
Optimal Energy Consumption and Throughput for Workflow Applications on
Distributed Architectures

Abdallah Ben Othman, Jean-Marc Nicod, Laurent Philippe and Veronika Rehn-Sonigo
FEMTO-ST Institute, CNRS / UFC / ENSMM / UTBM, Besançon, France

Abdallah.Benothman,Jean-Marc.Nicod,Laurent.Philippe,Veronika.Sonigo]@femto-st.fr

Abstract—In this paper we study both the throughput and
the energy optimization problem for a distributed system
subject to failures that executes a workflow at different speed
levels. The application is modeled as a directed acyclic graph
composed of typed tasks linked by dependency constraints. A
continuous flow, or a great number of application instances
has to be processed optimizing the collaborative system
performance which implies to increase the throughput – the
number of application instances processed by time unit – or
to decrease the period – the time needed to output one in-
stance of the system. The system is designed as a collaborative
platform of distributed machines. Each machine collaborates
with others by performing all the instances of at least one
task of the DAG. The problem we tackle is to optimize the
configuration of the platform. In this article we propose two
polynomial algorithms that optimize the two objectives of
period (i.e., throughput) and energy minimization and we
prove that the proposed algorithms give optimal results. Our
optimization approach is hierarchic in the sens that we either
minimize the energy consumption for an optimal period or
minimize the period for the optimal energy consumption.

Keywords-Scheduling, workflow applications, energy mini-
mization, fault tolerance, throughput, polynomial complexity

I. INTRODUCTION

In this paper we focus on workflow applications de-
scribed as Directed Acyclic Graphs (DAGs). An applica-
tion is mapped on a set of distributed machines and a
flow of instances has to be processed. This is the case of
systems that continuously input raw data to which several
processing stages or tasks must be applied to obtain a
final result [1] or configurable production systems [2],
[3]. Illustrations of these contexts are a flow of images
generated by cameras that must be processed in several
stages or a production flow with several succeeding tasks.
The considered tasks are of different types that represent
the different processing procedures (e.g., filters, analysis,
assembly and so on). When the data processing in the
application is substantial several computers or production
cells must be used to be able to process the whole input
flow and the problem of scheduling the tasks on the
resources becomes complex due to the heterogeneity of
the processing times on the resources [4]. The complexity
of the problem may be lowered by considering that each
machine only executes one task type thus avoiding costly
context changes and cases where a machine executes parts
of several tasks [5]. Then the initial problem becomes a
mapping problem where task types must be mapped onto
machines and the objective function is to find the best
possible throughput, i.e., to maximize the number of in-
stances processed per time unit [6]. Note that the objective

function used in this paper is period minimization, the
inverse of the throughput, which amounts to the same but
is more widely used in workflow system optimization.

In this article we tackle the problem of using a dedicated
system that continuously executes the same DAG of tasks
on different instances with transient failures that some-
times destroy one instance. In this context the objective
is to provide the lowest period for the system output. The
paper is organized as follows: Section II discusses some
related work. In Section III we give a formal definition of
the problem. In section IV we present and prove several
lemmas that are used in section V to define the proposed
algorithms. We conclude the article in section VI.

II. RELATED WORK

Nowadays more and more attention is being payed
to energy consumption for financial and environmental
reasons. This tendency has also reached the distributed
computing domain [7]–[9]. In the case of flow applications
where the global throughput is directed by the lower
throughput of the graph, it is not always necessary that all
machines run at maximum speed [10]. Several papers de-
fine an energy model based on power consumption modes
where the processing capabilities depend on the supplied
voltage [11], [12]. Then voltage scaling is used to slow
down some of the machines – and as a consequence energy
spared – without affecting the global throughput [13]. It
is thus worth to find the lowest possible speed for each
machine for a given throughput or, on the opposite, the
best throughput reachable for a given energy consumption.

