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Abstract—Internet communication systems involving cryptog-
raphy and data hiding often require billions of random numbers.
In addition to the speed of the algorithm, the quality of the
pseudo-random number generator and the ease of its implemen-
tation are common practical aspects. In this work we will discuss
how to improve the quality of random numbers independently
from their generation algorithm. We propose an additional
implementation technique in order to take advantage of some
chaotic properties. The statistical quality of our solution stems
from some well-defined discrete chaotic iterations that satisfy
the reputed Devaney’s definition of chaos, namely the chaotic
iterations technique. Pursuing recent researches published in the
previous International Conference on Evolving Internet (Internet
09, 10, and 11), three methods to build pseudorandom generators
by using chaotic iterations are recalled. Using standard criteria
named NIST and DieHARD (some famous batteries of tests),
we will show that the proposed technique can improve the
statistical properties of a large variety of defective pseudorandom
generators, and that the issues raised by statistical tests decrease
when the power of chaotic iterations increase.

Keywords-Internet security; Pseudorandom Sequences; Statis-
tical Tests; Discrete Chaotic Iterations; Topological Chaos.

I. INTRODUCTION

Chaos has recently attracted more and more interests from
researchers in the fields of mathematics, physics, and com-
puter engineering, among other things due to its connection
with randomness and complexity [9], [7]. In particular, various
research works have recently regarded the possibility to use
chaos in random number generation for Internet security.
Indeed, the security of data exchanged through the Internet
is highly dependent from the quality of the pseudorandom
number generators (PRNGs) used into its protocols. These
PRNGs are everywhere in any secure Internet communication:
in the keys generation of any asymmetric cryptosystem, in
the production of any keystream (symmetric cryptosystem),
the generation of nonce, in the keys for keyed hash functions,
and so on.

Numerous pseudorandom number generators already exist,
but they are either secure but slow, or fast but insecure.
This is why the idea to mix secure and fast PRNGs, to take
benefits from their respective qualities, has emerged these last
years [7], [1]. Chaotic dynamical systems appear as good
candidates to achieve this mixture for optimization. Indeed,
chaotic systems have many advantages as unpredictability
or disorder-like, which are required in building complex
sequences [12], [16]. This is why chaos has been applied
to secure optical communications [13]. But chaotic systems
of real-number or infinite bit representation realized in finite
computing precision lead to short cycle length, non-ideal
distribution, and other deflation of this kind. This is the reason
of that chaotic systems on an infinite space of integers have
been looked for these last years, leading to the proposition to

use chaotic iterations (CIs) techniques to reach the desired
goals. More precisely, we have proposed in INTERNET
2009 [4] to mix two given PRNGs by using chaotic iterations,
being some particular kind of discrete iterations of a vectorial
Boolean function. This first proposal has been improved in
INTERNET 2010 [20] and INTERNET 2011 [3], to obtain a
new family of statistically perfect and fast PRNGs. A short
overview of these previous researches is given thereafter.

In [7], CIs have been proven to be a suitable tool for
fast computing iterative algorithms on integers satisfying
the topological chaotic property, as it has been defined by
Devaney [10]. A first way to mix two given generators by
using these chaotic iterations, called Old CIPRNGs, has been
proposed in Internet 09 [4] and further investigated in [5], [2],
[8]. It was chaotic and able to pass the most stringent batteries
of tests, even if the inputted generators were defective. This
claim has been verified experimentally, by evaluating the
scores of the logistic map, XORshift, and ISAAC generators
through these batteries, when considering them alone or after
chaotic iterations. Then, in [20], a new version of this family
has been proposed. This “New CIPRNG” family uses a
decimation of strategies leading to the improvement of both
speed and statistical qualities. Finally, efficient implementa-
tions on GPU using a last family called Xor CIPRNG have
been designed in [6], showing that a very large quantity of
pseudorandom numbers can be generated per second (about
20 Gsamples/s).

In this paper, the statistical analysis of the three methods
mentioned above are carried out systematically, and the results
are discussed. Indeed PRNGs are often based on modular
arithmetic, logical operations like bitwise exclusive or (XOR),
and on circular shifts of bit vectors. However the security level
of some PRNGs of this kind has been revealed inadequate
by today’s standards. Since different biased generators can
possibly have their own side effects when inputted into our
mixed generators, it is normal to enlarge the set of tested
inputted PRNGs, to determine if the observed improvement
still remains. We will thus show in this research work that the
intended statistical improvement is really effective for all of
these most famous generators.

