the order of composition has no effect in
the the verification of the compatibility between components.

5 Interface automata strengthened by non-functional
property and SysML diagrams

In this section we present our formalism based on interface automata to specify
formally the component interfaces according to SysML diagrams, in order to verify
component interoperability.

5.1 Component interfaces based on SysML sequence diagrams and NF requirements

We propose to specify formally component interfaces by considering component pro-
tocols specified by sequence diagrams, and component NF requirement specified by
requirements diagrams. So, we propose to exploit the interface automata formalism,
which we enrich with NF requirements in order to model formally SysML sequence
diagram and requirement diagram.
Interface automata have been defined by L.Alfaro et al. [7], to model the temporal
behavior of software component interfaces. They are considered as labeled
transition systems, where the transitions are labeled with the names of actions
which are divided into three categories: input, output, and hidden actions. Every
component interface is described by one interface automaton where input actions
are used to model methods that can be called, and the end of receiving messages
from communication channels, as well as the return values from such calls. Output
actions are used to model method calls, message transmissions via communication
channels, and exceptions that occur during the method execution. Output actions
describe the required actions of a component (represented by the symbol ”!”),
input actions describe the provided actions of a component (represented by the
symbol ”?”), and internal (or hidden) actions inside the component itself describe
its local operations (represented by the symbol ”;”). We define by ΣI

A(s), ΣO
A(s),

ΣH
A (s) the input, output, and internal actions enabled at the state s.

In this section we show how to exploit the interface automata formalism in order
to consider energy consumption (non-functional requirements) of each component
action, in the specification and the verification of component assembly. So, we
present below a definition of interface automata strengthened by the function that
specifies energy consumption.
Definition 2 (Interface Automata). An interface automaton A = 〈 SA, IA, ΣI

A,
ΣO

A, ΣH
A , δA, λA 〉 consists of

• a finite set SA of states;

8

• a subset of initial states IA ⊆ SA. Its cardinality card(IA) ≥ 1 and if IA = ∅ then
A is called empty ;

• three disjoint sets ΣI
A,Σ

O
A and ΣH

A of inputs, output, and hidden actions, we
denote by ΣA = ΣI

A ∪ ΣO
A ∪ ΣH

A ;
• a set δA ⊆ SA × ΣA × SA of transitions between states;
• λA : total function that associates to each action the number 2 of energy resource

necessary to its execution ΣA → N. This function allows to specifies the values
which we associate to the maximum of energy consuming of each component
action, specified in the requirement diagram.

When we compose two interface automata, the resulting composite automaton,
based on the synchronized product of the both automata, may contain illegal states,
where one automaton issues an output action that is not acceptable as input in the
other one. The existence of these illegal states is not sufficient to decide the incom-
patibility between interfaces . Indeed, the proposed interface automata approach,
called also optimistic approach, allows to verify the compatibility between interface
automata, based on the fact that there is an environment which provides only legal
inputs. The composite interface expects the environment to pass over transitions
leading only to legal states. The existence of such legal environment for the com-
position of two interfaces indicates that there is a way that the components can
work together properly. This optimistic approach is different from the classical ap-
proaches, where it is sufficient to find one illegal state (called deadlock state) to
decide of the incompatibility between interfaces.

The interface automata of the primitive components of the CyCab car system
are presented in Figure 6 and Figure 7. The energy consumption information are
indicated in the interface automata. These automata specifies formally the sequence
diagram and requirement diagram described in the previous section. So the inter-
face automata of the component Computer Unit described in Figure 7, specifies the
protocol of this component,therefore it specifies the sequence diagram of Computing
Unit described in Figure 4. We also exploit the NF requirements described with
requirement diagram in Figure 3 to annotates transition in the interface automata
with cots associated to energy consumption by each actions. For example, in Figure
6, we can see in the interface automaton of the component Vehicle core, that the
component offers an action far? which necessitates 5 energy units, and the compo-
nent requires an action spos! with at most 6 energy units. These values 5, and 6
correspond respectively to Qfar and Qspos in the requirement ECV in figure 3.

5.2 Blocks Compatibility Verification

The verification of the compatibility between a blocks (component C1) and a other
block (component C2) is obtained by verifying the compatibility between their
interface automata A1 and A2. The verification steps of the compatibility are listed
below.