On the other hand in distributed environments such as
GRIDs or micro-factories, the risk of task failures cannot
be ignored, in particular for long running and commu-
nication intense applications as flow applications. The
failures may append for numerous reasons as network or
computing errors, network contention, task complexity and
so on. Numerous works on reliability and energy focus on
the problem of Dynamic Voltage and Frequency Scaling
that leads to more errors when the frequency is scaled
down [14]. Defining a global error model for all distributed
systems is however not conceivable as they are composed
of so much elements each with their own failure model.
Indeed, increasing the speed of computation or processing
can also lead to more contention in buses or networks
and less reliable tasks. It can thus affect the reliability
of the system. In this paper, we assume that optimizing
the energy consumption of the system by decreasing its
speed leads to decrease the fault rate in addition to period

minimization. We propose two algorithms that minimize
either the energy consumption for an optimal period or
find the lowest period for a minimal energy consumption.

III. FRAMEWORK

In this section we formally define the application, plat-
form and energy models and our optimization objective.

A. Application Model

We consider a workflow application that is running
during infinite or long time. The application is modeled
as a directed acyclic graph (DAG) G(T,D), with T =
{T1, . . . , Tn} the tasks of the application and D ⊂ T ×T
the dependencies between the tasks (see Figure 1). So a
data set enters the graph at the source task and traverses
the graph from one task to another before producing a
final result at the sink task. A weight wi is associated to
each task Ti.

61

2

3

4

5

Figure 1. Illustrating task graph

B. Platform and Execution Model

The platform is modeled as a set M = {M1, . . . ,Mp}
of p machines fully interconnected. Each machine has
input and output communication buffers to store temporary
data. We assume that the communication times are shorter
than the computation times so that, thank to the data
buffering, the former are covered by computations and
thus can be neglected.

The tasks are statically allocated to the machines ac-
cording to an allocation function a such that a(i) = u,
i.e., all data instances that enter task Ti are performed by
machine Mu. Note that in this work we assume that the
mapping is already defined thanks to mapping algorithms
as defined in [6] and we concentrate on period and energy
optimization on a given mapping.

A machine Mu can run at different speed levels lu
(lu ∈ {0, 1, 2, . . . ,max(lu)}) with an associated slow
down factor αluu ∈ [1,+∞). Note that Mu runs at its
highest speed, noted su, for level lu = 0. The system con-
figuration L is given by vector L = (l1, l2, . . . , lu, . . . , lp)
that describes the speed level of each machine.

Tasks are subject to transient failures. In case of failure,
the current data is lost and the task starts to process
the next data. The failure rate is defined for each task
as the percentage of failures. For a task Ti, allocated to
machine Mu, we assume that the failure rate f lui depends
on the task and on the machine speed level lu. We also
assume that the failure rate increases with the machine
speed: f luu < f

l′u
u if lu > l′u. It comes that if machine

Mu performs xlui input data sets with task Ti, it outputs
(1− f lui)xlui data sets due to the failures. Considering L,
the configuration of the platform, it is possible to compute

f l4
4 = 2

6

xl2
2 = 3 xl4

4 = 1, 5 xout = 1

1 2 3 4

f l3
3 = 3

8
f l2
2 = 1

5
f l1
1 = 1

6

xl1
1 = 3, 6 xl3

3 = 2, 4

Figure 2. Example for the backward computation of the necessary
amount of data sets for each task in a linear application, taking into
account the failure rates.

f l4
4 = 2

6

xout = 1

1

xl1
1 = 4, 8

3 4

f l3
3 = 3

8
f l1
1 = 1

6
f
l′2
2 = 2

5

2

x
l′2
2 = 4 xl3

3 = 2, 4 xl4
4 = 1, 5

Figure 3. The acceleration of machine M2 implies a higher number of
input data sets at the application entry.

xlui backwards for each data output of the application. If
task Ti has only one outgoing edge (Ti, Tj) within the

DAG, xlui =
xlu
j

1−f lu
i

(see Figure 2 for an example). If
the task Ti has several outgoing edges (Ti, Tj) within the

DAG, xlui =
∑

(Ti,Tj)∈D
xlu
j

1−f lu
i

. Thus xlui is the average
number of data sets that machine Mu has to perform with
task Ti so as to output at least one result data set out of
the system.