The remainder of this paper is organized in the following
way. In Section II, some basic definitions concerning chaotic
iterations are recalled. Then, four major classes of general
PRNGs are presented in Section III. Section IV is devoted to
two famous statistical tests suites. In Section V, various tests
are passed with a goal to achieve a statistical comparison
between our CIPRNGs and other existing generators. The
paper ends with a conclusion and intended future work.



II. CHAOTIC ITERATIONS APPLIED TO PRNGS

In this section, we describe the CIPRNG implementation
techniques that can improve the statistical properties of any
generator. They all are based on CIs, which are defined below.

A. Notations
S n → the nth term of a sequence S = (S 1, S 2, . . .)
vi → the ith component of a vector v = (v1, . . . , vn)
f k → kth composition of a function f

strategy → a sequence which elements belong in ~1; N�
S → the set of all strategies

Ck
n → the binomial coefficient

(
n
k

)
= n!

k!(n−k)!
⊕ → bitwise exclusive or

� and �→ the usual shift operators
(X, d) → a metric space

LCM(a, b)→ the least common multiple of a and b

B. Chaotic iterations

Definition 1 The set B denoting {0, 1}, let f : BN −→ BN be
an “iteration” function and S ∈ S be a chaotic strategy. Then,
the so-called chaotic iterations are defined by x0 ∈ BN, and

∀n ∈ N∗,∀i ∈ ~1; N�, xn
i =

{
xn−1

i if S n , i
f (xn−1)S n if S n = i. (1)

In other words, at the nth iteration, only the S n−th cell is
“iterated”.

C. The CIPRNG family

1) Old CIPRNG: Let N = 4. Some chaotic iterations are
fulfilled to generate a sequence (xn)n∈N ∈

(
B4

)N
of Boolean

vectors: the successive states of the iterated system. Some of
these vectors are randomly extracted and their components
constitute our pseudorandom bit flow [4]. Chaotic iterations
are realized as follows. Initial state x0 ∈ B4 is a Boolean
vector taken as a seed and chaotic strategy (S n)n∈N ∈ ~1, 4�N

is constructed with PRNG2. Lastly, iterate function f is the
vectorial Boolean negation. At each iteration, only the S n-th
component of state xn is updated. Finally, some xn are selected
by a sequence mn, provided by a second generator PRNG1,
as the pseudorandom bit sequence of our generator.

The basic design procedure of the Old CI generator is
summed up in Algorithm 1. The internal state is x, the output
array is r. a and b are those computed by PRNG1 and PRNG2.

Input: the internal state x (an array of 4-bit words)
Output: an array r of 4-bit words

1: a← PRNG1();
2: m← a mod 2 + 13;
3: while i = 0, . . . ,m do
4: b← PRNG2();
5: S ← b mod 4;
6: xS ← xS ;
7: end while
8: r ← x;
9: return r;

Algorithm 1: An arbitrary round of the old CI generator

2) New CIPRNG: The New CI generator is designed by
the following process [11]. First of all, some chaotic iterations
have to be done to generate a sequence (xn)n∈N ∈

(
B32

)N
of

Boolean vectors, which are the successive states of the iterated
system. Some of these vectors will be randomly extracted
and our pseudo-random bit flow will be constituted by their
components. Such chaotic iterations are realized as follows.
Initial state x0 ∈ B32 is a Boolean vector taken as a seed and
chaotic strategy (S n)n∈N ∈ ~1, 32�N is an irregular decimation
of PRNG2 sequence, as described in Algorithm 2.

Another time, at each iteration, only the S n-th component
of state xn is updated, as follows: xn

i = xn−1
i if i , S n, else

xn
i = xn−1

i . Finally, some xn are selected by a sequence mn as
the pseudo-random bit sequence of our generator. (mn)n∈N ∈

MN is computed from PRNG1, where M ⊂ N∗ is a finite
nonempty set of integers.

