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Abstract. In the regular model-checking framework, reachability analysis can be guided by
temporal logic properties, for instance to achieve the counter example guided abstraction
refinement (CEGAR) objectives. A way to perform this analysis is to translate a temporal
logic formula expressed on maximal rewriting words into a “rewrite proposition” – a
propositional formula whose atoms are language comparisons, and then to generate semi-
decision procedures based on (approximations of) the rewrite proposition. This approach
has recently been studied using a non-automatic translation method. The extent to which
such a translation can be systematised needs to be investigated, as well as the applicability of
approximated methods wherever no exact translation can be effected. This paper presents
contributions to that effect: (1) we investigate suitable semantics for LTL on maximal rewriting
words and their influence on the feasibility of a translation, and (2) we propose a general
scheme providing exact results on a fragment of LTL corresponding mainly to safety formulæ,
and approximations on a larger fragment.

1 Introduction & Context

Term rewriting and rewriting logic have been intensively and successfully used for
solving equational problems in automated deduction, for programming language
definitions, for model transformations and generation of efficient interpreters
as well as for specification and verification in software engineering. In this last
context, system states are modelled by languages, while rewrite rules stand for
actions of the system; for instance procedure or method calls. This technique has
been successfully used to prove the security of cryptographic protocols [11] and
Java Bytecode programs [3]. When proving security, reachability analysis over
sets of terms can be guided by temporal logic properties, like e.g., in [7,6].

In [7], three specific Linear Temporal Logic (LTL) formulæ – chosen for their
relevance to model-checking [13], in particular with respect to JavaMIDLets, in
the framework of the French ANR RAVAJ project – have been translated into
what we will call rewrite propositions, with respect to straightforward semantics
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for LTL on finite words. For instance, given a rewrite system R, of which X, Y ⊆ R

are subsets, and an initial language Π, the LTL property �(X⇒ •Y) signifies that
whenever an accessible term is rewritten by some rewrite rule in X, then the
resulting term can be rewritten by some rule in Y, and not by any other rule. As
shown in [7], that property is satisfied if and only if the following rewrite propo-
sition holds: [R \ Y]

(
X (R∗(Π))

)
= ∅ ∧ X (R∗(Π)) ⊆ Y−1(T(A)), where R∗(Π) is

the transitive-reflexive forward closure of Π by R, and T(A) is the set of all trees.
The point of translating satisfaction in terms of rewrite propositions is that they
present a more tractable intermediary form which can itself be translated into
automata-based (semi-)decision procedures. Indeed, if the initial language Π is
regular, then the literature is rife with constructive results concerning questions
such as preservation of regularity under a rewriting step, or under forward
closure; that is to say, “under which conditions on the rewrite system R is R(Π)
(resp. R∗(Π)) still regular?”. And when preserving regularity is not an option, one
may fall back on more expressive classes of tree automata (TA) such as TAGED
[10]. As an example of both aspects, [7, Prop. 5] states that a language given by
R−1(T(A)) can in all generality be represented by a positive TAGED; furthermore,
if R is left-linear, then regularity is preserved. Such results can be combined with
regular approximation techniques; for instance, if A is a tree automaton, a proce-
dure Approx(A,R) in [4] yields another TA B such that Lang(B) ⊇ R∗(Lang(A)),
where Lang(A) is the language accepted by A. Put together, those tools provide
a framework for building decision and semi-decision procedures from rewrite
propositions. For instance, the proposition given above is semi-decided by the
conjunction of the procedures IsEmpty(OneStep(R \ Y, Approx(A,R)), X) and
Subset(OneStep(X, Approx(A,R)), Backward(Y)), where Lang(A) = Π and un-
der the additional constraint that Y must be left-linear. Note that this is almost a
straightforward reformulation of the original rewrite proposition.