C. Example of the Platform and Execution Model

To clarify the above stated platform and execution
model, we consider the application in Figure 2. To keep
the example simple, we suppose that task Ti is mapped
onto machine Mi and each machine runs at is lowest speed
level. Hence task T1 is mapped onto machine M1 which is
running at a level l1. The failure rate of task T1 accordingly
depends on l1 and we have f l11 = 1/6. For the other tasks
holds the same.

We suppose to have the failure rates indicated in Fig-
ure 2. We can now compute the necessary amount of
data sets that each task needs as input to be able to
produce at least one result (xout = 1). As indicated
earlier, the computation is done backwards and we get
xl44 = 1

1−f l4
4

xout = 1, 5.
We now suppose that machine M2 has two possible

speed levels l2 and l′2, where l′2 is the accelerated level
(l′2 < l2). The associated failure rate for level l′2 is f l

′
2

2 =
2/5. If machine M2 switches to level l′2, the xlui values
have to be recomputed in consequence and you can see
the new configuration in Figure 3.

D. Throughput/Period Model

We define the platform throughput as the the number
of data outputs per time unit. We define the period of
the platform as the inverse of the throughput: the period
defines the maximum duration between the output of two
consecutive data outputs. As we already know both the
number of tasks that have to be performed to output at least
one data set and the mapping of tasks to machines, we can
compute the period of each machine of the platform. The
task period plui is the time to perform xlui instances of each
task Ti mapped onto machine Mu: plui = xlui ×

wi×αlu
u

su
.

Then the machine period pluu on Mu is:

pluu =
∑
Ti|a(i)=u p

lu
i =

∑
Ti|a(i)=u x

lu
i ×

wi×αlu
u

su
The application period on the platform is the longest

period over all machines in configuration L:
P (L) = maxMu∈M (pluu)

We define the critical machine Mc as the machine with
the longest period that determines the application period,
i.e., P (L) = plcc . We denote Mc(L) one critical machine
of the configuration L.

E. Energy Model

The energy consumption E(L) of the platform in con-
figuration L is the sum of the energy consumption EL(u)
of each machine Mu that performs at least one task of
the graph. The energy EL(u) = ELstat(u) + ELdyn(u) is
the sum of ELstat(u), the static part of energy consumed
when machine Mu is in service, and ELdyn(u), the dynamic
part of energy consumed when the machine performs its
tasks [9].
ELstat(u) only depends on the duration of the platform

usage. So the static energy needed to output one data out of
the system is ELstat(u) = εu×P (L) where εu is the static
energy consumption per time unit, P (L) is the period of
the application (or the duration between two consecutive
outputs) and L is the configuration of the system.

On the other hand, the dynamic part of the energy
depends on the machine speed when it performs a task.
Considering one task Ti, the dynamic part of the energy
consumption is about sβi where βi > 1 an arbitrary
rational number [15]. We introduce the following positive
constants λi and Ci to guarantee the dimensional homo-
geneity of the equation 1. The dynamic energy consumed
during one period by the machine Mu is the sum the
energy consumed to perform all the tasks needed for that
period:

ELdyn(u) =
∑

Ti|u=a(i)

(
λi

(
Ci × su
αluu

)βi

× plui
)

(1)

F. Optimization Objectives

In this paper, we are interested in two objectives. First,
we aim at minimizing the period and minimizing the
energy consumption for the optimal period. Second, we
optimize the energy consumption of our platform while
minimizing the period for the optimal energy consump-
tion.