Main algorithm

2 We suppose that this number belongs the set of natural numbers.

9

1

2

3

4

start?/10

spo
s!/6

far?
/5

halt?/8

em
gc
y?
/1
2

emgcy?/12
reset!/11

Vehicle Core (Vc)

reset

start

emgcy

far

halt

spos

1

start!/12

Starter(Sr)

start

1 2

emgcy!/12

reset?/10

Emergency Halt (Eh)

emgcy

reset

Figure 6. The interface automata of the Vehicle subcomponents

1 2

spos?/3

pos!/6

Sensor (Ss)

spos

pos 1 2

halt!/8

pos?/3

far!/5
Computing Unit (Cu)

halt

pos

far

Figure 7. The interface automata of the Station subcomponents

Input : SysML modelling
Output : the interface automaton of the composite component if the compatibility
is satisfied, or an empty automata in other case.

(i) Generating the corresponding tree to the block diagram and internal block in
order to specify formally system architecture,

(ii) Formal specification of sequence diagrams and requirement diagram with in-
terface automata enriched with non-functional property.

(iii) compatibility verification between interface automata by processing the follow-
ing algorithm (Algorithm 2) and considering the system architecture and the
NF property,

Algorithm 2
Input : interface automata A1, A2.
Output : A1 ‖ A2.

(i) verify that A1 and A2 are composable,

(ii) compute the product A1 ⊗A2,

(iii) compute the set of illegal states in A1 ⊗A2,

(iv) compute the set of incompatible states in A1 ⊗ A2: the states from which the
illegal state are reachable by enabling only internal and output actions (one
suppose the existence of a helpful environment),

(v) compute the composition A1 ‖ A2 by eliminating from the automaton A1⊗A2,
the illegal state, the incompatible states, and the unreachable states from the
initial states,

(vi) if A1 ‖ A2 is empty then A1 and A2 are not compatible, therefore C1 and C2

10

can not be assembled correctly in any environment. Otherwise, A1 and A2 are
compatible and their corresponding component can be assembled properly.

In the following, we present the definitions of formal concepts (composition
condition, synchronized product...) exploited in the below algorithm by considering
NF property.
The composition operation may take effect only if the actions of the two automata
are disjoint, except shared input and output actions between them. When we
compose them, shared actions are synchronized and all the others are interleaved
asynchronously.

Definition 3 (Composition Condition). Two interface automata A1 and A2

are composable if

ΣI
A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2 = ΣH

A2
∩ ΣA1 = ∅

Shared(A1,A2) = (ΣI
A1
∩ ΣO

A2
) ∪ (ΣI

A2
∩ ΣO

A1
) is the set of shared actions between

A1 and A2.
In the following we present the definition of synchronized product between two

interface automata taking into account energy consumption constraints. The intu-
ition behind the following definition is, two components can synchronize on shared
actions whether one of two interacting components, C1, requires an action sa (out-
put action) which consumes x energy units, and the other component, C2, offers
the action sa (input action) which consumes y energy units, such that x ≥ y. This
is an obvious condition because :

• first, generally components are reusable, and developed by different teams and
companies, so the offered and the required actions of components may not con-
sume the same amount of energy units.

• second, for example: C1 can not use the offered action, sa, by C2, if this action
necessitates more energy units than those allocated by C1.

When one synchronizes it is necessary to calculate the real energy consumption of
the new internal action (created by the synchronization) by considering the mini-
mum value between the resources of the input and output actions.
Definition 4 (Synchronized product considering Energy Consumption).
Let A1 and A2 be two composable interface automata. The product A1 ⊗ A2 is
defined by

• SA1⊗A2 = SA1 × SA2 and IA1⊗A2 = IA1 × IA2 ;
• ΣI

A1⊗A2
= (ΣI

A1
∪ ΣI

A2
) \ Shared(A1, A2);

• ΣO
A1⊗A2

= (ΣO
A1
∪ ΣO

A2
) \ Shared(A1, A2);

• ΣH
A1⊗A2

= ΣH
A1
∪ ΣH

A2
∪ Shared(A1, A2);

• ((s1, s2), a, (s′1, s
′
2)) ∈ δA1⊗A2 if

· a 6∈ Shared(A1, A2) ∧ (s1, a, s
′
1) ∈ δA1 ∧ s2 = s′2

· a 6∈ Shared(A1, A2) ∧ (s2, a, s
′
2) ∈ δA2 ∧ s1 = s′1

· a ∈ Shared(A1, A2)∧(s1, a, s
′
1) ∈ δA1∧(s2, a, s

′
2) ∈ δA2 ∧((λA1(a) ≤ λA2(a)∧a ∈

11

ΣI
A1

(s1) ∧ a ∈ ΣO
A2

(s′1)) ∨ (λA1(a) ≥ λA2(a) ∧ a ∈ ΣO
A1

(s1) ∧ a ∈ ΣI
A2

(s′1)))
· λA1⊗A2 : ΣA1⊗A2 → N such that ΣA1⊗A2 = ΣI

A1⊗A2
∪ ΣO

A1⊗A2
∪ ΣH

A1⊗A2
, to

define λA1⊗A2 we consider the following cases :
a ∈ ΣA1⊗A2 ∧ λA1⊗A2(a) = λA1(a) if a 6∈ Shared(A1, A2) ∧ (a ∈ ΣI

