
Speci�cation and Validation of Algorithms

Generating Planar Lehman Words

Alain Giorgetti

Inria, Villers-lès-Nancy, F-54600, France, CASSIS project

University of Franche-Comté, FEMTO-ST, UMR 6174, Besançon, F-25030, France

alain.giorgetti@femto-st.fr

Valerio Senni

Department of Computer Science, Systems, and Production

University of Rome Tor Vergata

Via del Politecnico 1, 00133 Roma, Italia

senni@disp.uniroma2.it

Abstract

This paper presents speci�cations and implementations of algorithms for the generation of planar
Lehman words (that is, A. B. Lehman's code for rooted planar maps), together with their validation.
The focus is on computer assistance for the task of validation of an implementation with respect to
a di�erent implementation or a formal speci�cation. The paper also provides some combinatorial
results that are, to our knowledge, new.

1 Introduction

Software quality is higher when the software results from a design method, rather than from program-and-
debug cycles. A good method is to write �rst a formal speci�cation, close to a mathematical description of
what the software should do. The speci�cation is written in a high-level language, in order to be compact,
easy to write and read, and thus to o�er much con�dence about its adequacy to the addressed problem.
The speci�cation is not intended to provide suggestions on how to solve the problem and is often not
executable. If it is executable, it does not target e�ciency. The stepwise re�nement method consists in
transforming the speci�cation into an executable program, while guaranteeing that the program satis�es
the speci�cation. When re�nement cannot be applied, model-checking, testing or proof methods can
be used to check programs against their speci�cation. Our goal is to apply these software engineering
methods to the design of generation algorithms. As speci�cation language we use logic programming,
which is a declarative programming paradigm based on �rst-order logic and automated theorem proving.
Prolog systems such as [3, 7, 9], are implementations of a restricted form of logic programming striving
for performance. Prolog is an e�cient language and is very well suited for algorithm prototyping due to
its closeness to �rst-order logic speci�cation languages.

The paper applies the testing method to the case study of constructive generation of all the Lehman
codes for rooted planar (genus 0) maps, with a prescribed number of symbols, without storing them. We
suggest to call them planar Lehman words. A planar Lehman word (PLW for short) is the shu�e of two
Dyck words on two disjoint alphabets (say {(,)} and {[,]}) containing no subword [(]) composed of two
matching pairs [] and () in the Dyck words, where the four letters in the subword are not necessarily
adjacent in the shu�e. A Dyck word on the alphabet {a, b} is a word generated by the context-free
grammar S → ε | aSbS, where ε is the empty word. Dyck words, or well-parenthesed words, are in
bijection with many combinatorial structures such as binary trees, lattice paths, polygon triangulations,

1

etc. The length of a word is its number of symbols. Since the length of Dyck words, shu�es of Dyck
words and PLWs is always even, we de�ne their size as being half their length, i.e. their number of pairs
of symbols.

In 1983, T. Walsh [11] proposed an algorithm to generate rooted maps of any orientable genus without
storing them. The algorithm proceeds by generating the words proposed by A. B. Lehman to encode
these maps. It can be restricted to the generation of PLWs. Walsh's algorithm constructs a �rst PLW by
concatenation of a Dyck word on parentheses and a Dyck word on brackets. From a generated PLW it
generates the next one, whenever possible, by moving parentheses. The algorithm runs in O(n2) worst-
case time, where n is the number of pairs of symbols. Recently, Walsh [12] proposed an extension and an
improvement of his algorithm, together with an implementation in C.

The present work explores another way to generate PLWs, by generating each word letter by letter,
from left to right, and backtracking as few steps as possible to get one word from the previous one. By
Lehman's encoding, this algorithm can also serve to generate all the planar rooted maps with a prescribed
number of edges. This case study di�ers from the rooted planar subcase of [11, 12] in three ways. First, it
does not address e�ciency in map generation, but only in Lehman word generation. Second, the number
of parenthesis pairs and the number of bracket pairs are not distinguished, for sake of simplicity. Third,
the focus is more on the design and validation methodology than on the resulting algorithm. The present
ongoing work is intended to serve as a methodological guideline for further studies.

The paper is organized as follows. Section 2 proposes a logical speci�cation of PLWs. Section 3
presents a new algorithm to generate PLWs. Section 4 shows its interest for the enumeration of PLWs.
Section 5 presents the validation methodology and its results. Section 6 reports about the time e�ciency
of various generation algorithm implementations. Section 7 contains the conclusion.

2 Speci�cation

We present here �rst-order Prolog speci�cations of the Dyck and PLW languages. We will show that
those speci�cations are indeed executable and can be used as generators for those languages.

