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Abstract—The confidentiality of information transmitted
through the Internet requires an intensive use of pseudoran-
dom number generators having strong security properties. For
instance, these generators are used to produce encryption keys,
to encrypt data with a one-time pad process, or to dissimulate
information into cover media. In the previous International
Conference on Evolving Internet (Internet 09, 10, and 11),
we have proposed the use of discrete chaotic iterations to
build pseudorandom number generators that receive two in-
putted possibly deficient generators, and mix them to produce
pseudorandom numbers with high statistical qualities. In this
article, we summarize these contributions and we propose simple
applications of these generators for encryption and information
hiding. For each application, firsts experimental evaluations are
given, showing that an attacker using these statistics as detection
tools cannot infer the presence of an hidden message into given
cover documents.

Keywords-Internet Security; Pseudorandom Number Genera-
tors; Information Hiding; Discrete Chaotic Iterations.

I. INTRODUCTION

Since pseudorandom sequences are easy to be generated
and processed, and due to their need in almost all crypto-
graphic protocols and information hiding schemes, PRNGs
are widely used for a secure Internet use. Among other
things, they are part of the keys generation of any asymmetric
cryptosystem, they produce keystreams in symmetric cryp-
tosystems, they determine which bits will receive the secret
message in information hiding, and so on. However, a lot of
existing pseudorandom number generators (PRNGs) used in
numerical simulations are eliminated for such applications,
due to the requirements of speed, statistical quality, and
security in that context.

Recent years, some researchers have investigated with
success the use of chaotic dynamical systems to generate
pseudorandom sequences [8], [12]. Indeed, chaotic systems
have many advantages as unpredictability or disorder-like,
which are needed when producing complex sequences. They
are extremely sensitive to the initial states too: a minute
difference can cause a significant change in output. All these
features fit well the requirements of PRNGs, thus explaining
the proposal of such dynamics to secure exchanges. For
instance, in [9], chaos has been applied to strengthen some
optical communications. However, chaotic systems using real
numbers on infinite bit representation, realized in finite com-
puting precision, lead to short cycle length, non-ideal distri-
bution, and other deflation of this kind. This is why chaotic
systems on a infinite space of integers have been dig for these
years, leading to the proposition to use chaotic iterations (CIs)

techniques to reach the desired goals [15].

Having these goals in mind, we have investigating the
proposition to mix secure and fast PRNGs, to take benefits
from their respective qualities [1], [4]. In [4], CIs have been
proven to be a suitable tool for fast computing iterative
algorithms on integers satisfying the topological chaotic prop-
erty, as it has been defined by Devaney [7]. The way that
mix two given generators by using these chaotic iterations
have been firstly presented in Internet 2009 [15]. It was
called “Old CIPRNG”. Then, further investigations have been
proposed in [2], [4], [5]. These generators were chaotic and
able to pass the most stringent batteries of tests, even if the
inputted PRNGs were defective. This claim has been verified
experimentally, by evaluating the scores of the logistic map,
XORshift, and ISAAC generators through these batteries,
when considering them alone or after chaotic iterations. Then,
in [16], a new version of this family has been expressed. This
so-called “New CIPRNG” family uses a decimation of strate-
gies leading to the improvement of both speed and statistical
qualities. Finally, most recently, efficient implementations on
GPU (Graphics Processing Unit) using a last family named
Xor CIPRNG, have been designed in [3], showing that a very
large quantity of pseudorandom numbers can be generated per
second (about 20 Gsamples/s).

The objective of this article is to make a state-of-the-art
of chaotic iterations based PRNGs, and to propose a possible
use of them in the field of secrecy preservation through the
Internet, by using information hiding techniques. Random
binary sequences will be generated by the three methods
mentioned above and a XORshift generator. The application
of these pseudorandom bits for information hiding will be
carried out systematically, and results will be discussed in
order to verify that an attacker, who has only access to some
elementary statistical tests, cannot determine whether hidden
information are embedded into cover documents or not.

The remainder of this paper is organized in the following
way. In Section II, some basic definitions concerning chaotic
iterations and XORshift are recalled. Their use to produce
three new families of generators is recalled in the next section.
Section IV contains the proposed applications of the PRNGs
for information hiding. This summary of our previous works
in the field of PRNGs and their applications ends by a
conclusion section, where our contribution is summarized and
intended future work is presented.
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Figure 1: (a) The original image. (b) Histogram of the original image. (c) Correlation distribution of the original image. (d)
The hidden image.

II. BASIC REMAINDERS

In this section, notations used in this document are intro-
duced, chaotic iterations embedded in the proposed pseudo-
random number generators (PRNGs) are defined, and the well-
known XORshift generator is recalled.