A1
∨ a ∈

ΣO
A1
∨ a ∈ ΣH

A1
);

a ∈ ΣA1⊗A2 ∧ λA1⊗A2(a) = λA2(a) if a 6∈ Shared(A1, A2) ∧ (a ∈ ΣI
A2
∨ a ∈

ΣO
A2
∨ a ∈ ΣH

A2
);

a ∈ ΣA1⊗A2 ∧ λA1⊗A2(a) = min(λA1(a), λA2(a)) if a ∈ Shared(A1, A2) ∧ ((a ∈
ΣI

A1
∧ a ∈ Σ0

A2
) ∨ (a ∈ ΣO

A1
∧ a ∈ ΣI

A2
)) 3 .

In the following we adapt the definition of illegal states in order to consider
energy consumption constraints. So, a state (s1,s2) in the product is considered
illegal in the following cases:

• one component requires a shared action from the state s1 which is not provided
from the state s2 in the other component or vice versa.

• one component provides a shared action with a value of energy consumption
greater than the value of energy consumption of the required action, by the other
component.

Definition 5 (Illegal States considering Energy Consumption). Given two
composable interface automata A1 and A2, the set of illegal states Illegal(A1, A2)
⊆ SA1 × SA2 of A1 ⊗ A2 is defined by {(s1, s2) ∈ SA1 × SA2 |∃a ∈ Shared(A1, A2).
((a ∈ ΣO

A1
(s1) ∧ a 6∈ ΣI

A2
(s2))∨ (a ∈ ΣO

A2
(s2) ∧ a 6∈ ΣI

A1
(s1))∨ (a ∈ ΣO

A1
(s1) ∧ a ∈

ΣI
A2

(s2) ∧ λA2(a) > λA1(a))∨ (a ∈ ΣI
A1

(s1) ∧ a ∈ ΣO
A2

(s2) ∧ λA1(a) > λA2(a)))}.

Definition 6 (Composition). Given two compatible interface automata A1

and A2. The composition A1 ‖ A2 is an interface automaton defined by: (i)
SA1‖A2

= Comp(A1,A2), (ii) the initial state is IA1‖A2
= IA1⊗A2 ∩ Comp(A1,A2),

(iii) ΣA1‖A2
= ΣA1⊗A2, and (iv) the set of transitions is δA1‖A2

= δA1⊗A2 ∩
(Comp(A1,A2) × ΣA1‖A2

× Comp(A1,A2)).

The complexity for computing the composition A1 ‖ A2 is in time linear on
|A1| and |A2| [7]. The verification steps in this approach are the same as the ones
presented in [7]. However, in our approach we consider energy consumption in:

• the interface automata definition,
• the product of two interface automata,
• the definition of the illegal states.

Consequently, our approach does not increase the complexity of the verification
algorithm.

5.3 Illustration on the CyCab

Let us take our previous example, the interface automata of the primitive compo-
nents of the CyCab car system are presented in Figure 6 and Figure 7. The algorithm

3 min is a function which returns a minimum value between two positive real numbers

12

starts first by constructing the Station and the Vehicle composite components from
their subcomponents, according to system architecture (tree) obtained in section 4.
The reader can easily verify that the two interface automata Station and Vehicle
are not empty. Then, we construct the whole system composite representing the
communication between the Vehicle and the Station. Figure 8 represents the IAs
of the composite components Vehicle and Station.

1

2

3

4

start;/10

spo
s!/6

far?
/5

halt?/8

em
gc
y;
/1
2

emgcy;/12
reset;/10

far

halt

spos

1

23

sp
os?/3

pos;/3

ha
lt
!/

8

fa
r!
/5

spos

halt

far

Figure 8. The interface automata of the Vehicle composite and the station composite.

6 Related works

In this section, we can mention the work proposed in [10], where the authors pro-
posed a new approach to component interaction specification and verification pro-
cess which combines the advantages of architecture description languages and for-
mal verification oriented model. Non-functional properties are not considered in
this approach. The approach proposed in [13] aims to endow the UML components
to specify interaction protocols between components. The behavioral description
language is based on hierarchical automata inspired from StateCharts. It supports
composition and refinement mechanisms of system behaviors. The system properties
are specified in temporal logic. In [11], the authors proposed to specify component
interface and to verify their compatibility with B method. However component pro-
tocols and non-functional properties are not considered in the interfaces. n [15], the
authors describes a step of translating SysML-based specification to Colored Petri
Nets (CPN) which enables rigorous static and dynamic system analysis as well as
formal verification of the behavior and functionality of the SysML-based design. In
[12], the authors propose assume-guarantee interface algebra for real-time compo-
nents. In the interface specification, they consider the following properties : an
arrival rate function and a latency for each task sequence, and a capacity function
for the shared resource. The interface specifies that the component guarantees cer-
tain task latencies depending on assumptions about task arrival rates and allocated
resource capacities. This properties are considered in the verification of interface
compatibility. These last approaches treat non-functional properties in component
composition but the architecture of the whole system is not considered.