Prolog is a declarative programming language based on the logic programming paradigm, where pro-
grams are sets of �rst-order clauses and computation is performed by resolution-based theorem proving.
First, we brie�y recall the logic programming framework; for more details we refer the reader to [4]. In
logic programming notation, a comma denotes a conjunction and the symbol :- denotes the implica-
tion ←. Strings denote variables, if they start with a capital letter, or constants, otherwise. Comments
are started by %. When variables need not be named, they are replaced by _. A Prolog program P is
a �nite set of clauses of the form H :−L1, . . . , Ln. where H is an atom called head and L1,. . . ,Ln is a
conjunction of literals called body. A Prolog program P has a precise denotational semantics (denoted
M(P) and called model), which is given in terms of a (possibly in�nite) set of ground atoms built only
using function and predicate symbols occurring in P (the so-called Herbrand models). These atoms are
said to hold in P and are derivable from P by resolution.

We now de�ne our Prolog-based word generators. For technical reasons, the symbols (,), [and]
are replaced by the characters p, a, b and r, respectively (standing for pa-rentheses and br-ackets).
Words are encoded by Prolog lists, like w= [a,b,p,a,r]. In order to keep track of matching paren-
theses we will associate a number with each parenthesis (its label); so for example a parenthesis p is
represented as p(n), for some n ≥ 0, and similarly for a, b and r. The above list w is indeed of the
form [a(i),b(j),p(k),a(l),r(m)], for some i, j, k, l,m ≥ 0, and its abstract word counterpart α(w) is
abpar. Other encodings of words are possible, but these choices contribute to a cleaner presentation.
The grammars G1 : S → ε | pS aS and G2 : S → ε | bS rS which generate the Dyck languages on {p,a}
and {b,r}, respectively, can be encoded in Prolog as shown in Figure 1 (where clauses are identi�ed by
numbers). In particular, the ground atom dw_pa(w,m,n) is in M({1, 2}) i� the list w is of length 2n ≥ 0,
the parentheses labels start from m and the word α(w) is generated by G1. Similarly for the ground atom
dw_br(w,m,n), considering the model M({3, 4}) and the grammar G2. Note that matching parentheses
take the same integer label and, therefore, there are n distinct labels in a word w satisfying dw_pa(w,m,n)

2

or dw_br(w,m,n). We assume the availability of the following auxiliary predicates: (1) in(x,min,max)
holds i� x belongs to the interval [min..max], (2) x is e holds i� the evaluation of the expression e is
uni�ed with the variable x, and (3) append(u,v,w) holds i� w = u ◦ v, where ◦ denotes the list concate-
nation operator. Note that we parameterize word generation in terms of word length, which is useful for
generation purposes but not strictly required for formal de�nition of the languages.

1. dw_pa([],0,_).

2. dw_pa(W,L,C) :-

in(LU,0,L), LV is L-LU-1,

LV>=0, D is C+1, E is LU+D,

dw_pa(U,LU,D), dw_pa(V,LV,E),

append([p(C)|U],[a(C)|V],W).

3. dw_br([],0,_).

4. dw_br(W,L,C) :-

in(LU,0,L), LV is L-LU-1,

LV>=0, D is C+1, E is LU+D,

dw_br(U,LU,D), dw_br(V,LV,E),

append([b(C)|U],[r(C)|V],W).

5. shuffle([], [], []).

6. shuffle([X|U], [],[X|U]).

7. shuffle([],[X|V],[X|V]).

8. shuffle([H|U],[K|V],[H|W]) :- shuffle(U,[K|V],W).

9. shuffle([H|U],[K|V],[K|W]) :- shuffle([H|U],V,W).

10. dws(W,L) :- in(LU,0,L), LV is L-LU, LV>=0,

dw_pa(U,LU,0), dw_br(V,LV,0), shuffle(U,V,W).

11. canonical(W) :- \+ noncanonical(W).

12. noncanonical(W) :- append(C,[a(M)|_],W), append(B,[r(N)|_],C),

append(A,[p(M)|_],B), append(_,[b(N)|_],A).

13. plw(W,N) :- dws(W,N), canonical(W).

Figure 1: Prolog Speci�cation of Dyck Words on {p,a} and {b,r} of length L, and their Shu�es.