The basic design procedure of the New CI generator is
summarized in Algorithm 2. The internal state is x, the output
state is r. a and b are those computed by the two input PRNGs.
Lastly, the value g1(a) is an integer defined as in Eq. 2.

mn = g1(yn) =



0 if 0 6 yn < C0
32,

1 if C0
32 6 yn <

∑1
i=0 Ci

32,

2 if
∑1

i=0 Ci
32 6 yn <

∑2
i=0 Ci

32,
...

...

N if
∑N−1

i=0 Ci
32 6 yn < 1.

(2)

Input: the internal state x (32 bits)
Output: a state r of 32 bits

1: for i = 0, . . . ,N do
2: di ← 0;
3: end for
4: a← PRNG1();
5: m← f (a);
6: k ← m;
7: while i = 0, . . . , k do
8: b← PRNG2() mod N;
9: S ← b;

10: if dS = 0 then
11: xS ← xS ;
12: dS ← 1;
13: else if dS = 1 then
14: k ← k + 1;
15: end if
16: end while
17: r ← x;
18: return r;

Algorithm 2: An arbitrary round of the new CI generator

3) Xor CIPRNG: Instead of updating only one cell at each
iteration as Old CI and New CI, we can try to choose a subset
of components and to update them together. Such an attempt
leads to a kind of merger of the two random sequences. When
the updating function is the vectorial negation, this algorithm
can be rewritten as follows [6]:{

x0 ∈ ~0, 2N − 1�, S ∈ ~0, 2N − 1�N

∀n ∈ N∗, xn = xn−1 ⊕ S n,
(3)
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Figure 1: Ontological class hierarchy of PRNGs

The single basic component presented in Eq. 15 is of
ordinary use as a good elementary brick in various PRNGs.
It corresponds to the discrete dynamical system in chaotic
iterations.

III. ABOUT SOME WELL-KNOWN PRNGS

A. Introduction

Knowing that there is no universal generator, it is strongly
recommended to test a stochastic application with a large
set of different PRNGs [17]. They can be classified in four
major classes: linear generators, lagged generators, inversive
generators, and mix generators:
• Linear generators, defined by a linear recurrence, are

the most commonly analyzed and utilized generators. The
main linear generators are LCGs and MLCG.

• Lagged generators have a general recursive formula that
use various previously computed terms in the determina-
tion of the new sequence value.

• Inversive congruential generators form a recent class of
generators that are based on the principle of congruential
inversion.

• Mixed generators result from the need for sequences of
better and better quality, or at least longer periods. This
has led to mix different types of PRNGs, as follows:
xi = yi ⊕ zi

For instance, inversive generators are very interesting for
verifying simulation results obtained with a linear congru-
ential generator (LCG), because their internal structure and
correlation behavior strongly differs from what LCGs pro-
duce. Since these generators have revealed several issues,
some scientists refrain from using them. In what follows,
chaotic properties will be added to these PRNGs, leading to
noticeable improvements observed by statistical test. Let us
firstly explain with more details the generators studied in this
research work (for a synthetic view, see Fig. 1).

B. Details of some Existing Generators

Here are the modules of PRNGs we have chosen to
experiment.

1) LCG: This PRNG implements either the simple or the
combined linear congruency generator (LCGs). The simple
LCG is defined by the recurrence:

xn = (axn−1 + c) mod m (4)

where a, c, and x0 must be, among other things, non-negative
and less than m [19]. In what follows, 2LCGs and 3LCGs
refer as two (resp. three) combinations of such LCGs. For
further details, see [14].

2) MRG: This module implements multiple recursive gen-
erators (MRGs), based on a linear recurrence of order k,
modulo m [19]:

xn = (a1xn−1 + ... + ak xn−k) mod m (5)

Combination of two MRGs (referred as 2MRGs) is also be
used in this paper.

3) UCARRY: Generators based on linear recurrences with
carry are implemented in this module. This includes the add-
with-carry (AWC) generator, based on the recurrence:

xn = (xn−r + xn−s + cn−1) mod m,
cn = (xn−r + xn−s + cn−1)/m, (6)

the SWB generator, having the recurrence:

xn = (xn−r − xn−s − cn−1) mod m,

cn =

{
1 if (xi−r − xi−s − ci−1) < 0
0 else,

(7)

and the SWC generator designed by R. Couture, which is
based on the following recurrence:

xn = (a1xn−1 ⊕ ... ⊕ ar xn−r ⊕ cn−1) mod 2w,
cn = (a1xn−1 ⊕ ... ⊕ ar xn−r ⊕ cn−1) / 2w.

