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Abstract. This paper proposes a new multi-objective genetic algorithm,
called GAME, to solve constrained optimization problems. GAME uses
an elitist archive, but it ranks the population in several Pareto fronts.
Then, three types of fitness assignment methods are defined: the fitness
of individuals depends on the front they belong to. The crowding dis-
tance is also used to preserve diversity. Selection is based on two steps:
a Pareto front is first selected, before choosing an individual among the
solutions it contains. The probability to choose a given front is computed
using three parameters which are tuned using the design of experiments.
The influence of the number of Pareto fronts is studied experimentally.
Finally GAME’s performance is assessed and compared with three other
algorithms according to the conditions of the CEC 2009 competition.
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1 Introduction

Many multi-objective evolutionary algorithms (MOEAs) use an elitist archive
based on Pareto domination. The main difficulty of these MOEAs often lies in
maintaining diversity. Thus, various solutions have been proposed as the crowd-
ing distance [6], metrics based on diversity [18] or specific definitions of fitness [8].
In the same way, the algorithm proposed in this paper, named Genetic Algorithm
with Multiple parEto sets (GAME), rests on the concept of Pareto ranking. But
it uses several Pareto fronts to rank individuals. Besides, the formula used to
compute the fitness of individuals varies according to the set they belong to.
Finally selection operators (for reproduction and for replacement) work in two
steps: selecting one of the Pareto sets and selecting one individual in this set.
The probability that each Pareto set is selected both depends on its rank and
its size. Individuals belonging to the selected Pareto set are then compared us-
ing a fitness-based tournament. Defining various kinds of fitness depending on
the non-domination rank preserves both quality and diversity. Section 2 quickly
describes previous work related to this subject : some classical MOEAs based
on Pareto archives, tuning parameters and managing constraints in such algo-
rithms. Section 3 details the proposed algorithm itself. Section 4 first explains
how the parameters used to define the selection probability of each Pareto front
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are tuned using the design of experiments. This section then experimentally
studies the benefit obtained by using several Pareto fronts. Finally that sec-
tion presents the experiments performed to validate this approach, particularly
the algorithms compared with it in accordance with the CEC2009 competition
conditions, and the assessment of GAME efficiency. Section 5 concludes by high-
lighting and gives the main prospects of this work.

2 Multi-objective evolutionary algorithms (MOEAs) in
literature

2.1 Pareto-based MOEAs

Among several evolutionary algorithms which archive non-dominated solutions,
we can cite Strength Pareto Evolutionary Algorithm 2 (SPEA2) [18] or a newer
method such as the Fast Pareto Genetic Algorithm (FastPGA) [8].

SPEA2 is an elitist multi-objective evolutionary algorithm that relies on
Pareto-based and archiving techniques. SPEA2 assigns a strength to each S
solution of the current population and the archive. This strength represents the
number of solutions dominated by S. The fitness of each solution equals the sum-
mation of the strength of solutions that it is dominated by. When two solutions
have the same fitness value, they are discriminated according to a metric based
on the density (an adaptation of the k-th nearest neighbor method) [13].

FastPGA divides the solutions of the current population into two fronts (non-
dominated and dominated sets) using the Pareto dominance principles. The
fitness of non-dominated solutions is calculated using the crowding distance pro-
posed by Deb et al. [5]. For solutions in the dominated front, FastPGA uses
an extension of SPEA2’s fitness assignment method. Indeed, the fitness of each
dominated solution equals the summation of the strength values of all the solu-
tions it dominates minus the summation of the strength values of all the solutions
by which it is dominated. This reduces the chances that two solutions may have
the same value of fitness. FastPGA also uses a specific mechanism to regulate
population size over generations.

2.2 Tuning of MOEA parameters

Evolutionary algorithms include several parameters the tuning of which is gen-
erally difficult. Their values might significantly impact the quality of the solu-
tions provided by the algorithm. A high mutation probability for instance would
favor diversity and limit the exploitation of zones where good solutions may
have been found. The algorithm would then nearly behave like a random search
strategy. Such parameters are often tuned empirically. But it is difficult to find
values which are both suitable and robust (i.e. achieving good enough perfor-
mance without being too sensitive to the tackled optimization problems). This
approach often requires a great number of executions and the knowledge of a
human decision-maker to select appropriate values. That is why, in recent years,



Multi-Pareto-Ranking Evolutionary Algorithm 3

several approaches have been proposed to design and/or tune EAs statistically
in order to better guarantee their performance and/or robustness [9] [2].