As a second step, we de�ne Dyck word shu�es, which are words obtained by arbitrary interleaving
of a Dyck word on {p, a} and a Dyck word on {b, r}. Shu�es of Prolog lists are easily computed by the
predicate shuffle, de�ned by clauses {5, 6, 7, 8, 9}: a shu�e of two lists is built in an inductive way by
nondeterministically taking the �rst element of the �rst or the second list until either of the two lists is
empty. By clause 10, we de�ne shu�es of Dyck words (of length L) as shu�es of any two (list-represented)
Dyck words U (of length LU) and V (of length LV) respectively on {p,a} and {b,r} (for L = LU+ LV).

For the application we are interested in, nondeterminism is part of the problem. However, we do not
want to generate several times the same solution and this is a form of nondeterminism we would like to
avoid when writing predicates de�nitions. In the case of the predicate shuffle, for example, the �rst
two arguments are assumed to be ground at evaluation time, so we ensure clause heads are instantiated
in an exclusive way, to restrict the nondeterminism (which is unavoidable) only to clauses 8, 9.

In general, a shu�e of two Dyck words encodes a rooted planar map with a distinguished spanning
tree. The property that the word cannot contain the forbidden subword [(]) ensures that the spanning tree
is the one obtained by a depth-�rst search, with the darts incident to each vertex encountered in the cyclic
order representing rotation around that vertex according to the orientation imposed upon the sphere.
This property was called canonicity by Lehman, indicating that the canonical spanning tree is chosen.
The last step amounts to specifying in Prolog the characteristic property of canonicity of planar Lehman
words. A (list-represented) word w is canonical i� there exist no (possibly empty) lists w1,. . . , w5 and
labels n and m such that w can be decomposed into w1◦[b(n)]◦w2◦[p(m)]◦w3◦[r(n)]◦w4◦[a(m)]◦w5.

By using the append predicate and the built-in negation operator \+ of Prolog we can express canonic-
ity as in clauses 11 and 12. Since clauses are universally quanti�ed, those variables that occur in the body
of a clause and not in its head are existentially quanti�ed. Note that, among the existential variables in
the body of clause 12 the unnamed variables _ correspond to the lists w1,. . . ,w5 above, while the variables

3

A, B, C are linking variables. The set of planar Lehman words is de�ned by clause 13 as the set of Dyck
word shu�es of length n that satisfy canonicity.

As we pointed out at the beginning of this section, this declarative speci�cation of planar Lehman
words is indeed executable. Let us now illustrate how the resolution-based proof procedure of Prolog is
used as a computation mechanism. A Prolog system answers to a user query Q = Q1, . . . , Qk against a
program P , where Q1, . . . , Qk is a conjunction of (possibly non-ground) literals. An answer to Q1, . . . , Qk

is a substitution ϑ such that ∀ (Q1, . . . , Qk)ϑ is a logical consequence of P ; so every ground instance of
Qiϑ belongs toM(P). The proof strategy tries, by resolution, to prove (in a left-to-right order) that each
atom in the query holds and, at each resolution step, rewrites the current goal into a new one, according to
proof rules that are expressed by the program clauses. A clause of the form H :−A1, . . . , An. indicates
that (any instance of) the atom H holds if (the corresponding instance of) the goal A1, . . . , An hold.
Resolution proceeds by replacing (an instance of) the atom H with (the corresponding instance of) the
goal A1, . . . , An and producing a substitution ρ. Clauses with empty body contribute to termination
of the proof process, which ends when the current goal becomes empty. A sequence of resolution steps
terminating with an empty goal is called an SLD-refutation, and has an associated substitution ϑ which is
the composition of the substitutions computed by each resolution step. Nondeterminism arises naturally
since, at each step in the proof, many clause heads may be used to enact a resolution step. All possible
answers can be computed by backtracking to choice-points and choosing a di�erent clause for the speci�c
resolution step.

In Prolog, negation is a �rst-class programming concept and it is dealt with by considering only ground
queries (so one has to ensure that an atom under negation has been fully instantiated before its call). In
particular, \+A holds i� A has no SLD-refutation.

We consider the evaluation of the running example of this section: clause 13 entails a generate-and-
test behavior which �rst computes a Dyck word shu�e of length n and then checks for canonicity. By
backtracking, the program generates all PLWs, but this is done by generating each Dyck word shu�e of
the given length and succeeding only for those that satisfy canonicity. Note that, whenever we �x a value
n for the length of the words, both the set of Dyck words and of PLWs is �nite and the generation of all
of the possible answers terminates. This is clearly not an e�cient approach to this problem (see timings
in Table 1 and related discussion in Section 6). However, one can be easily convinced of the correctness
of the algorithm given in Figure 1.

The advantage of having an executable speci�cation is the possibility to validate more sophisticated al-
gorithms by comparison with the speci�cation we have provided. In particular, in Section 3, we introduce
a clever generator for PLWs and we are able to validate it on several instances of the input n.