To summarise the above, our approach to model-checking temporal properties
of sequences of rewrite rules consists of two phases outlined in [7]: (1) translation
of a temporal logic formula expressed on maximal rewriting words into a “rewrite
proposition” – a propositional formula whose atoms are language comparisons,
and (2) translation of the rewrite proposition into a semi-decision procedure.
To make this approach useful for program verification, both steps must be
automated; neither is at present. The general question investigated in the present
paper is whether – and more specifically how and to what extent – such a
translation can be automated for arbitrary temporal properties. More specifically,
we focus solely on the first step, i.e. translation from temporal logic to rewrite



propositions. The second step is an entirely different problem, and is out of the
scope of this paper.

Related work. In recent years, new results in rewriting logic have deeply
extended the spectrum of its applications [9,17,5,16], especially in relation with
temporal logic for rewriting [14,2]. Unlike [2], where LTL model checking is
performed over finite structures, our approach handles temporal formulæ over
infinite state systems. In this sense, it is close to [9]. However, in spite of its
simplicity for practical applications, it does not permit – in its current state,
at least – to consider equational theories. Our viewpoint differs slightly from
other regular model-checking approaches such as Regular LTL [6] in that the
temporal property relates to sequences of actions as opposed to sequences of
states. It is however very similar to the method presented in [15], when reducing
the equational theory to the identity.

Organisation of the paper. Section 2 presents the notions and notations in use
throughout this paper, including the choice of temporal semantics and a precise
statement of the problem at hand. Section 3[p6] deals with the main contributions
of the paper: the translation rules and the technical tools (signatures, weak/strong
intertwined semantics, etc) on which they depend.

2 Preliminaries & Problem Statement

The extended naturals are denoted by N

/

= N ∪ {+∞} and Jn,mK denotes the
integer interval [n,m] ∩ Z, with the convention that J0,+∞K = N. For any k ∈ N,
Nk

/

= Jk,+∞K and Nk

/

=Nk∪ {+∞}. The powerset of S is written ℘(S). Substitution
is written f[v/X], meaning “v replaces X in the expression f”.

2.1 Rewrite Words & Maximal Rewrite Words

A comprehensive survey on term rewriting can be found in [8]. Let T(A) be the
set of all terms on a ranked alphabet A, let R be a finite rewrite system, and
Π ⊆ T(A) any set of terms. A finite or infinite word on R is an element of

W

/

=
⋃
n∈N

(
J1, nK→ R

)
.

The length #w ∈ N of a word w is defined as Card (domw). Note that the empty
function – of graph ∅×R = ∅ – is a word, which we call the empty word, denoted



by λ. Let w ∈W be a word of domain J1, nK, for n ∈ N, and letm ∈ N1; then the
m-suffix of w is the word denoted by wm, such that

wm

/

=

∣∣∣∣J1, n−m+ 1K−→ R

k 7−→w(k+m− 1)
.

Note that w1 = w, for any word w. The intuitive meaning that we attach to
a word w is a sequence of rewrite rules of R, called in succession – in other
words, it represents a “run” of the TRS R. Of course, there is nothing in the above
definition of words that guarantees that such a sequence is in any way feasible,
and such a notion only makes sense with respect to initial terms to be rewritten.
Thus we now define the maximal rewrite words of R, originating in Π:

RLΠM

/

=

{
w ∈W

∣∣∣∣ ∃u0 ∈ Π : ∃u1, . . . , u#w ∈ T(A) : ∀k ∈ domw,

uk−1
w(k)−−−→ uk ∧ #w ∈ N⇒ R({u#w}) = ∅

}
.

Note the potential presence of the empty word in that set. Informally, a word
w is in RLΠM if and only if the rewrite rules w(1), . . . , w(n), . . . can be activated
in succession, starting from a term u0 ∈ Π, and the word w is “maximal” in the
sense that it cannot be extended. That is to say, w ends only when no further
rewrite rule can be activated. Thus RLΠM captures the behaviours (or runs) of R,
starting from Π; this notion corresponds to the full paths of the rewrite graph
described in [7].