(8)

4) GFSR: This module implements the generalized feed-
back shift register (GFSR) generator, that is:

xn = xn−r ⊕ xn−k (9)

5) INV: Finally, this module implements the nonlinear
inversive generator, as defined in [19], which is:

xn =

{
(a1 + a2/zn−1) mod m if zn−1 , 0
a1 if zn−1 = 0. (10)

IV. STATISTICAL TESTS

Considering the properties of binary random sequences,
various statistical tests can be designed to evaluate the as-
sertion that the sequence is generated by a perfectly random
source. We have performed some statistical tests for the
CIPRNGs proposed here. These tests include NIST suite [18]
and DieHARD battery of tests [15]. For completeness and
for reference, we give in the following subsection a brief
description of each of the aforementioned tests.

A. NIST statistical tests suite

Among the numerous standard tests for pseudo-
randomness, a convincing way to show the randomness
of the produced sequences is to confront them to the
NIST (National Institute of Standards and Technology)
statistical tests, being an up-to-date tests suite proposed by
the Information Technology Laboratory (ITL). A new version
of the Statistical tests suite has been released in August 11,
2010.

The NIST tests suite SP 800-22 is a statistical package
consisting of 15 tests. They were developed to test the
randomness of binary sequences produced by hardware or
software based cryptographic pseudorandom number gener-
ators. These tests focus on a variety of different types of non-
randomness that could exist in a sequence.

For each statistical test, a set of P− values (corresponding
to the set of sequences) is produced. The interpretation of em-
pirical results can be conducted in various ways. In this paper,



the examination of the distribution of P-values to check for
uniformity (P−valueT ) is used. The distribution of P−values
is examined to ensure uniformity. If P−valueT > 0.0001, then
the sequences can be considered to be uniformly distributed.

In our experiments, 100 sequences (s = 100), each with
1,000,000-bit long, are generated and tested. If the P−valueT

of any test is smaller than 0.0001, the sequences are consid-
ered to be not good enough and the generating algorithm is
not suitable for usage.

B. DieHARD battery of tests

The DieHARD battery of tests has been the most sophis-
ticated standard for over a decade. Because of the stringent
requirements in the DieHARD tests suite, a generator passing
this battery of tests can be considered good as a rule of thumb.

The DieHARD battery of tests consists of 18 different
independent statistical tests. This collection of tests is based
on assessing the randomness of bits comprising 32-bit integers
obtained from a random number generator. Each test requires
223 32-bit integers in order to run the full set of tests. Most
of the tests in DieHARD return a P− value, which should be
uniform on [0, 1) if the input file contains truly independent
random bits. These P − values are obtained by P = F(X),
where F is the assumed distribution of the sample random
variable X (often normal). But that assumed F is just an
asymptotic approximation, for which the fit will be worst in
the tails. Thus occasional P − values near 0 or 1, such as
0.0012 or 0.9983, can occur. An individual test is considered
to be failed if the P−value approaches 1 closely, for example
P > 0.9999.

V. RESULTS AND DISCUSSION

Table I shows the results on the batteries recalled above,
indicating that almost all the PRNGs cannot pass all their
tests. In other words, the statistical quality of these PRNGs
cannot fulfill the up-to-date standards presented previously.
We will show that the CIPRNG can solve this issue.

To illustrate the effects of this CIPRNG in detail, experi-
ments will be divided in three parts:

1) Single CIPRNG: The PRNGs involved in CI computing
are of the same category.

2) Mixed CIPRNG: Two different types of PRNGs are
mixed during the chaotic iterations process.

3) Multiple CIPRNG: The generator is obtained by re-
peating the composition of the iteration function as
follows: x0 ∈ BN, and ∀n ∈ N∗,∀i ∈ ~1; N�,

xn
i =

{
xn−1

i if S n , i
∀ j ∈ ~1; m�, f m(xn−1)S nm+ j if S nm+ j = i.

(11)
m is called the functional power.

We have performed statistical analysis of each of the afore-
mentioned CIPRNGs. The results are reproduced in Tables I
and II. The scores written in boldface indicate that all the
tests have been passed successfully, whereas an asterisk “*”
means that the considered passing rate has been improved.