3 Automata-Based Generation

The language of Dyck words is algebraic. It can be recognized by a pushdown automaton. More precisely,
it can be recognized by a one-counter automaton, in the sense of Minsky [5], i.e. a pushdown automaton
with only one stack symbol. More generally, the language of shu�es of k (k ≥ 1) Dyck words can be
recognized by an automaton with n counters, whose transitions can only increment or decrement non-
negative counters. We propose here an automaton recognizing the language of planar Lehman words, but
with an unbounded number of counters, stored in a stack.

For generation purposes, we focus on deterministic automata. They work as acceptance machines
by reading a word from left to right, letter by letter, until reaching an acceptance state. But these
deterministic automata can also work as generators of the languages they accept, by an exhaustive
exploration of all the paths from their initial to their acceptance states, during which the accepted letters
are concatenated to form a generated word. We call automata-based generation this way of generating
families of words (i.e. languages). Such a generation may be e�cient if the exploration avoids failure as
much as possible. This section presents an automata-based generation of planar Lehman words and its
Prolog implementation.

We �rst explain the reasoning that led us from the de�nition of planar Lehman words (as shu�es of

4

two Dyck words with forbidden subwords) to this algorithm. Shu�es of Dyck words on the two disjoint
alphabets {(,)} and {[,]} can be recognized by an automaton using either a stack of symbols or a counter
for each alphabet. Assuming that the word w is such a shu�e, the negative property that w does not
contain any subword [(]) composed of two matching pairs [] and () in the Dyck words is equivalent to
the following (positive) property, denoted by C in all that follows: �When reading the word w from left
to right, any parenthesis (at height i, opened after the opening of a square bracket [at height j, should
be closed by the next parenthesis) at the same height i, before the nearest closure of the square bracket
by a square bracket] at height j.�

The interest of Property C is that it can be checked during a single pass in the word from left to
right, provided the opening symbols [and (are stacked during this pass. When a closing parenthesis)
is encountered the topmost opening parenthesis (should be removed from this stack. However searching
for this topmost opening parenthesis (in the stack of a pushdown automaton can entail more than one
transition, i.e. there are ε-transitions that read nothing. To avoid this, we replace this stack of symbols
with a stack of natural numbers, as follows.

In the text a stack of symbols is represented by a word whose �rst (leftmost) letter is the stack top.
A stack of natural numbers is represented by a sequence whose leftmost element is again the stack top.
Both are implemented in Prolog by lists in the same order. The reason for this choice will appear clear
in Section 4. For k ≥ 1, the stack of symbols [nk ([nk−1 (. . . [n1 is represented by the stack of natural
numbers nk, nk−1, . . . , n1. In other words, ni is the number of opening square brackets [before the
i-th opening parenthesis (if 1 ≤ i ≤ k − 1, and nk is the number of opening square brackets [after the
(k− 1)-th opening parenthesis (. For instance, the stack of symbols [[[([[([((([[is represented by the stack
of counter 3, 2, 1, 0, 0, 2. The empty stack of symbols is represented by the stack of counters 0.

Figure 2 de�nes two Prolog predicates gl0w that implement the backtracking algorithm explained
above. The ground atom gl0w(w,s,n) is inM({1, . . . , 5}) i� the list w is of length n ≥ 0 and the symbols
in w are closing the pending symbols counted in the stack of natural numbers s, whilst satisfying the
canonicity property. More precisely, clause 2 encodes the automaton transition which pushes a 0 at the
top of the stack I when an opening parenthesis (is recognized. Clause 3 recognizes an opening bracket [
by incrementing the stack top. When the next symbol if a closing bracket] and the stack top is not null,
clause 4 decrements it. Clause 5 speci�es that a closing parenthesis) can only be accepted if there are at
least two numbers in the stack. Then, the �rst two numbers at the top of the stack are replaced by their
sum, to represent that this closing parenthesis matches the nearest opening one. Finally, clause 6 de�nes
a predicate gl0w with two arguments, whose second argument is the number of pairs of symbols.

1. gl0w([], [0],0).

2. gl0w([p|W], I,L) :- L > 0, NewL is L-1, gl0w(W, [0|I],NewL).

3. gl0w([b|W], [N|I],L) :- L > 0, NewL is L-1, NewN is N+1, gl0w(W,[NewN|I],NewL).

4. gl0w([r|W], [N|I],L) :- L > 0, N > 0, NewL is L-1, NewN is N-1, gl0w(W,[NewN|I],NewL).