IV. SYSTEM PROPERTIES

In this section we state some important properties for
the changing of the system configuration L and we first
exhibit the relation between two system configurations L
and L′. The period of a machine Mu in system configura-
tion L′ can be expressed through the task periods in system
configuration L. Based on the platform model, we know
that a machine period is the sum of all its task periods,
and we can deduce the following relation:

p
l′u
u =

∑
Ti|a(i)=u

x
l′u
i ·

wiα
l′u
u

su
=

∑
Ti|a(i)=u

x
l′u
i α

l′u
u

xlui α
lu
u

· plui (2)

We now consider the influence of slowing down or accel-
erating machines or groups of machines.

Lemma 1: When a group of machines is accelerated,
the amount of work to output one data set increases.

Proof: Let L and L′ be two system configurations
with l′u ≤ lu for each machine Mu ∈M , i.e., L′ has some
accelerated machines in comparison to configuration L.
We aim at proving that ∀Ti ∈ T, xlui ≤ x

l′u
i with a(i) = u.

That means the amount of input data sets for task Ti is
more important in configuration L′.

Let Mu ∈ M be an accelerated machine whose
configuration is set to l′u. As l′u < lu, by definition
of our model, f lui < f

l′u
i for all tasks Ti ∈ T with

a(i) = u and so
1

1− f lui
<

1

1− f l
′
u
i

. From the definition

of the computation of xlui , the previous expression implies
that the value of xl

′u
i increases on Mu. Moreover since

these values are computed backwards (Cf. Figure 2 in
Section III-C), this incrementation recursively modifies the
xlvj by following backwards the dependency constraints in
the group of machines. So the global workload of each
machine Mv where a(j) = v increases.

Lemma 2: When a group of machines is accelerated, it
cannot decrease the period of the other machines.

Proof: Let L and L′ be two system configurations
with l′v ≤ lv,∀Mv ∈ M , i.e., L′ has some accelerated
machines compared to L. Let Mu be a machine with lu =

l′u. We aim at proving that pluu ≤ p
l′u
u .

First, with Lemma 1, we know that for all tasks the
amount of work is more important in L′ than in L:
xlui ≤ x

l′u
i ,∀ti ∈ T . Next, we know that if lu = l′u, the ac-

celeration coefficient α is also the same: αluu = α
l′u
u . Hence

we have: ∀ti ∈ T s.t. u = a(i) : αluu x
lu
i ≤ α

l′u
u xl

′u
i and

we get: ∀ti ∈ T s.t. u = a(i) : plui ≤
α

l′u
u xlu

i

αlu
u xlu

i

× plui .
This holds true for all task periods and we can deduce

the machine period by summing up over all task periods of
a machine Mu and with Eq. 2, we prove that the machine
period of Mu is smaller in configuration L than in L′:

pluu =
∑

Ti∈T |a(i)=u
plui ≤

∑
Ti∈T |a(i)=u

α
l′u
u x

l′u
i

αlu
u xlu

i

× plui = p
l′u
u

Corollary 1: The acceleration of another machine than
the critical machine cannot decrease the application pe-
riod.

Proof: Let L and L′ be two system configurations
with l′v ≤ lv,∀Mv ∈ M , i.e., L′ has some accelerated
machines. Let Mc be the critical machine such that
plcc = P (L) and lc = l′c. With Lemma 2, we know that
the machine period of machine Mc is lower (or equal) in
L than in L′: plcc ≤ p

l′c
c . By definition, we deduce that

the period of configuration L is lower than the maximum
period in L′: P (L) ≤ pl

′
c
c = maxMu∈M (p

l′u
u) = P (L′).

Lemma 3: The acceleration of a machine cannot de-
crease the dynamic energy of any machine.

The principle of the proof of this lemma is to compare
two configurations L and L′, L′ with more accelerated

machines. The detailed proof is available in the companion
research report [16].

Lemma 4: If the application period does not decrease,
machine acceleration always increases the energy con-
sumption of the application.

The principle of the proof is the same as Lemma 3.
The detailed proof is available in the companion research
report [16].