A. Notations
Sn → the nth term of a sequence S = (S1, S2, . . .)
vi → the ith component of a vector v = (v1, . . . , vn)
fk → kth composition of a function f

Ja; bK → the interval {a, a+ 1, . . . b} of integers
XN → the set of sequences belonging into X

strategy → a sequence of J1;NKN
S → the set of all strategies
Ck

n → the binomial coefficient
(
n
k

)
= n!

k!(n−k)!
⊕ → bitwise exclusive or

� and�→ the usual shift operators
B. Chaotic iterations
Definition 1 The set B denoting {0, 1}, let f : BN −→ BN

be an “iteration” function and S ∈ S be a chaotic strategy.
Then, the so-called chaotic iterations are defined by x0 ∈ BN,
and

∀n ∈ N∗,∀i ∈ J1;NK, xn
i =

{
xn−1
i if Sn 6= i

f(xn−1)Sn if Sn = i.

In other words, at the nth iteration, only the Sn−th cell is
“iterated”.

C. XORshift
XORshift is a category of very fast PRNGs designed by

George Marsaglia [10]. It repeatedly uses the transform of
exclusive or (XOR) on a number with a bit shifted version
of it. The state of a XORshift generator is a vector of bits.
At each step, the next state is obtained by applying a given
number of XORshift operations to w-bit blocks in the current
state, where w = 32 or 64. A XORshift operation is defined
as follows. Replace the w-bit block by a bitwise XOR of the
original block, with a shifted copy of itself by a positions
either to the right or to the left, where 0 < a < w. This
Algorithm 1 has a period of 232 − 1 = 4.29× 109.

III. CHAOTIC ITERATIONS APPLIED TO PRNGS

In this section, we describe the CIPRNG implementation
techniques that can improve the statistical properties of a large
variety of defective generators. They all are based on chaotic
iterations (CIs), which have been defined in the previous
section.

Input: the internal state z (a 32-bit word)
Output: y (a 32-bit word)

1: z ← z ⊕ (z � 13);
2: z ← z ⊕ (z � 17);
3: z ← z ⊕ (z � 5);
4: y ← z;
5: return y;

Algorithm 1: An arbitrary round of XORshift algorithm

A. The Old CIPRNG

Let N = 4. Some chaotic iterations are fulfilled to generate
a sequence (xn)n∈N ∈

(
B4
)N

of Boolean vectors: the
successive states of the iterated system. Some of these vectors
are randomly extracted and their components constitute our
pseudorandom bit flow [15]. Chaotic iterations are realized
as follows. Initial state x0 ∈ B4 is a Boolean vector
taken as a seed and chaotic strategy (Sn)n∈N ∈ J1, 4KN is
constructed with PRNG2. Lastly, iterate function f is the
vectorial Boolean negation. At each iteration, only the Sn-
th component of state xn is updated. Finally, some xn are
selected by a sequence mn, provided by a second generator
PRNG1, as the pseudorandom bit sequence of our generator.

The basic design procedure of the Old CI generator is
summed up in Algorithm 2. The internal state is x, the output
array is r. a and b are those computed by PRNG1 and
PRNG2.

Input: the internal state x (an array of 4-bit words)
Output: an array r of 4-bit words

1: a← PRNG1();
2: m← a mod 2 + 13;
3: while i = 0, . . . ,m do
4: b← PRNG2();
5: S ← b mod 4;
6: xS ← xS ;
7: end while
8: r ← x;
9: return r;

Algorithm 2: An arbitrary round of the Old CI generator

In the paper [15] presented at Internet 2009, the chaotic
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Figure 2: (a) Histogram of pixel values when LSBs are replaced by Old CI. (b) Histogram of pixel values when LBSs are an
hidden message xored with Old CI. (c) Correlation distribution of two adjacent pixels in Fig.(a). (d) Correlation distribution
of two adjacent pixels in Fig.(b).
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Figure 3: (a) Histogram of pixel values when LSBs are replaced by New CI. (b) Histogram of pixel values when LBSs are an
hidden message xored with New CI. (c) Correlation distribution of two adjacent pixels in Fig.(a). (d) Correlation distribution
of two adjacent pixels in Fig.(b).

behavior of CIs is exploited in order to obtain an unpredictable
PRNG constituted by two logistic maps. This novel generator
has successfully passed the NIST [13]. Then, in [2], we have
achieved to improve the speed of the former PRNG, by using
two XORshifts in place of the logistic map. In addition,
this new version of our PRNG is able to pass the famous
DieHARD statistical battery of tests [11]. Its security has been
improved compared to XORshift alone, and to our former
PRNG. However, this latter cannot pass the TestU01 [14]
battery, widely considered as the most comprehensive and
stringent battery of tests. This goal is achieved by using
XORshift and ISAAC as PRNG1 and PRNG2 in [5].