2.3 Constraint-handling in MOEAs

Some optimization problems include constraints associated with the search space
(set of variables) or the objective space (set of objective functions). Only points
that satisfy these constraints are considered as feasible solutions of the optimiza-
tion problem. Michalewicz and Schoenauer [12] define the types of approaches
to handle such constraints in EAs. There are methods that preserve solution
feasibility whenever possible. They use some operators (crossover and muta-
tion) which only create solutions belonging to the set of feasible solutions. There
also exists methods that include a penalty function in the calculation of the
fitness of each solution. This allows to weaken the fitness of solutions that vio-
late constraints. Another approach to handle constraints combine evolutionary
algorithms and other optimization methods. They may repeatly use EAs. For
instance, Surry et al. [15] rank individuals according to both objective values and
constraint violations, which amounts to adding some objectives to the problem.

The genetic algorithm proposed in this paper uses a penalty-based approach
to manage the constraints (see section 3.1). In addition, this algorithm uses
both the computation of several Pareto fronts like NSGA-II and a definition
of fitness which is different for each front like SPEA 2. The proposed solution
combines the advantages of these two famous algorithms. Nevertheless contrary
to NSGA-II structuring the population in several Pareto fronts is not only used
for the replacement selection, it also impacts the recombination process. These
characteristics have led to the implementation of a new selection strategy that
takes into account the multiplicity of fronts and the fitness functions that depend
on rank of the front. The benefit related to the number of fronts and the tuning
of this new selection process parameters have been studied statistically.

The following section describes the proposed algorithm while particularly
detailing its main characteristics.

3 A multiple-Pareto-ranking genetic algorithm.

The proposed algorithm includes a wide-ranking process and a specific method
of fitness assignment. The main goal of these operations is both to ensure a good
exploration of the space search and the convergence toward the optimal solu-
tion(s). This algorithm is named Genetic Algorithm with Multiple parEto sets
(GAME). It rests on a classical global scheme and is quite like other MOEAs
developed in literature. Initial population is generated randomly. Individuals rep-
resent solutions which are made of several integer or float variables, using binary
simulated encoding. This representation is quite classical [14]: each variable is
represented as a binary chain. The chain length (number of bits) depends on the
wished precision. For instance, when representing a variable that takes values in
the interval [0; 10], with a precision equals to 10−2, requires 10 bits. The chains
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0000000000 and 1111111111 will respectively represent 0 and 10. 1,23 will be
encoded as 0001111110.

Crossover and mutation operators are also commonly used in this kind of
representation. They are 2-point crossover and bitflip mutation [5]. GAME also
uses parallel , based on master-slave model [4].

Besides, GAME differs from well-known MOEAs in several ways. These dif-
ferences deal with the following steps: the ranking of individuals, based on Pareto
dominance (3.1), fitness assignment (3.2), and the associated selection strategies
for both recombination and replacement (3.3).

3.1 Ranking

GAME uses the objective values computed at the evaluation step to rank indi-
viduals. This ranking is based on the principle of non-dominated sorting (Pareto
dominance). Pareto solutions are those for which improvement in one objective
implies the worsening of at least one other objective. All the non-dominated
individuals are added to the first Pareto front PF1. This process is repeated
successively three times with the remaining subset of individuals to build the
second, the third and the fourth Pareto fronts (PF2, PF3 and PF4). Finally, the
remaining subset solutions are gathered in the set of dominated solutions PF5.

When the problem has some constraints, they are handled during the con-
struction of the Pareto fronts. GAME uses a penality-based method to take
constraints intoaccount. In order to preserve the primacy of solutions which re-
spect the limits, those which violate them are banned in the first Pareto front.
However, when PF1 is empty, solutions that do not satisfy the constraints can
be accepted. This situation often occurs in the first generations. But it is quickly
corrected as the solutions which respect the constraints have a higher probability
of reproduction and thus transmit their characters to their offspring.

3.2 Fitness assignment

Since it is not obvious to compare two solutions in the same Pareto front (im-
provement in an objective is always to the detriment of at least one other), a
fitness value is assigned to each solution.

The computation of the value of fitness depends on the Pareto rank of the
solution. GAME distinguishes three types of fitness: one for the best solutions
(the archive of non-dominated solutions and the first Pareto front), the second for
the solutions of the second Pareto front and the third one for the other fronts.
These fitness values are only used within the same front. The fitness of two
individuals of different fronts cannot be compared. In this case, the comparison
will only focus on the ranks of their respective fronts.