2.2 Defining Temporal Semantics on Rewrite Words

Choice of LTL & Syntax. Before starting to think about translating temporal
logic formulæ on rewrite words, we need to define precisely the kind of temporal
formulæ under consideration, and their semantics. Given that prior work in [7]
was done on LTL, and that our aim is to generalise this work, LTL – with subsets
of R as atomic proposition – seems a reasonable choice. In practice we shall use
a slight variant with generalised weak and strong next operators; the reasons
for this choice will be discussed when the semantics are examined. A formula
ϕ ∈ LTL is generated by the following grammar:

ϕ := X | ¬ϕ | ϕ ∧ϕ | •mϕ | ◦mϕ | ϕUϕ X ∈ ℘(R)

> | ⊥ | ϕ ∨ϕ | ϕ⇒ ϕ | ^ϕ | �ϕ m ∈ N .

Note that the operators which appear on the first line are functionally complete;
the remaining operators are defined syntactically as: >

/

= R ∨ ¬R, ⊥

/

= ¬>,
ϕ ∨ψ

/

= ¬(¬ϕ ∧ ¬ψ), ϕ⇒ ψ

/

= ¬ϕ ∨ψ, ^ϕ

/

=>Uϕ and �ϕ

/

= ¬^¬ϕ.



Choice of Semantics. In the literature, the semantics of LTL are defined and
well-understood for ω-words; however the words of RLΠM may be infinite or
finite, or even empty, which corresponds to the fact that, depending on its
input, a rewrite system may either not terminate, terminate after some rewrite
operations, or terminate immediately. Therefore we need semantics capable of
accommodating both ω-words and finite words, as well as the edge-case of the
empty word. In contrast to the classical case ofω-words, there are several ways
to define (two-valued) semantics for LTL on finite, maximal words. One such
way found in the literature is Finite-LTL (F-LTL) [13], which complements the
long-standing use of a “strong” next operator introduced in [12] by coining a
“weak” next variant. Figure 1[p5] presents our choice of semantics for this paper,

(w, i) |= X iff i ∈ domw and w(i) ∈ X
(w, i) |= ¬ϕ iff (w, i) |=/ ϕ

(w, i) |= (ϕ ∧ψ) iff (w, i) |= ϕ and (w, i) |= ψ

(w, i) |= •mϕ iff i+m ∈ domw and (w, i+m) |= ϕ

(w, i) |= ◦mϕ iff i+m < domw or (w, i+m) |= ϕ

(w, i) |= ϕUψ iff ∃j ∈ domw : j > i ∧

{
(w, j) |= ψ ∧

∀k ∈ Ji, j− 1K , (w, k) |= ϕ
For any w ∈W, i ∈ N1,m ∈ N and X ∈ ℘(R).

Fig. 1: LTL Semantics on Maximal Rewrite Words

which is essentially F-LTL with generalised next operators and the added twist
that words may be infinite or empty. Note that •1 and ◦1 correspond exactly to the
classical strong and weak next operators, and that form > 1, •m (resp. ◦m) can
trivially be obtained by repeating •1 (resp. ◦1)m times. So the only non-trivial
difference here is the existence of •0 and ◦0; this will prove quite convenient
when we deal with the translation of �, using the following lemma.

Lemma 1 (Weak-Next & Always). Let ϕ ∈ LTL, w ∈ W, k ∈ N and i ∈ N1;
it holds that (1) (w, i) |= �ϕ iff (w, i) |=

∧∞
m=0 ◦

mϕ and (2) (w, i) |= �ϕ iff
(w, i) |=

∧k−1
m=0(◦

mϕ) ∧ ◦k �ϕ.

Before moving on, let us stress that the choice of semantics, or even the choice
of LTL for that matter, should by no means be considered as etched in stone; it
is very much a variable of the general problem. However it will henceforth be
considered as data for the purposes of this paper.