B. New CIPRNG

The New CI generator is designed by the following pro-
cess [16]. First of all, some chaotic iterations have to be
done to generate a sequence (xn)n∈N ∈

(
B32

)N
of Boolean

vectors, which are the successive states of the iterated system.
Some of these vectors will be randomly extracted and our
pseudorandom bit flow will be constituted by their compo-
nents. Such chaotic iterations are realized as follows. Initial
state x0 ∈ B32 is a Boolean vector taken as a seed and chaotic
strategy (Sn)n∈N ∈ J1, 32KN is an irregular decimation of
PRNG2 sequence, as described in Algorithm 3.

Another time, at each iteration, only the Sn-th compo-
nent of state xn is updated, as follows: xn

i = xn−1
i if

i 6= Sn, else xn
i = xn−1

i . Finally, some xn are selected
by a sequence mn as the pseudorandom bit sequence of
our generator. (mn)n∈N ∈ MN is computed from PRNG1,
where M⊂ N∗ is a finite nonempty set of integers.

The basic design procedure of the New CI generator is
summarized in Algorithm 3. The internal state is x, the output

state is r. a and b are those computed by the two input PRNGs.
Lastly, the value g1(a) is an integer defined as in Eq. 1.

mn = g1(y
n) =



0 if 0 6 yn < C0
32,

1 if C0
32 6 yn <

∑1
i=0 C

i
32,

2 if
∑1

i=0 C
i
32 6 yn <

∑2
i=0 C

i
32,

...
...

N if
∑N−1

i=0 Ci
32 6 yn < 1.

(1)
This New CI method presented at Internet 2010 has been

published in [16]. It was initially using two XORshifts, show-
ing better speed and statistical performance while preserving
chaotic properties of the Old CIPRNG. For more information,
the reader is referred to [16].

C. Xor CIPRNG
Instead of updating only one cell at each iteration as Old

CI and New CI, we can try to choose a subset of components
and to update them together. Such an attempt leads to a kind
of merger of the two random sequences. When the updating
function is the vectorial negation, this algorithm can be simply
rewritten as follows [3]:{

x0 ∈ J0, 2N − 1K, S ∈ J0, 2N − 1KN
∀n ∈ N∗, xn = xn−1 ⊕ Sn,

(2)

The single basic component presented in Eq. 2 is of
ordinary use as a good elementary brick in various PRNGs.
It corresponds to the discrete dynamical system in chaotic
iterations.

IV. APPLICATION EVALUATION

In this section, the application of PRNGs using CI methods
for information hiding is given.
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Figure 4: (a) The encrypted Lena (one-time pad using Old CI). (b) Histogram of Fig.(a). (c) Correlation distribution of two
adjacent pixels in Fig.(a)
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Figure 5: (a) The encrypted Lena (one-time pad using New CI). (b) Histogram of Fig.(a). (c) Correlation distribution of two
adjacent pixels in Fig.(a)

Input: the internal state x (32 bits)
Output: a state r of 32 bits

1: for i = 0, . . . , N do
2: di ← 0;
3: end for
4: a← PRNG1();
5: m← f(a);
6: k ← m;
7: while i = 0, . . . , k do
8: b← PRNG2() mod N;
9: S ← b;

10: if dS = 0 then
11: xS ← xS ;
12: dS ← 1;
13: else if dS = 1 then
14: k ← k + 1;
15: end if
16: end whiler ← x;

return r;

Algorithm 3: An arbitrary round of the New CI generator

A. The Proposed Information Hiding Method

Suppose that the size of the image is M ×N . The steps of
the proposed information hiding algorithm using the CIPRNG
family are summed up below.

1) Generate a pseudorandom sequence S of length M×N
using the above CI methods respectively.

2) Transform the image into a M ×N integer sequence.

3) The LSBs (Least Significant Bits) of the image integer
sequence are replaced by the generated random bits S.
These random LSBs will be treated as a keystream.

4) The information (text or picture) to hide is transformed
into a binary sequence.

5) The binary message is hiding into the random LSBs of
the image sequence, by using the bitwise exclusive or
operation between the two sequences, starting from a
selected position acting as part of the secret key.

Pseudorandom sequences generated by the three CI meth-
ods mentioned in the previous section, with two XORshift
generators and a given image, are used in this application to
process to an evaluation of the scheme.

B. First Experimental Evaluation of the Proposed Scheme

1) The context: The original image of size 713 × 713,
probably the most widely used test image for all kind of
processing algorithms (such as compression and encryption),
is depicted in Fig. 1-a. Fig. 1-c presents its histogram, and
Fig. 1-d shows the correlation distribution of two horizontal
adjacent pixels in this original image. Finally, information that
must be hidden into it is the picture of Fig. 1-b, which has
89× 89 pixels.