A. Tests based on the Single CIPRNG

The statistical tests results of the PRNGs using the single
CIPRNG method are given in Table II. We can observe that,
except for the Xor CIPRNG, all of the CIPRNGs have passed
the 15 tests of the NIST battery and the 18 tests of the

DieHARD one. Moreover, considering these scores, we can
deduce that both the single Old CIPRNG and the single New
CIPRNG are relatively steadier than the single Xor CIPRNG
approach, when applying them to different PRNGs. However,
the Xor CIPRNG is obviously the fastest approach to generate
a CI random sequence, and it still improves the statistical
properties relative to each generator taken alone, although the
test values are not as good as desired.

Therefore, all of these three ways are interesting, for differ-
ent reasons, in the production of pseudorandom numbers and,
on the whole, the single CIPRNG method can be considered
to adapt to or improve all kinds of PRNGs.

To have a realization of the Xor CIPRNG that can pass all
the tests embedded into the NIST battery, the Xor CIPRNG
with multiple functional powers are investigated in Sec-
tion V-C.

B. Tests based on the Mixed CIPRNG

To compare the previous approach with the CIPRNG design
that uses a Mixed CIPRNG, we have taken into account the
same inputted generators than in the previous section. These
inputted couples (PRNG1, PRNG2) of PRNGs are used in the
Mixed approach as follows:{

x0 ∈ ~0, 2N − 1�, S ∈ ~0, 2N − 1�N

∀n ∈ N∗, xn = xn−1 ⊕ PRNG1 ⊕ PRNG2,
(12)

With this Mixed CIPRNG approach, both the Old CIPRNG
and New CIPRNG continue to pass all the NIST and
DieHARD suites. In addition, we can see that the PRNGs
using a Xor CIPRNG approach can pass more tests than
previously. The main reason of this success is that the Mixed
Xor CIPRNG has a longer period. Indeed, let nP be the period
of a PRNG P, then the period deduced from the single Xor
CIPRNG approach is obviously equal to:

nS XORCI =

{
nP if x0 = xnP

2nP if x0 , xnP .
(13)

Let us now denote by nP1 and nP2 the periods of respec-
tively the PRNG1 and PRNG2 generators, then the period of
the Mixed Xor CIPRNG will be:

nXXORCI =

{
LCM(nP1, nP2) if x0 = xLCM(nP1,nP2)

2LCM(nP1, nP2) if x0 , xLCM(nP1,nP2).
(14)

In Table III, we only show the results for the Mixed
CIPRNGs that cannot pass all DieHARD suites (the NIST
tests are all passed). It demonstrates that Mixed Xor CIPRNG
involving LCG, MRG, LCG2, LCG3, MRG2, or INV can-
not pass the two following tests, namely the “Matrix Rank
32x32” and the “COUNT-THE-1’s” tests contained into the
DieHARD battery. Let us recall their definitions:
• Matrix Rank 32x32. A random 32x32 binary matrix is

formed, each row having a 32-bit random vector. Its rank
is an integer that ranges from 0 to 32. Ranks less than 29
must be rare, and their occurences must be pooled with
those of rank 29. To achieve the test, ranks of 40,000
such random matrices are obtained, and a chisquare test
is performed on counts for ranks 32,31,30 and for ranks
≤ 29.

• COUNT-THE-1’s TEST Consider the file under test
as a stream of bytes (four per 2 bit integer). Each
byte can contain from 0 to 8 1’s, with probabilities



Table I: NIST and DieHARD tests suite passing rates for PRNGs without CI

Types of PRNGs Linear PRNGs Lagged PRNGs ICG PRNGs Mixed PRNGs
XXXXXXXXTests

PRNG LCG MRG AWC SWB SWC GFSR INV LCG2 LCG3 MRG2

NIST 11/15 14/15 15/15 15/15 14/15 14/15 14/15 14/15 14/15 14/15

DieHARD 16/18 16/18 15/18 16/18 18/18 16/18 16/18 16/18 16/18 16/18

Table II: NIST and DieHARD tests suite passing rates for PRNGs with CI

Types of PRNGs Linear PRNGs Lagged PRNGs ICG PRNGs Mixed PRNGs
hhhhhhhhhhhTests

S ingle CIPRNG LCG MRG AWC SWB SWC GFSR INV LCG2 LCG3 MRG2

Old CIPRNG

NIST 15/15 * 15/15 * 15/15 15/15 15/15 * 15/15 * 15/15 * 15/15 * 15/15 * 15/15
DieHARD 18/18 * 18/18 * 18/18 * 18/18 * 18/18 18/18 * 18/18 * 18/18 * 18/18 * 18/18 *