V. ALGORITHMS

In this section, we present two algorithms. The first
algorithm OptPer(L) finds a system configuration with
the optimal period and the minimal energy-consumption
for this period. The second one, OptEner(L), finds a
system configuration with the optimal energy-consumption
and the minimal period for this consumption.

A. Algorithm OptPer

The algorithm OptPer(L) (see Algorithm 1) returns
the optimal system configuration resulting from a given
system configuration, i.e., the system configuration with
the optimal period and the minimal energy consumption
for the optimal period. The algorithm starts from an initial
configuration L where each machine is set at its maximal
slow down level. Then, at each step, the algorithm speeds
up the machine Mc(L) by reducing its level lc by one.
The new configuration is noted L̂. If the new system
configuration period P (L̂) is better than the current best
period, it is stored in L as the new best system configu-
ration. Then a new critical machine Mc(L̂) is identified
and the algorithm passes to the next step. Otherwise or
if the slow down level of Mc(L̂) is null (l̂c = 0) the
algorithm finishes. The number of steps needed to finish
this algorithm takes a polynomial time. Indeed, in the
worth case, the algorithm iterates p×LMAX times, with
LMAX = maxu(max(lu)) a constant which does not
depend on the problem size. At each step, the computation
of the necessary amount of the data sets for all of the
tasks takes O(n) operations. So the complexity of the
algorithm 1 is O(p× n).

Algorithm 1: OptPer(L)
Mc ← critical machine of L1

L̂← L2

l̂c = l̂c − 13

M̂c ← critical machine of L̂4

while (l̂c ≥ 0) do5

if
(
P (L̂) < P (L)

)
then6

L← L̂7

Mc ← M̂c8

l̂c = l̂c − 19

M̂c ← critical machine of L̂10

return L11

To prove the optimality of the period returned by this
algorithm we first set Lemma 5 and its corollary 2. For that
we first define A(L) as the set of system configurations

resulting from all possible machine accelerations from the
system configuration L. Let L and L′ be two system
configurations.

∀L,L′ : L′ ∈ A(L)⇔ ∀u : l′u ≤ lu (3)

For example, if L = (2, 1):
A(L) = {(2, 1), (1, 1), (0, 1), (2, 0), (1, 0), (0, 0)}

We recall that Mc(L) is one of the critical machines of
the configuration L, i.e., one of the slowest machines of
the configuration L.

Lemma 5: Let us consider a configuration L and a
subset of system configurations L′ in A(L) where l′c = lc
with Mc a critical machine of the configuration L. Then
the period P (L) is smaller than any period P (L′):

∀L′ ∈ A(L) | lc = l′c ⇒ P (L) ≤ P (L′) (4)

Proof: From the definition of function A(L) in equa-
tion 3 we know that: ∀L′ ∈ A(L)⇒ l′u ≤ lu.

And from Corollary 1 we know that if the critical
machine is not accelerated, the period cannot decrease.
By association we get that for all system configurations
L′ in A(L) with l′c = lc the period of configuration L′ is
higher than the period of the configuration L.

As a consequence of the Lemma 5, only the configu-
rations in A(L) that increase the speed level of a critical
machine Mc(L̂) can provide a better period for the system.
We formalize this property in the following corollary:

Corollary 2: The only configuration that is able to
decrease the period of the system from a configuration
L is to accelerate a critical machine.

Note that speeding up the critical machine by one
level does not always leads to a better period for two
reasons. First because speeding up a critical machine
does not always leads to improve its own period. This
acceleration is however an imposed condition to improve
the application period in some cases. Second because their
may be several critical machines at the same time, i.e.,
machines that have the same period, and we must speed
all of them up before improving the application period.

Theorem 1: OptPer(L) finds the optimal system con-
figuration L∗ with the optimal period in A(L), i.e.:

L∗ = OptPer(L), ∀L′ ∈ A(L)⇒ P (L∗) ≤ P (L′).