TRS & LTL. Let ϕ be an LTL formula. We say that a word w satisfies/is a model
of ϕ (denoted by w |= ϕ) iff (w, 1) |= ϕ. Alternatively, we have (w, i) |= ϕ iff



wi |= ϕ. We say that the rewrite system R, with initial language Π, satisfies/is a
model of ϕ (denoted by R, Π |= ϕ) iff ∀w ∈ RLΠM, w |= ϕ.

2.3 Rewrite Propositions & Problem Statement

A rewrite proposition on R, from Π is a formula of propositional logic whose
atoms are language or rewrite systems comparisons. More specifically, a rewrite
proposition π is generated by the following grammar:

π := γ | γ ∧ γ | γ ∨ γ γ := ` = ∅ | X ⊆ X | ` ⊆ ` X ∈ ℘(R) .

` := Π | T(A) | X(`) | X−1(`) | X∗(`)

Since the comparisons γ have obvious truth values, the interpretation of rewrite
propositions is trivial; thus we will not introduce any notation for it, and
automatically confuse π with its truth value in the remainder of this paper. Note
that while other operators for propositional logic could be added, conjunction
and disjunction will be enough for our purposes.

Problem Statement. We have now done enough groundwork to state our
problem more formally. Given a rewrite system R, a temporal formula ϕ in LTL
(or some fragment of LTL), and an initial language Π ⊆ T(A), we search for an
algorithmic method of building a rewrite proposition π such that R, Π |= ϕ if and
only if π holds. We call such a method, as well as its result, an exact translation of
ϕ, and say that π translates ϕ. If π is only a sufficient (resp. necessary) condition,
then it is an under-approximated (resp. over-approximated) translation.

3 Building Translation Rules

3.1 Overview & Intuitions of the Translation

The Base Cases. Counterintuitively, ϕ = ¬X is actually a simpler case than
ϕ = X as far as the translation is concerned, so we will consider it first. Case 1:
Negative Literal. Suppose R, Π |= ¬X. Recalling the semantics in Fig. 1[p5], this
means that no term of Π can be rewritten by a rule in X. They may or may not be
rewritable by rules not in X, though. Consider now π1 ≡ X(Π) = ∅; it is easy to
become convinced that this is an exact translation. Case 2: Positive Literal. Let
ϕ = X. A first intuition would be that this is roughly the same case as before, but
with the complement of Xwrt. R. So we write π2 ≡ [R\X](Π) = ∅. This, however,
is not strong enough. It translates the fact that only rules of X can rewrite Π.



But again, while X may in fact rewrite Π, there is nothing in π2 to enforce that.
Looking at the semantics, all possible words of RLΠM must have at least one move
(i.e. 1 ∈ domw); this condition must be translated. It is equivalent to saying
that all terms of Π are rewritable, which is expressed by Π ⊆ R−1(T(A)). More
specifically, since we already impose that they are not rewritable by R \ X, we
can even write directly that they are rewritable by X, i.e. Π ⊆ X−1(T(A)). Putting
those two conditions together, we obtain π ′2 ≡ [R \ X](Π) = ∅ ∧ Π ⊆ X−1(T(A)),
and this is an exact translation.

Of Strength & Weakness. Let us reflect on the previous cases for a minute; the
immediate intuition is that X is stronger than ¬X, in the sense that whenever we
see X, we must write an additional clause – enforcing rewritability – compared
to ¬X. This actually depends on the context, as the next example will show.
Case 3: Always Negative. Let ϕ = �¬X. This means that neither the terms of Π
nor their successors can be rewritten by X; in other words π3 ≡ X

(
R∗(Π)

)
= ∅.