5. gl0w([a|W],[N1,N2|I],L) :- L > 0, NewL is L-1, NewN is N1+N2, gl0w(W,[NewN|I],NewL).

6. gl0w(W,Size) :- T is 2*Size, gl0w(W,[0],T).

Figure 2: Prolog Predicate for the Generation of PLWs With a Stack of Counters

Pro�ling the predicate gl0w shows that many exploration branches fail producing a word. Intuitively
failure happens when the stack counts more pending symbols than authorized to be added to complete a
word. Many of these cases can be pruned from the exploration tree by calling gl0w(w,s,n) only when n

is not smaller than the number of pending symbols, what we call here the control property. The number
of pending symbols can be retrieved from the stack s. It is the sum of the counters in the stack s plus the
stack length minus one. Instead of computing this number several times, it is more e�cient to maintain
the numbers of pending brackets and parentheses in separate counters. We developed another predicate,
named cl0w and shown in Figure 3, which checks the control property before each recursive call. It has
two more parameters than gl0w, respectively counting the numbers of pending brackets and parentheses.

5

1. cl0w([],_,_, [0],0).

2. cl0w([p|W],B,P, I,L) :- L>0, L>=B+P, NL is L-1, NP is P+1,

cl0w(W, B,NP, [0|I],NL).

3. cl0w([b|W],B,P, [C|I],L) :- L>0, L>=B+P, NL is L-1, NC is C+1, NB is B+1,

cl0w(W,NB, P,[NC|I],NL).

4. cl0w([r|W],B,P, [C|I],L) :- L>0, L>=B+P, N>0, NL is L-1, NC is C-1, NB is B-1,

cl0w(W,NB, P,[NC|I],NL).

5. cl0w([a|W],B,P,[C1,C2|I],L) :- L>0, L>=B+P, NL is L-1, NC is C1+C2, NP is P-1,

cl0w(W, B,NP,[NC|I],NL).

6. cl0w(W,Size) :- T is 2*Size, cl0w(W,0,0,[0],T).

Figure 3: Prolog Predicate for the Generation of PLWs, Optimized Using the Control Property

4 Counting

For any non-empty stack s (i.e. sequence) of natural numbers, let n[s],l denote the number of words of
length l which are accepted by the automaton de�ned in Section 3, when starting the recognition from the
state described by the stack s. Recall that the ith element in the stack s from right to left is the length
of the (i− 1)th sequence of pending opening brackets in the word under recognition. With this de�nition
the number of planar Lehman words of size e is n[0],2e. From the generation algorithm in Section 3, we
can derive the following recurrence relation for n[s],l.

Proposition 1. The number n[nk,...,n1],l of planar Lehman words which are the concatenation of some
word whose sequence of pending symbols is [nk (. . . [n1 with some word of length l is de�ned by

n[0],0 = 1, n[s],0 = 0 if s 6= 0, n[f,t],l = n[0,f,t],l−1 + n[f+1,t],l−1 + r[f,t],l−1 + a[f,t],l−1 if l ≥ 1,

with r[0,t],l = 0, r[f,t],l = n[f−1,t],l if f ≥ 1, a[f],l = 0 and a[f1,f2,t],l = n[f1+f2,t],l, where f , f1 and f2 are
natural numbers, t is any (possibly empty) sequence of natural numbers, and s is any non-empty sequence
of natural numbers.

For l, r ≥ 0, let Nl,r be the (ordinary) generating function de�ned by

Nl,r(u1, . . . , ur+1) =
∑
|s|=r+1

n[s],l u
n1
1 . . . u

nr+1

r+1 (1)

where s abbreviates the sequence n1, . . . , nr+1 and |s| denotes its length. By standard techniques in
enumerative combinatorics, the former recurrence relation leads to the following proposition, where δϕ = 1
if ϕ holds, and 0 otherwise.

Proposition 2. For l, r ≥ 0 the generating functions Nl,r(u1, . . . , ur+1) are de�ned by recurrence on l:

N0,0(u1) = 1,

N0,r(u1, . . . , ur+1) = 0 if r ≥ 1 and

Nl,r(u1, . . . , ur+1) = Nl−1,r+1(0, u1, . . . , ur+1)

+ u−11 (Nl−1,r(u1, . . . , ur+1)−Nl−1,r(0, u2, . . . , ur+1))

+ u1 Nl−1,r(u1, . . . , ur+1)

+ δr≥1 (u2 − u1)−1
(
u2 Nl−1,r−1(u2, . . . , ur+1)
−u1 Nl−1,r−1(u1, u3, . . . , ur+1)

)
if l ≥ 1.

We do not provide here a proof of this proposition, but a validation in Section 5 by computation of
the �rst values.