Proof: First we note that, based on the definition of
the system period P (L) given in Section III, the order in
which the machines are accelerated to reach a configura-
tion L′ from a configuration L does not impact P (L′).
The period P (L′) only depends on the configuration L′,
so on the (l′1, l

′
2, . . . , l

′
p) values.

Now we consider a sequence of configurations S =
〈L1, L2, . . . , Lk〉 with k = |A(L)| such that L1 = L
is the initial configuration of the algorithm where all
of the machines are set to their lowest speed level and
L2, . . . , Lk ∈ A(L1). The optimal configuration L∗ can
be defined as: L∗ = argminLf∈S(P (Lf)).

Let La and Lb two system configurations such that the
configuration La is obtained by speeding up one machine
from the configuration Lb. From Lemma 5 we know that

having P (La) < P (Lb) implies that the critical machine
Mc(Lb) has necessary been speeded up to obtain La.

As the order in which each machine is accelerated to
reach a given configuration Lf from the initial config-
uration L does not impact the period value P (Lf), we
can reorder the sequence S in a new sequence S′. S′ is
reorganized such that L1 = L is the first configuration of
the sequence and then each configuration Lx is obtained
from configuration Lx−1 by accelerating one of its critical
machines Mc(Lx−1) is placed just after Lx. All other
configurations are placed after. This reordering of the
sequence does not change the optimal value L∗.

Let La be the last configuration of the sequence S′ that
is obtained by accelerating a critical machine. Then:

∀Lb ∈ S′ s.t. b > a⇒ P (La) ≤ P (Lb)
and

La = argmin
Lf∈{La,...,Lk}

(P (Lf)) (5)

Indeed only non critical machines are accelerated after
step a and from Lemma 2 we know that this will not
decrease the system period.

Here 〈L1, . . . , La〉 is the sequence obtained by
OptPer(L) step by step. Thanks to the condition on line 6
in Algorithm 1 , OptPer(L) takes the best configuration
from this sequence. As a consequence:

OptPer(L) = argmin
Lf∈{L1,...,La}

(P (Lf)) (6)

Then, from Equations 5 and 6, we deduce:
OptPer(L) = argminLf∈{L1,...,Lk}(P (Lf)) = L∗

Additionally to the optimal period algorithm
OptPer(L) also finds the configuration that is the
less energy consuming.

Theorem 2: OptPer(L) finds the system configuration
with the minimal energy-consumption E∗ for the optimal
period.

Proof: First we can remark that the static energy
consumption of the machines only depends on the system
configuration period P (L) and thus is the same as long
as the system keeps the same period. This is in particular
true for the optimal period L∗ so that the proof can be
limited to the study of the optimality of dynamic energy
consumption.

Then, as for the period computation, we can note that
the energy consumption definition does not depend on the
order in which the configurations are used to reach a target
configuration. We can arrange the configuration sequence
in any order.

We consider again the sequence S′ of configurations
where the configurations are ordered in such a way that
we accelerate the critical machines first until L∗ and then
we put the other configurations after. As defined within
the proof of the previous theorem, let La be the last
configuration of the sequence S′ that is obtained by accel-
erating a critical machine. So S′ = 〈L1, . . . , La, . . . , Lk〉
with k = |A(L)| and L = L1 the initial configuration
where each machine configuration is set at its maximal

slowdown level. Now each configuration in the sub-
sequence 〈La+1, . . . , Lk〉 is a sub-optimal configuration
so it is not considered in the following as we are just
concerned by configurations which are potentially optimal.
In 〈L1, . . . , L

∗〉 we also have sub-optimal configurations
that are not considered either. So we just have to look at
configurations L′′ in 〈L∗, . . . , La〉 whose period is optimal
(P (L∗) = P (L′′)).

By definition L∗ is the first configuration that reaches
an optimal period in S′. So an other configuration L′′ in
S′ with an optimal period is such that ∀u : l′′u ≤ l∗u. So by
using Lemma 3 we deduce that the energy consumed by
each configuration L′′ with P (L∗) = P (L′′) is at least as
high as the consumption E∗ = E(L∗) ≤ E(L′′) and then
that E(OptPer(L)) = E(L∗) is optimal.