Fitness for the archive and the first Pareto front solutions. During the
execution of GAME, the first Pareto front (PF1) contains the best solutions of
the current population. The archive of non-dominated solutions contains all the
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best solutions evaluated since the first generation. Note that a solution of PF1

can dominate some solutions in the archive. These two sets represent solutions
that are closest to the optimal solutions (PF ∗). While trying to get closer to
PF ∗, the algorithm must preserve diversity in the best solutions set. GAME
assigns to the archived solutions and PF1 a fitness based on the crowding
distance [6] which is a diversity indicator. This indicator provides information
on the distribution of solutions in the front. To avoid bias due to the sizes of
ranges of the objective functions, GAME uses a normalized crowding distance.

Fitness for the second Pareto front solutions. The solutions of the second
Pareto front (PF2) are the second best set of solutions in a population. GAME
favors solutions of the PF2 that are closest to PF1. The convergence indicator
used to measure the proximity of solutions of the two fronts is the Generational
distance. Using this indicator as fitness enables the solutions of PF2 that are
closest to PF1 to have a greater probability to be selected for recombination
and/or replacement.

Fitness for the remaining solutions For solutions that do not belong to any
of the three previous sets (archive of non-dominated solutions, first and second
Pareto fronts), a new indicator is used to calculate the values of fitness. This is
the gain (see Equation 1).

The gain of an −→xi solution with respect to −→xj in accordance with the fk ob-
jective function is called gain(−→xi ,−→xj , k). It expresses the improvement provided
by −→xi in comparison to −→xj in the selected function. The gain varies from -1 to 1.
A negative value indicates that the first solution is worse than the second one
according to fk. A null gain means that both solutions are equivalent.

gain(−→xi ,−→xj , k) =
λ(fk(−→xi)− fk(−→xj))
Max(fk(−→xi), fk(−→xj))

(1)

where λ is a coefficient: 1 for a maximization problem; -1 for a minimization.
The fitness of each individual is the sum of gains (for all objectives) compared

to other solutions in the same front (see Equation 2).

fitness(−→xi) =

|PF |∑
j=1

m∑
k=1

gain(−→xi ,−→xj , k) (2)

where |PF | is the Pareto front size and m the number of objectives functions.

3.3 Selection operator

To ensure both exploration and exploitation, a kind of fitness is associated to
each Pareto front. This is actually a selection probability of the front. Indeed,
GAME selects individuals in two steps. The first one consist in selecting a Pareto
front within the five built. Then, a solution is chosen from those belonging to
the front using a binary tournament selection.
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The selection of Pareto fronts is based on a biased roulette wheel where the
part of each front depends on both its rank and its cardinality. The probability
of selection associated with each front is given by equation 3.

P (PFi) =
δ(PFi) ∗ |PFi|∑n

i=1[δ(PFi) ∗ |PFi|]
(3)

where:
P (PFi) is the probability of selection associated with the ith Pareto front.
|PFi| is the cardinality of PFi.
n is the total number of Pareto fronts. δ(PFi) indicates a priority level associated
with each front (see Equation 4).

δ(PFi) = a(n− i) + b (4)

The coefficients a and b must be carefully chosen to preserve diversity within
the sets of solutions (successive populations and archive), while improving in-
dividuals over generations. These parameters may differ for recombination and
replacement. Therefore, the coefficients associated with recombination selection
are named a and b, whereas those used in replacement selection are a′ and b′

(see Section 4.1).
Using both δ(PFi) and the cardinality ensures the selection of the best so-

lutions, prevents the dominated solutions from having very low values of fitness
and preserves the diversity of the successive populations.

The utility and the efficiency of the proposed ranking mode and selection
process were experimentally validated. This experimentation first studied the
tuning of a, b, a′ and b′ for a given number of Pareto fronts. Secondly, a pre-
liminary test phase focused on the sensitivity of GAME to the used number of
Pareto Fronts, for the tuned values of δ(PFi).

It is worth noting that besides its specific characteristics, presented in this
section, GAME uses a parallel evaluation process based on a master-slave model [4].
The parallelization allows GAME to tackle problems with complex objective
functions or with objective functions requiring simulation to assess their values.
A variant of GAME, named ESBEA, has been applied, for instance, to a con-
strained optimization problem containing four objective functions evaluated by
simulation, in the field of ad hoc mobile communication networks [1].