6

The generating function we are interested in is the summation of Nl,r(u1, . . . , ur+1) for any non-
negative values of l and r. Since it would be a generating series with in�nitely many indeterminates ui,
we make them implicit in the following de�nition of the generating function

N(x, t) =
∑
l,r≥0

Nl,r(u1, . . . , ur+1)x
ltr. (2)

Then a notation inspired by explicit substitutions is used to specialize this generating function. In the
following proposition, the expression e|y:=0,∀i≥p.ui:=ti represents the expression e where y is replaced with
0 and each indeterminate ui (for i ≥ p) is simultaneously replaced with the indeterminate ti.

Proposition 3. The generating function N(x, t) is the unique formal power series solution of the equation

N(x, t) = 1 + x

 t−1 (N(x, t)−N(x, 0))|u1:=0,∀i≥2.ui:=ui−1

+ u−11

(
N(x, t)−N(x, t)|u1:=0

)
+ u1 N(x, t)

+ t (u2 − u1)−1
(
u2 N(x, t)|∀i≥1.ui:=ui+1

− u1 N(x, t)|∀i≥2.ui:=ui+1

)
 . (3)

Let L(x) be the formal power series in x whose coe�cient of xn is the number of PLWs of length
n ≥ 0. Then L(x) = N(x, 0) and Proposition 3 de�nes it from the bivariate power series N(x, t). Despite
its similarity with functional equations arising in lattice path theory, Eq. (3) is not obvious to solve. The
question whether it can be solved by the kernel method [1] is open.

Since PLWs of length 2e encode rooted planar maps with e edges, it is already known that L(x) is
quadratic. This fact reduces the interest of solving Eq. (3), which is presented here because it is to our
knowledge a new formula to count PLWs (and rooted planar maps), and a direct consequence of the
generation algorithm in Section 3.

5 Validation

Validating programs against the expected behavior can be a fairly complex and time-consuming task,
which can greatly bene�t of machine support. Most often, complete and formal validation is hard to
obtain, while empirical validation can be su�cient to achieve con�dence in the correct behavior of the
program. Without relying on formal methods or hand proofs, we show how to validate our generation
programs by taking advantage of the Prolog language features.

Validity of the program in Figure 1 (which we denote as speci�cation program S) is straightforward.
On the contrary, validity of the program in Figure 2 (which we denote as linear program L) requires
more involved arguments. To perform validation we adopt the so-called bounded-exhaustive testing
technique [2], in which all the �nitely many inputs up to the given size are used to exercise a program.
The speci�cation program S is used in two ways: (1) as a generator, to enumerate words which must
be accepted by L, and (2) as an acceptor for words generated by L. If, for a given bound n on word
size, each word generated by S is accepted by L and each word generated by L is accepted by S, then
S is proven sound and complete, respectively, up to that bound. It is often su�cient to check for small
instances of the bound on the input domain in order to reveal bugs in programs.

The advantage of adopting the Prolog language is that symmetric bounded-exhaustive testing can be
performed by using a simple query scheme, for a given size s and word generators p and q, as follows:

Q: (p(W,s), \+ q(W,s)) ; (q(W,s), \+ p(W,s))

where ; denotes logic disjunction and \+ denotes negation (as failure). Prolog evaluation mechanism
attempts to satisfy the query Q by instantiating W to a word w of size s such that p(w,s) holds and
q(w,s) does not hold or the converse. If no such word exist then the query fails and the two predicates
are equivalent, for size s. We should point out that, in our application, this search process terminates
since for any given input size the set of generated words is �nite. This is not true for general Prolog
programs.

Another useful query scheme for validation is the following, for a given size s and word generator p:
Q′: p(W,s), write(W), fail.

7

which allows the enumeration of all the generated words. The query forces the construction of a word
w of size s generated by p, its output on a stream, and the failure of the proof mechanism by using the
built-in fail. Since the proof fails, the backtracking mechanism recovers the last choice-point (necessarily
in p) and triggers the generation of a new word, until there are no more choice-points.

In order to measure the time taken for answering a query (such as the time for generating the entire
word set for a given size) it is possible to use the following query scheme:

Q′′: statistics(runtime,[T1,_]), Goal, statistics(runtime,[T2,_]), Time is T2-T1.

where the built-in statistics is used to measure the CPU time before and after Goal execution.
In order to make the validation tasks easier to be performed, we have implemented a validation

library [6] that collects several query schemes that are useful for validation purposes. The library provides
full automation for symmetric bounded-exhaustive comparison for increasing bound values. It returns
counterexamples whenever validation fails (so the debugging process is guided by those counterexamples),
and it collects statistics such as generation time and memory consumption. We used our library to validate
(up to size n = 7) and benchmark our Prolog programs. A package containing all the �les needed to run
the benchmarks plus some instructions can be found in the library repository [6].