B. Algorithm OptEner

Algorithm 2: OptEner(L)
Mc ← critical machine1

L̂← L2

l̂c ← l̂c − 13

M̂c ← critical machine4

while (l̂c ≥ 0) do5
if ((E(L̂) < E(L)

)
∨
(
(E(L̂) = E(L)) ∧ (P (L̂) ≤ P (L))

)) then6

L← L̂7

Mc ← M̂c8

l̂c ← l̂c − 19

M̂c ← critical machine of L̂10

return L11

From the previous algorithm, it is possible to define
another greedy algorithm, OptEner(L) (see algorithm 2),
based on the same approach that finds a configuration L∗

with an optimal (lowest) energy consumption and with a
minimal period for this energy consumption. Note that
the energy consumption, as defined in the framework
model, is composed of a static part and a dynamic part.
In some cases where the period is too large, the speed
of the machines is thus so low that the static part of
the energy consumption becomes predominant. It is then
possible to increase the speed of the machine while
decreasing the energy consumption. On the other hand,
if we increase too much the speed of the machines,
above the optimal value, the energy starts increasing. So
the OptEner(L) algorithm finds a system configuration
whose energy consumption is optimal. As the speed of the
machines is increased accordingly, OptEner(L) is also
a configuration with the minimal associated period. Note
that this algorithm also works to compute the minimal
energy consumption for a given period. We assume that
the complexity of the algorithm 2 is O(p×n) considering
the same arguments used to compute the complexity of
the algorithm 1.

The algorithm starts from L, the initial configuration
where each machine is set at its lowest speed level. Step
by step, the algorithm looks for configurations where the

energy is decreased compared to the current configuration
or if the energy is not decreased at least the period is.
The algorithm iterates until the critical machine cannot be
accelerated anymore, i.e., when the critical machine has
reached its highest speed level.

To prove the optimality of the algorithm we prove
first that OptEner(L) finds the system configuration
with the optimal energy consumption and then we prove
that OptEner(L) finds the minimal period. Before these
proofs, we set Lemma 6:

Lemma 6: Let L′ be a configuration in A(L) and Mc

be a critical machine of configuration L such that the
slowdown level for Mc is same in L as in L′, then
the energy consumption of L is lower than the energy
consumption of L′:

∀L′ ∈ A(L) : l′c = lc ⇒ E(L) ≤ E(L′)

The proof of this lemma is based upon Corollary 1 and
Lemma 4. The detailed proof is available in the companion
research report [16].

Theorem 3: OptEner(L) finds the system configura-
tion L∗ with the optimal energy consumption E∗ = E(L∗)
in A(L):

L∗ = OptEner(L), ∀L′ ∈ A(L)⇒ E(L∗) ≤ E(L′)

The proof of this theorem is based on Lemma 6 and
obeys to the same principle as Theorem 1. The detailed
proof is available in the companion research report [16].

Theorem 4: OptEner finds the system configuration
with the minimal period for the optimal energy consump-
tion.

The proof involves the construction of a sequence of
configurations as in the proofs of previous theorems. The
detailed proof is available in the companion research
report [16].

VI. CONCLUSION

In this paper we tackle the problem of energy saving in
the case of DAG shaped workflow applications executed
on distributed unreliable platforms. We assume that the
energy consumption and the fault rate decreases when the
machines are slowed down. Given an initial mapping of
the tasks on the machines we propose two algorithms and
prove their optimality. The first algorithm minimizes the
application period and finds the lowest global energy con-
sumption for that period. The second algorithm optimizes
the energy consumption of the system and finds the lowest
period for that energy consumption. As these algorithms
give optimal results there is no need to simulate them and
assess their performance.