The translation is almost the same as for ¬X, the only difference being the
use of R∗(Π) (Π and successors) instead of just Π as in π1. More formally,
π3 ≡ π1[R

∗(Π)/Π]. Case 4: Always Positive. Seeing this, one is tempted to infer
that the same relationship that exists between the translations of ¬X and �¬X
exists as well between those of X and �X. In the case ϕ = �X, this would yield
π4 ≡ π

′
2[R
∗(Π)/Π] ≡ [R \ X]

(
R∗(Π)

)
= ∅ ∧ R∗(Π) ⊆ X−1(T(A)). But clearly this

translation is much too strong as its second part implies that every term of Π can
be rewritten by X, and so can all of the successors; consequently, RLΠM must form
anω-language. Yet we have for instance λ |= �X—note incidentally that λ |= �ψ
holds vacuously for any ψ. In general, under the semantics for �, words of any
length, infinite, finite or nought, may satisfy �X. Thus the correct translation
was simply π ′4 ≡ [R \ X]

(
R∗(Π)

)
= ∅. So, unlike Cases 1 and 2, X is not in any

sense stronger than ¬Xwhen behind a �. This is an important point which we
shall need to keep track of during the translation; that necessary bookkeeping is
the reason for the introduction of the weak and strong intertwined semantics
described in Section 3.2[p9].

Conjunction, Disjunction & Negation. Case 5: And & Or. It is pretty clear
that if π5 translates ϕ and π ′5 translates ψ, then π5 ∧ π ′5 translates ϕ ∧ ψ. This
holds thanks to the implicit universal quantifier, as we have (R, Π |= ϕ∧ψ) ⇐⇒
(R, Π |= ϕ)∧(R, Π |= ψ). Contrariwise, the same does not hold for the disjunction,



and we have no general solution (a) to handle it. Given that one of the implications
still holds, namely (R, Π |= ϕ ∨ ψ) ⇐= (R, Π |= ϕ) ∨ (R, Π |= ψ), a crude
under-approximation can still be given if all else fails: π5∨π ′5 =⇒ R, Π |= ϕ∨ψ.
Case 6: Negation. Although we have seen in Case 1 that a negative literal can
easily be translated, negation cannot be handled in all generality by our method.
Note that, because of the universal quantification, R, Π |=/ ϕ , R, Π |= ¬ϕ;
thus the fact that π6 translates ϕ does not a priori imply that ¬π6 translates
¬ϕ. This is why we will assume in practice that input formulæ are provided in
Negative Normal Form, which is licit as the presence of both weak and strong
next operators enables any formula to be put in NNF.

Handling Material Implication. Case 7. We have just seen in Cases 5 and 6 that
we can provide exact translations for neither negation nor disjunction. Inasmuch
as ϕ⇒ ψ is defined as ¬ϕ ∨ ψ, must material implication be forgone as well?
An example involving an implication has been given in the introduction (page
1), so it would seem that a translation can be provided in at least some cases. Let
us take the simple example X⇒ •Y. Assuming that any term u ∈ Π is rewritten
into some u ′ by a rule in X, then u ′ must be rewritable by Y, and only by Y.
The set of X-successors of Π being X(Π), those conditions yield the translation
π7 ≡ X(Π) ⊆ Y

−1
(
T(A)

)
∧ [R \ Y]

(
X(Π)

)
= ∅. Note that the way in which

implication has been handled here is very different from the approach taken for
the other binary operators, which essentially consists in splitting the formula
around the operator and translating the two subparts separately. In contrast,
the antecedent of the implication was “assumed”, whilst the consequent was
translated as usual. In fact, recalling that π ′2 translates X, and thus π ′′2 ≡ π

′
2[Y/X]

translates Y, we have π7 ≡ π ′′2 [X(Π)/Π]. So, “assuming” the antecedent consisted
simply in changing our set of reachable terms —which we will from now on call
the past, hence the notationΠ. This is not an isolated observation; if π0 denotes the
translation of�(X⇒ •Y) given in the introduction, then π0 ≡ π7[R∗(X(Π))/X(Π)].
Thus “updating” the past is enough of a tool to deal with some simple uses of �
and implication. . . but consider the following formula: •Y ⇒ X. In that case the
antecedent lies in the future, relatively to the consequent. Therefore, in order to
deal with all cases, we need some means of making assumptions about both past
and future. This is the goal of the signatures presented in Section 3.3[p10].