In this paper, the performance of GAME was assessed by comparison with
previous results in literature. The following sections describe experimental con-
ditions and summarize the main results.

4 Validation and experimental results

The experiments described in the following subsections aim at:

– tuning the probabilities associated with Pareto sets;
– validating the interest to have multiple Pareto fronts;
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– assessing the performance of GAME compared with other methods presented
in literature.

All experiments were performed on the optimization problems proposed in
the CEC 2009 [17] competition, more particularly bi-objective constrained prob-
lems, according to the experimental conditions defined in this competition. These
problems are detailed in [17].

GAME has been implemented using jMetal [7], a platform for the develop-
ment, experimentation and study of metaheuristics. A population size equals
to 100 and 300 generations were used to perform the 30,000 evaluations re-
quired for each execution in the CEC 2009 competition. Crossover rate and mu-
tation rate were respectively equal to values recommended in literature: 0.8 and

1
Number of variables (in order to limit the number of parameters in the parameter

study and focus on those involved in the proposed mechanisms).

4.1 Tuning GAME’s parameters

A parametric study based on the design of experiments (DOEs) has been per-
formed to tune the priority assigned to each Pareto front built by GAME. DOEs
permit to get a lot of information on parameters 1 and study their influence,
while carrying out a minimum of tests [3].

The whole campain of tests has been based on JMP (9 Pro version) 2, a
statistical software for expert data analysis, to create DOE and to analyze the
provided results. This software has been used to create some test tables, in which
each line corresponds to a given combination of the factors (in this case, a, b,
a′ and b′ presented in Section 3.3) defining a given test. For each of these tests,
two indicators (IGD and Maximum Spread [5]) have been used to measure the
quality of the studied combination of parameters 3.

This parameter tuning was performed with a number of Pareto fronts set at
5, by varying a, b, a′ and b′ between 0 and 10 (integer values). JMP has generated
a partial DOE table consisting of 44 tests to be performed. The benchmark used
for these tests was Constrained Problem 1.

Figure 1 shows the results returned by JMP. For IGD and Maximum Spread
indicators, the first four curves show the variations of these indicators based on
the values taken by each factor. The last column gives a desirability function (for
each indicator) with values between 0 and 1. A desirability value of 1 indicates
that the used parameter values enable to get the optimal level for the considered
indicator. In this parameter tuning, the desirability according to the IGD de-
creases when the IGD reaches high values. That is the inverse of the Maximum
Spread. The last row of curves shows the levels of desirability with respect to
both the IGD and Maximum Spread indicators.

Based on these results, the best value of desirability is achieved when a = 6,
b = 5, a′ = 5 and b′ = 4.

1 In DOEs these parameters are called factors
2 http://www.jmp.com
3 The measured values are also called responses.
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Fig. 1. Tuning the selection coefficients

4.2 Influence of multiple Pareto fronts.

To measure the benefits of multiple Pareto fronts, four versions of GAME are
compared, using the values of δ(PFi) tuned with JMP. The first version builds
two Pareto fronts (like classical algorithms). This version will serve as a reference.
The other three versions build 3, 4 and 5 fronts. These values were chosen to
study a steady increase of the number of fronts while limiting the duration of
experimentations. They are compared to the “2 front” version in the constrained
problem 1 of the CEC 2009 competition. The comparison focuses on convergence
(IGD) and diversity (Maximum Spread) indicators.

Since the generation of the initial population of GAME does not use specific
heuristics, individuals are created randomly. Therefore, the best of them often
are of fair quality. This results in a relatively high value of the IGD in the first
generations (see Figure 2). Fast enough, solutions that are better suited to the
problem are produced (by recombination) and eliminate the worst individuals
in the archive. This explains the sharp decrease in the IGD in the first 25 gener-
ations. Thereafter, the curves of the IGD continue to decline steadily but with
a much lower slope. Beyond this behavior common to all scenarios, these results
allow us to observe that the increase in the number of fronts improves the quality
of final solutions in terms of proximity to the optimum.
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During the first few generations, the Maximum Spread has relatively high
values (see Figure 3). This can be explained by the fact that the archive contains
solutions that do not meet constraints. Indeed, the inclusion of such solutions
stretches the front beyond the boundaries that are set by the constraints of
the problem. The archive built by GAME is then refined, when solutions which
respect the constraints and have good values of objective functions are found.
This explains the drop in the Maximum Spread in the early generations. After
the fall phase, the Maximum Spread is growing slightly. In addition, the slight
variations in the curves of Maximum Spread over generations indicates that the
archive is updated regularly. New non-dominated solutions are continually being
discovered. If initially all scenarios have the same behavior, one can observe that
after a few dozen generations, the impact of multiple fronts becomes substantial.