In practical systems these two criteria are however
often opposed and reducing one of them usually leads to
increase the other one. So that there is a need to find con-
figurations that balance these criteria and we will consider
as future work the tri-criteria problem with energy, failures
and throughput. We plan to use multicriteria techniques to
find good configurations and to develop heuristics that give
efficient results in practical cases.

REFERENCES

[1] J. Subhlok and G. Vondran, “Optimal mapping of se-
quences of data parallel tasks,” SIGPLAN Not., vol. 30,
pp. 134–143, August 1995.

[2] M. Tanaka, “Development of desktop machining microfac-
tory,” Journal RIKEN Rev, vol. 34, pp. 46–49, April 2001.

[3] E. Descourvières, S. Debricon, D. Gendreau, P. Lutz,
L. Philippe, and F. Bouquet, “Towards automatic control
for microfactories,” in Proceedings of IAIA’2007, 2007.

[4] V. Rehn-Sonigo, “Multi-criteria Mapping and Scheduling
of Workflow Applications onto Heterogeneous Platforms,”
PhD Thesis, ENS LYON, Jul. 2009.

[5] S. Diakité, J.-M. Nicod, L. Philippe, and L. Toch, “Assess-
ing new approaches to schedule a batch of identical intree-
shaped workflows on a heterogeneous platform,” IJPEDS,
vol. 27, no. 1, pp. 79–107, 2012.

[6] A. Benoit, A. Dobrila, J.-M. Nicod, and L. Philippe, “Map-
ping workflow applications with types on heterogeneous
specialized platforms,” Parallel Computing, Special Issue
ISPDC’09, vol. 37, no. 8, pp. 410–427, 2011.

[7] G. Da Costa, J.-P. Gelas, Y. Georgiou, L. Lefevre, A.-
C. Orgerie, J.-M. Pierson, O. Richard, and K. Sharma,
“The green-net framework: Energy efficiency in large scale
distributed systems,” in IPDPS’09. IEEE, 2009, pp. 1–8.

[8] T. Niemi, J. Kommeri, K. Happonen, J. Klem, and A.-P.
Hameri, “Improving energy-efficiency of grid computing
clusters,” in GPC’09. Springer-Verlag, 2009, pp. 110–118.

[9] A. Benoit, P. Renaud-Goud, and Y. Robert, “Performance
and energy optimization of concurrent pipelined applica-
tions,” in IPDPS’10. Atlanta, USA: IEEE, 2010, pp. 1–12.

[10] A. Benoit, P. Renaud-Goud, Y. Robert, and R. Melhem,
“Energy-aware mappings of series-parallel workflows onto
chip multiprocessors,” in ICPP’11. IEEE, 2011, pp. 472–
481.

[11] H. Aydin and Q. Yang, “Energy-aware partitioning for
multiprocessor real-time systems,” in IPDPS’03. IEEE,
2003.

[12] J.-J. Chen, “Multiprocessor energy-efficient scheduling for
real-time tasks with different power characteristics,” in
ICPP’05. Oslo, Norway: IEEE, 2005, pp. 13–20.

[13] A. Benoit, P. Renaud-Goud, and Y. Robert, “Power-aware
replica placement and update strategies in tree networks,”
in IPDPS’11. Anchorage, USA: IEEE, 2011, pp. 2–13.

[14] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and
M. J. Irwin, “Soft errors issues in low-power caches,” IEEE
Trans. on VLSI, vol. 13, pp. 1157–1166, oct 2005.

[15] T. Ishihara and H. Yasuura, “Voltage scheduling problem
for dynamically variable voltage processors,” in Symposium
on Low Power Electronics and Design. IEEE, 1998, pp.
197–202.

[16] A. Ben Othman, J.-M. Nicod, L. Philippe, and V. Rehn-
Sonigo, “Optimal Energy Consumption and Throughput
for Workflow Applications on Distributed Architectures,”
FEMTO-ST, Research Report RR-2012-01, Apr. 2012,
http://hal.archives-ouvertes.fr/hal-00691119.