(a) There are however special cases where disjunction can be translated exactly; see rules (∨⇒
∧

)[p15] and
(∨¬⇒).



3.2 Weak and Strong Semantics for LTL

Restricting the Fragment. As mentioned in Cases 3 and 4 of the previous
section, we will in practice be restricted to working with formulæ provided in
Negative Normal Form. Furthermore, there are operators, such as ^, for which
we think that no translation can be provided, because rewrite propositions are
not expressive enough —in particular, R∗(Π) hides all information regarding
finite or infinite traces. If this is the case, then none of the operators of the “Until”
family {^,U,W,R, . . . } can be dealt with. Consequently, we are restricted to the
following fragment of LTL, which will be denoted by R-LTL:

ϕ := X | ¬X | ϕ ∧ϕ | ϕ ∨ϕ | ϕ⇒ ϕ | X ∈ ℘(R)

•m ϕ | ◦mϕ | �ϕ m ∈ N .

Bookkeeping. (cf. Sec. 3.1[p6], case 4) In order to address the question of whether
the translation of an atom X should be “strong” – enforce rewritability – or
“weak”, information is needed from the context. Namely, does the atom appear in
the direct scope of a �? We solve this by introducing intertwined weak semantics
– written |=w – and strong semantics – written |=s, given in Fig. 2. For µ ∈ {w, s }

(w, i) |=µ > (w, i) |=/µ ⊥
(w, i) |=s X iff i ∈ domw and w(i) ∈ X
(w, i) |=w X iff i < domw or w(i) ∈ X
(w, i) |=µ ¬X iff i < domw or w(i) < X
(w, i) |=µ (ϕ ∨ψ) iff (w, i) |=µ ϕ or (w, i) |=µ ψ
(w, i) |=µ (ϕ ∧ψ) iff (w, i) |=µ ϕ and (w, i) |=µ ψ

(w, i) |=µ (ϕ⇒ ψ) iff (w, i) |=s ϕ =⇒ (w, i) |=s ψ

(w, i) |=µ •mϕ iff i+m ∈ domw and (w, i+m) |=s ϕ

(w, i) |=µ ◦mϕ iff i+m < domw or (w, i+m) |=w ϕ

(w, i) |=µ �ϕ iff ∀j ∈ domw, j > i⇒ (w, j) |=w ϕ

For anym ∈ N, µ ∈ {w, s }

Fig. 2: R-LTL Weak & Strong Semantics

the notations w |=µ ϕ and R, Π |=µ ϕ are defined in the same way as for |=.
How those semantics are used will become clearer in section 3.4[p15], where
the translation rules are given. The important point for now is that the strong
semantics are equivalent to the normal semantics of LTL on the fragment R-LTL,
which is shown by Lemma 3.

Lemma 2 (Strong-Weak Domain-Equivalence). For all w, ϕ, i, it holds that
i ∈ domw =⇒ (w, i) |=s ϕ⇔ (w, i) |=w ϕ.



Lemma 3 (Strong Semantics). For all wordsw ∈W and all formulæ ϕ ∈ R-LTL,
we have ∀i ∈ N1, (w, i) |=s ϕ ⇐⇒ (w, i) |= ϕ.

3.3 Girdling the Future: Signatures

As discussed in Sec. 3.1[p6], Case 7, implication is handled by converting the
antecedent ϕ of a formula ϕ⇒ ψ into “assumptions”. Concretely, this consists
in building a model of ϕ – called a signature of ϕ, written ξ(ϕ) – which can be
manipulated during the translation. The variety of signatures defined hereafter
handles formulæ ϕ within the fragment A-LTL (A for antecedent), which is
R-LTL without∨ or⇒. This section covers the technical tools needed for building
signatures (Fig. 3[p13]) and understanding the translation rules (Sec. 3.4[p15]).