4.3 Performance assessment

The performance of GAME was assessed as if it had taken part in the CEC 2009
competition, in the ”Constrained problems” category. This category includes bi-
objective problems where the two objectives are to be minimized. Each problem
includes 10 real-valued decision variables. GAME was compared to the three al-
gorithms which got the best results in this category, using the same experimental
conditions and the same performance criterion:

– for each constrained problem, 30 independent executions limited to 30,000
evaluations must be performed for each algorithm;
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– then the mean value of IGD indicator (computed in the sets of final solutions
for the 30 independent executions) must be used as comparison criterion. The
IGD is to be minimized.

Table 1 provides, for the exhaustive list of bi-objective problems of the compe-
tition, the average of the IGD values obtained by the three compared algorithms:
DMOEA-DD [11], LiuLi [10] and MTS [16]. These results permitted these algo-
rithms to respectively reach the first rank, the second rank and the third rank
during the CEC 2009 competition.

DMOEAD-DD (Dynamical Multiobjective Evolutionary Algorithm - Domain
Decomposition) improves DMOEA [19] that used an aggregated fitness function
including the notion of Pareto dominance, entropy and density (based on crowd-
ing distance). In the improved variant, authors split the search space into several
subsets. DMOEA computes Pareto fronts for each of them. Genetic operators
permit information exchange between these subsets.

LiuLi (concatenation of the authors’name : Hai-Lin Liu and Xueqiang Li)
splits the search space into sub-areas in order to reduce algorithm complexity.
Genetic operations, particularly reproduction, are performed in a single sub-area.
Information exchange between areas is based on children, because they may be
assigned to other areas.

MTS (Multiple Trajectory Search) is an algorithm based on three local search
methods. For each solution, MTS determines the method which corresponds
to its neighborhood. This algorithm begins with a large search. The size of
neighborhood is progressively reduced until it reaches a given minimal size. Then
its size is set to its initial value and the regression re-starts.
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Problem GAME DMOEADD LiuLi MTS

Constrained Problem 1 0.01489 0.01131 0.00085 0.01918

Constrained Problem 2 0.00042 0.0021 0.004203 0.02677

Constrained Problem 3 0.03462 0.056305 0.182905 0.10446

Constrained Problem 4 0.00742 0.00699 0.014232 0.01109

Constrained Problem 5 0.01227 0.01577 0.10973 0.02077

Constrained Problem 6 0.00181 0.01502 0.013948 0.01616

Constrained Problem 7 0.00545 0.01905 0.10446 0.02469
Table 1. Mean values of IGD returned by GAME and the algorithms which partici-
pated to CEC2009 competition

Besides, GAME has been tested in the same conditions and the results it
provided were added in table 1. This study shows that, globally, GAME reaches
solutions which are quite close to the reference front. This results in low IGD
values in table 1. Moreover, in a large majority of cases, GAME provides better
results than those returned by the three best algorithms in the competition (in
the “constrained problems” category).

5 Conclusion

To sum up, GAME is an elitist multi-objective genetic algorithm, based on the
building of multiple Pareto fronts. This ranking strategy and the associated 2-
step selection provided gains both in terms of proximity with optimal solutions
and in terms of diversity in the set of final solutions returned by GAME. Finally,
using the experimental conditions of the CEC 2009 competition showed that
it would have been quite well ranked in this competition, which constitutes
a promising result. In addition, GAME uses a parallel evaluation procedure
based on a master-slave model. Although this model allowed the reduction in
terms of the duration of the experimentations in previous work in the field of
mobile networks [1]. Nevertheless, designing an asynchronous version of GAME
would be very interesting. Such a version would no longer rely on an architecture
where the master must wait until all the slaves have finished their task before
building the next generation. Two other prospects are planned for this work.
First, GAME should be applied in various real-life fields to test its sensitivity
to the tackled problems more widely. This would permit to prove the genericity
of the results provided in this paper. Besides, the authors are working on an
adaptive version of GAME. This aims at making it more robust with regards to
problem characteristics, rather than using statistically tuned parameters without
varying the algorithm behavior during execution.
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