T. Walsh [12] uses Lehman's code to generate maps of any orientable genus up to orientation-preserving
isomorphism, and up to a generalized isomorphism that could be orientation-preserving or orientation-
reversing. His algorithm proceeds by rejection from rooted maps. PLW generation is the restriction
of this general algorithm to genus 0 and rooted maps. T. Walsh kindly provided us his C program
implementing his algorithm, named unsensed.c, and authorized us to modify it. We thus specialized
it into a generation algorithm of PLWs named rpm.c. We also translated our predicate cl0w into a C
program named cl0w.c. This C code is available upon request from the authors.

Before comparing the e�ciency of these two C programs in Section 6, we discuss here the preliminary
task of the validation of Prolog programs against C programs. Our choice has been to store the programs'
outputs into �les and to compare these �les as multisets of terms. This is relevant because words may be
generated in a di�erent order and some may be generated several times. Our validation tests, however,
show that words are never repeated. All the programs display the PLWs they generate on the standard
output using the same syntax.1 Then, the validation library provides some functionalities to load �les
contents as Prolog terms and compare them, in a similar way to what is done for Prolog-to-Prolog
comparison. We have used this feature to validate the C programs up to size n = 7.

Another concern is e�ciency of Prolog programs evaluation, which can be comparable neither to
that of math-oriented software nor to that of compiled programming languages such as C. However, in
Section 6, dedicated to the evaluation of program performances, we show that Prolog evaluation is still
manageable for small instances and can be used as a guideline, during algorithm prototyping, for early
error detection.

We have not provided proofs to show how we obtained equations of Propositions 1�3 in Section 4,
concerning numbers and series of PLWs, from the linear program L. Indeed, apart from lack of space
considerations, there is a main drawback on providing such proofs, since the program L itself has not
been formally proved equivalent to the (speci�cation) program S. We decided that direct computation of
su�ciently many �rst numbers of the sequences of interest would have provided more con�dence in those
results. Therefore, we have implemented all the formulas using the Maple computer algebra system and
compared the results with those reported in the A000168 series of the OEIS database [8].

We have validated the recurrence relations in Propositions 1 and 2 up to n = 6, respectively for all
the numbers n[s],2n and all the series N2n,0, by executing their recursive implementation in Maple. For
Proposition 3, we have extended Maple with a couple of functions supporting explicit substitutions that
are lists composed of atomic substitutions y := a and quanti�ed substitutions (∀i ≥ p. ui := ui+b) for
any variables y and any constants a, p and b. Using these functions, Formula 3 has been validated by
truncated expansion in x of N(x, t) up to exponent 12 (i.e. again up to size 6). After specialization of
the result to t = 0 and u1 = 0, we obtain the series 1 + 2x2 + 9x4 + 54x6 + 378x8 + 2916x10 + 24057x12

as expected.

1Some printf statements of the C program written by T. Walsh have been modi�ed for this purpose.

8

6 Performances

We now experimentally compare the e�ciency in time of Prolog and C implementations of various al-
gorithms generating planar Lehman words by increasing size, from size 1 to n for some positive integer
n, without storing them. All the programs are executed with a personal computer running Ubuntu with
Linux kernel 2.6.24, an Intel Core 2 Duo CPU at 2.66 GHz, and 4 Gb of memory. Prolog programs are
executed with SICStus Prolog 3.12.8 [7]. C programs are compiled with GCC 4.4.3.

Generation times are reported (in seconds) in Table 1. Word sizes (numbers of pairs of symbols) are
displayed in Column 1. Column 2 displays the number l0(n) of planar Lehman words of size n generated
by these programs. Columns 3 and 4 respectively show the generation times obtained with the Prolog
speci�cation plw.pl described in Section 2 and its optimization cl0w.pl described in Section 3. Column
4 shows the multiplicative factor between these two times. NS stands for �not signi�cant�. The other
columns compare the C programs rpm.c and cl0w.c. Columns 6 and 7 show their computation times
(in seconds) up to size 10. Column 8 gives the multiplicative factor between these two times.