New CIPRNG

NIST 15/15 * 15/15 * 15/15 15/15 15/15 * 15/15 * 15/15 * 15/15 * 15/15 * 15/15
DieHARD 18/18 * 18/18 * 18/18 * 18/18 * 18/18 18/18 * 18/18 * 18/18 * 18/18 * 18/18 *

Xor CIPRNG

NIST 14/15* 15/15 * 15/15 15/15 14/15 15/15 * 14/15 15/15 * 15/15 * 15/15
DieHARD 16/18 16/18 17/18* 18/18 * 18/18 18/18 * 16/18 16/18 16/18 16/18

1,8,28,56,70,56,28,8,1 over 256. Now let the stream of
bytes provide a string of overlapping 5-letter words,
each “letter” taking values A,B,C,D,E. The letters are
determined by the number of 1’s in a byte: 0,1, or 2 yield
A, 3 yields B, 4 yields C, 5 yields D and 6,7, or 8 yield E.
Thus we have a monkey at a typewriter hitting five keys
with various probabilities (37,56,70,56,37 over 256).
There are 55 possible 5-letter words, and from a string of
256,000 (over-lapping) 5-letter words, counts are made
on the frequencies for each word. The quadratic form
in the weak inverse of the covariance matrix of the cell
counts provides a chisquare test: Q5-Q4, the difference
of the naive Pearson sums of (OBS − EXP)2/EXP on
counts for 5- and 4-letter cell counts.

The reason of these fails is that the output of LCG, LCG2,
LCG3, MRG, and MRG2 under the experiments are in 31-
bit. Compare with the Single CIPRNG, using different PRNGs
to build CIPRNG seems more efficient in improving random
number quality (mixed Xor CI can 100% pass NIST, but
single cannot).

C. Tests based on the Multiple CIPRNG

Until now, the combination of at most two input PRNGs
has been investigated. We now regard the possibility to use
a larger number of generators to improve the statistics of
the generated pseudorandom numbers, leading to the multiple
functional power approach. For the CIPRNGs which have
already pass both the NIST and DieHARD suites with 2
inputted PRNGs (all the Old and New CIPRNGs, and some
of the Xor CIPRNGs), it is not meaningful to consider their
adaption of this multiple CIPRNG method, hence only the
Multiple Xor CIPRNGs, having the following form, will be
investigated.{

x0 ∈ ~0, 2N − 1�, S ∈ ~0, 2N − 1�N

∀n ∈ N∗, xn = xn−1 ⊕ S nm ⊕ S nm+1 . . . ⊕ S nm+m−1,
(15)

The question is now to determine the value of the threshold
m (the functional power) making the multiple CIPRNG being

able to pass the whole NIST battery. Such a question is
answered in Table IV.

D. Results Summary

We can summarize the obtained results as follows.
1) The CIPRNG method is able to improve the statistical

properties of a large variety of PRNGs.
2) Using different PRNGs in the CIPRNG approach is

better than considering several instances of one unique
PRNG.

3) The statistical quality of the outputs increases with the
functional power m.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first have formalized the CI methods
that has been already presented in previous Internet con-
ferences. These CI methods are based on iterations that
have been topologically proven as chaotic. Then 10 usual
PRNGs covering all kinds of generators have been applied,
and the NIST and DieHARD batteries have been tested.
Analyses show that PRNGs using the CIPRNG methods do
not only inherit the chaotic properties of the CI iterations,
they also have improvements of their statistics. This is why
CIPRNG techniques should be considered as post-treatments
on pseudorandom number generators to improve both their
randomness and security.

In future work, we will try to enlarge this study, by consid-
ering a larger variety of tests. The CIPRNG’s chaotic behavior
will be deepened by using some specific tools provided by
the mathematical theory of chaos. Finally, a large variety
of Internet usages, as cryptography and data hiding, will be
considered for applications.
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