The contribution and the originality of our approach, compared the related
works, is the specification of component interfaces with interface automata, which
a more general formalism based on rich notations which allow to express more

13

complex component behaviors. We propose also a connection with SysML to verify
the component composition by taking into account non-functional properties and
system architecture.

7 Conclusion and future work

In this paper, we present a new formal approach to compose components and to
verify their interoperability, according to energy consumptions properties specified
by SysML requirement diagram, to a system architecture, specified by SysML block
definition diagram, and to component protocols specified by sequence diagrams.
This approach use interface automata method to specify component interfaces and
to verify interface compatibility. We have improved this approach by considering
non-functional properties and by exploiting block definition SysML model, in order
to specify , connection between components and composites, and hierarchical con-
nection. Block definition diagram corresponding to system architecture is specified
formally by a tree, where nodes correspond to blocks and edges specify connections
between blocks. From this tree, we deduce information to improve interface au-
tomata approach in order to verify interface compatibility. So, we have proposed
an algorithm to compose components and composites, based on both, system archi-
tecture and component interface automata. We have proposed also a verification
approach that takes into account non-functional properties in component assembly.
We propose to verify whether the energetic consumption of a component based sys-
tem is in compliance with the available resources of energy. As future work, We
plan to implant the algorithms described in this paper and to evaluate the proposed
approach.

References

[1] http://www.omg.org.

[2] http://www.incose.org.

[3] http://ap233.eurostep.com.

[4] http://www.uml.org.

[5] OMG. UML for Systems Engineering. Request For Proposal, 2003.

[6] www.omgsysml.org OMG. OMG Systems Modeling Language (OMG SysML) Specification, OMG Final
Adopted Specification, 2006.

[7] L. Alfaro and T. A. Henzinger. Interface automata. In 9th Annual Symposium on Foundations of
Software Engineering, FSE, pages 109–120. ACM Press, 2001.

[8] L. Alfaro and T. A. Henzinger. Interface-based design. In Engineering Theories of Software-intensive
Systems, volume 195 of NATO Science Series: Mathematics, Physics, and Chemistry, pages 83–104.
Springer, M. Broy, J. Gruenbauer, D. Harel, and C.A.R. Hoare, 2005.

[9] G. Baille, P. Garnier, H. Mathieu, and R. Pissard-Gibollet. The INRIA Rhône-Alpes CyCab. Technical
report, INRIA, 1999. Describes the package natbib.

[10] L. Brim, I. Černá, P. Vařeková, and B. Zimmerova. Component-interaction automata as a verification-
oriented component-based system specification. SIGSOFT Softw. Eng. Notes, 31(2):4, 2006.

[11] S. Chouali, M. Heisel, and J. Souquières. Proving component interoperability with b refinement. Electr.
Notes Theor. Comput. Sci., 160:157–172, 2006.

14

[12] T. A. Henzinger. An interface algebra for real-time components. In In Proc. of IEEE Real-Time
Technology and Applications Symposium, pages 253–263. Society Press, 2006.

[13] S. Moisan, A. Ressouche, and J. Rigault. Behavioral substitutability in component frameworks: A
formal approach, 2003.

[14] C. Szyperski. Component Software. ACM Press, Addison-Wesley, 1999.

[15] R. Wang and C. H. Dagli. An Executable System Architecture Approach to Discrete Events System
Modeling Using SysML in Conjunction with Colored Petri Net. In Systems Conference, 2008, 2nd
Annual IEEE, 2008.

[16] P. Wegner. Interoperability. ACM Computing Survey, 28(1):285–287, 1996.

15

	Introduction
	SysMl Presentation
	Modeling a CyCab with SysML
	CyCab Informal Description
	Block Definition Diagram
	Internal Block Diagram
	Requirement diagram
	Sequence Diagram

	Extracting a Tree from SysML architecture
	Interface automata strengthened by non-functional property and SysML diagrams
	Component interfaces based on SysML sequence diagrams and NF requirements
	Blocks Compatibility Verification
	Illustration on the CyCab

	Related works
	Conclusion and future work
	References