These results can be interpreted as follows. The speci�cation is many times slower than its stack-
based optimization. The decreasing of the reduction rate between both also justi�es the optimization
e�ort performed in cl0w.pl. However it is worth noticing that the executable Prolog speci�cation already
provides more than 200,000 words in �ve seconds, for a minimal coding e�ort. This can be su�cient for
many applications, in particular to check more intricate algorithms. Our stack-based C program is more
e�cient than Walsh's program, but the comparison is not completely fair, because the program rpm.c

additionally groups the words by number of parenthesis pairs. This subject is beyond the scope of the
present study, but the �rst results are promising.

plw.pl cl0w.pl rpm.c cl0w.c

n l0(n) time (s) time (s) Factor time (s) time (s) Factor
0 1 0 0 NS 0 0 NS
1 2 0 0 NS 0 0 NS
2 9 0 0 NS 0 0 NS
3 54 0 0 NS 0 0 NS
4 378 0 0 NS 0 0 NS
5 2,916 0.03 0.01 0.33 0 0 NS
6 24,057 0.41 0.08 0.19 0 0 NS
7 208,494 5.13 0.65 0.13 0 0 NS
8 1,876,446 68.95 5.99 0.09 0 0 NS
9 17,399,772 923.94 55.20 0.06 9 1 0.11
10 165,297,834 14,254.97 574.33 0.04 95 12 0.13
11 1,602,117,468 too long 5,226.30 - 1005 125 0.12

Table 1: Generation Times with Prolog (.pl) and C (.c) Programs

7 Conclusion

We have shown how to use logic programming and bounded-exhaustive testing to design and validate
algorithms generating a family of combinatorial objects. This case study shows that declarativeness
and the presence of negation and nondeterminism as �rst-class programming concepts make Prolog an
e�ective tool for prototyping and validating generation algorithms. Bounded-exhaustive testing up to
size 6 provides a reasonable con�dence in the program correctness.

A useful mechanism for handling formal languages in Prolog is provided by De�nite Clause Grammars
(DCG), that have been developed to specify context-free grammars but can be easily extended to handle
also more expressive grammars. For the sake of simplicity of presentation, we have deliberately avoided

9

the use of DCGs since they are based on a (more sophisticated) data structure called di�erence-list (DL)
rather than simple lists. Using DLs allows to perform constant-time, rather than linear-time, list append.
It should be noted, however, that this brings an advantage only in the speci�cation program S (at the
cost of a less clear encoding) while it provides no advantage in the linear program L.

This is still ongoing work, with numerous perspectives. Our priority will be to provide either more
computer assistance in the derivation of fast algorithms from their speci�cations, or formal proofs of
their equivalence. Another direction will be to apply the same methodology to other families of Lehman
words, i.e. revisit parts of [10] from the viewpoint of software engineering and formal methods. For planar
Lehman words, we have many ideas for more e�cient generation algorithms than the �rst two proposed
here. We also have a framework ready to validate them.

On the combinatorial side, it is worth noting that planar Lehman words also have an interpretation
as lattice paths. They are restrictions of the interpretation of shu�es of two Dyck words as excursions
in the bi-dimensional �rst quarter plane. The step-by-step construction of these paths would lead to
the same generation algorithm and counting formulas as proposed here. We found the interpretation as
words with forbidden subwords more intuitive.

8 Acknowledgment

We would like to thank Prof. T. R. S. Walsh who carefully read a preliminary version of the present text
and made many useful comments and suggestions. We also acknowledge the anonymous referees for their
constructive comments.

References

[1] Cyril Banderier and Philippe Flajolet. Basic analytic combinatorics of directed lattice paths. Theor.
Comput. Sci., 281(1-2):37�80, 2002.

[2] David Coppit, Jinlin Yang, Sarfraz Khurshid, Wei Le, and Kevin J. Sullivan. Software assurance by
bounded exhaustive testing. IEEE Trans. Software Eng., 31(4):328�339, 2005.

[3] GNU. Prolog. http://www.gprolog.org/.

[4] John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.

[5] Marvin L. Minsky. Computation: �nite and in�nite machines. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1967.

[6] Valerio Senni. Validation library. https://subversion.assembla.com/svn/validation/.

[7] SICStus. Prolog. http://www.sics.se/sicstus/.

[8] Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, 2012. Sequence A000168,
published electronically at http://oeis.org/A000168.

[9] SWI. Prolog. http://www.swi-prolog.org/.

[10] Timothy R. S. Walsh. Combinatorial enumeration of non-planar maps. PhD thesis, University of
Toronto, 1971.

[11] Timothy R. S. Walsh. Generating nonisomorphic maps without storing them. SIAM J. Alg. Disc.
Meth., 4:161�178, 1983.

[12] Timothy R. S. Walsh. Generating nonisomorphic maps and hypermaps without storing them. Com-
munication at GASCom'12, 2012.

10