2) Histogram and Horizontal Correlation: Two XORshift
generators are used to generate a random sequence based on
the old CI method. Results are shown in Fig. 4. Histograms
and correlation distributions (Fig. 4-a,b,c,d) are very closed to
each other, leading to the assumption that such a method can
well protect the hidden information when facing statistical
attacks. The same experimental validation has been applied
to the New CI method using two XORshift generators. Such
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Figure 6: (a) The encrypted Lena (one-time pad using Xor CI). (b) Histogram of Fig.(a). (c) Correlation distribution of two
adjacent pixels in Fig.(a)
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Figure 7: (a) Histogram of pixel values when LSBs are replaced by Xor CI. (b) Histogram of pixel values when LBSs are an
hidden message xored with Xor CI. (c) Correlation distribution of two adjacent pixels in Fig.(a). (d) Correlation distribution
of two adjacent pixels in Fig.(b).

experiments lead to results that are shown in Fig. 5. These first
results are encouraging and confirm that simple histogram and
correlation evaluations cannot detect the presence of hidden
messages. The same conclusion can be claimed when using
the Xor CI generator, as it is depicted in Fig. 7.

3) All directions correlation coefficients analysis: Using an
identical experimental evaluation than in [6], the correlation
coefficients of the horizontal, vertical, and diagonal directions
of all the concerned images (original, with random as LSBs,
and with secret information in these LSBs) are shown in
Table I. It can be experimentally deduced that the correlation
properties of these images are very similar to each other. So
an attacker, whose intention is to analyze these coefficients
in order to detect possible information hiding, cannot attain
his/her goal by such a simple experiment.

4) Initial condition sensitivity: One of the most important
properties of the chaotic sequences is that they are very
sensitive to their initial conditions. This property can help
to face an attacker who has access to the whole algorithm
and to an approximation of the secret key. His/her intention,
in this attack scenario, is to find the exact secret key (the
seed of the keystream and the position of the message), by
making small changes on this key. If the keystream and the
position do not change a lot when the key is slightly updated,
then the attacker can converge by small changes to the used
secret key. In the experiments of Figure 8, we slightly alter
the keys and try to extract the hidden information from the
image. We can conclude that such optimistic attempts always
fail in recovering the message.

C. A small evaluation of Encryption

The dissimulation has been obtained in this paper by
using the CIPRNGs recalled previously as stream cyphers:
encryption is the result of the use of the bitwise exclusive
or (XOR) between the given message and pseudorandom
sequences generated from various CIPRNGs. We can wonder
whether an attacker, who has access to the histogram of LSBs,
can infer what can of CIPRNG has been used as keystream.
For obvious reasons, these histograms should at least be
uniform for each PRNG.

For illustration purpose, Lena has been encrypted by such
method using each of the three kind of CIPRNGs, and
histogram and correlation distribution of the encrypted image
have been computed. The resulting images are depicted in
Fig. 4 when using the Old CI method, in Fig. 5 for the New
CI one, and in Fig. 7 for the last PRNG recalled here. We
can show that this first reasonable requirement seems to be
respected, even if this illustration is not a proof.

V. CONCLUSION

We have summarizes in this paper our previous contribu-
tions in the field of pseudorandom generators, and we have
proposed simple illustrative examples of use for information
hiding. The three family of CIPRNGs recalled here are namely
the Old CI, the New CI, and the Xor CI PRNGs. For each
generator, firsts experimental evaluations of a simple informa-
tion hiding scheme have been realized, to illustrate that that an
attacker using simple statistics cannot determine easily, only
by regarding the form of histograms or correlation distribu-
tions, the presence of an hidden message into a given doc-
ument. No evidence of dissimulation appears at first glance,
when comparing histograms, correlation distribution, or all
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Figure 8: (a) The difference of two random LSBs image using Old CI PRNG with slight change in initial condition. (b) The
difference of two random LSBs image using New CI PRNG with slight change in initial condition (c) The difference of two
random LSBs image using Xor CI PRNG with slight change in initial condition

Table I: Correlation coefficients of two adjacent pixels in all directions in the original image, random LSBs images and
infomation intergraded random LSBs images

`````````Image
Direction Horizontal Vertical Diagonal

Original image 0.9793 0.9686 0.9488

Old CI

no info 0.9792 0.9686 0.9488

intergrading info 0.9792 0.9686 0.9488

New CI

no info 0.9793 0.9686 0.9488

intergrading info 0.9793 0.9686 0.9488

Xor CI

no info 0.9793 0.9686 0.9487

intergrading info 0.9793 0.9686 0.9487

directions’ correlation coefficients. Furthermore, experiments
have illustrated high sensitivity to the secret parameters. These
simple evaluations do not imply the security of the proposed
scheme, they only illustrate that the use of the recalled PRNGs
for information hiding can be further investigated by more
stringent tools as steganalyzers and mathematical proofs.
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