Definitions. Signatures. A signature σ is an element of the space

Σ =
⋃
n∈N

[ (
J1, nK ∪ {ω}

)
→ ℘(R)

]
× ℘(N) .

Core, Support, Domain, Cardinal. Let σ = (f, S); then the function f is called
the core of σ, denoted by ∂σ, and S is called its support, written ∇σ. The domain
of σ is defined as domσ

/

= dom f \ {ω}, and its cardinal is #σ

/

= Card (domσ).
Special Notations, Empty Signature. A signature σ = (f, S) will be written
either compactly as σ = *f | S+, or in extenso as Pf(1), f(2), . . . , f(#σ) # f(ω) | SQ.
We denote by ε

/

= P#R | NQ the empty signature. Let k ∈ N1 ∪ {ω}, then we write

σ[k]

/

=

{
f(k) if k ∈ domσ

f(ω) if k < domσ
.

Signature Product. Let σ and σ ′ two signatures; then their product is another
signature defined as σ� σ ′

/

= *g | ∇σ ∩∇σ ′+, where

g

/

=

∣∣∣∣dom∂σ ∪ dom∂σ ′ −→ ℘(R)

k 7−→ σ[k] ∩ σ ′[k] .

Note that as a consequence, ∀k ∈ N1, (σ� σ ′)[k] = σ[k] ∩ σ ′[k]. (e.g. Let σ =

PX, Y # Z | N2Q and ρ = PX ′ # Z ′ | N3Q; then σ� ρ = PX ∩ X ′, Y ∩ Z ′ # Z ∩ Z ′ | N3Q.)

Remark 4 (Summation Notation). The set of signatures Σ, equipped with the
signature-product �, forms a commutative monoid whose neutral element is ε.

Convergence. Let ρ = (σn)n∈N be an infinite sequence of signatures. It is
convergent if (1) the sequence (∇σn)n∈N converges towards a limit ∇σ∞, and (2)



for all k ∈ N1, the sequence (σn[k])n∈N converges towards a limit σ∞[k], and (3)
the sequence of limits (σ∞[k])k∈N1 itself converges towards a limit σ∞[∞]. We call
this sequence the limit core. It is not directly in the form of a bona fide signature
core. However, its co-domain being ℘(R), which is finite, there exists a rankN > 0
such that for all k > N, σ∞[k] = σ∞[∞], and thus, taking the smallest such N, we
define Pσ∞[1] , . . . , σ∞[N] # σ∞[∞] | ∇σ∞Q to be the limit of ρ, which we denote
by lim ρ or limn→∞ σn, or more simply by σ∞. Note that the core of the limit
is equivalent to the limit core, in the intuitive sense that they define the same
constrained words. Otherwise ρ is divergent, and its limit is left undefined. (e.g.
The sequence (PR1, . . .Rn, X # R | J1, nKQ)n∈N, with Ri = R ∀i, converges towards
P#X | NQ. ) Infinite Products. Remark 4 legitimates the use of a Sigma-notation⊗m
k=l σk for σl � σl+1 � · · ·� σm, with the usual properties. We define a notion

of infinite product of signatures as well, in the classical way: the infinite product⊗∞
k=l σk converges if and only if the associated sequence of partial products

(
⊗n
k=l σk)n∈Nl converges, and in that case

∞⊗
k=l

σk

/

= lim
n→∞

n⊗
k=l

σk .

ConstrainedWords. The words of R, originating in Π and constrained by σ are de-
fined by RLΠ # σM

/

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σ ∧ ∀k ∈ domw, w(k) ∈ σ[k]
}

. (e.g. Let
σ = PX, Y # Z | N2Q; then its core is the function ∂σ = { 1 7→ X, 2 7→ Y,ω 7→ Z }, its
domain is domσ = J1, 2K, its support is ∇σ = N2, its cardinal is #σ = 2, and we
have σ[1] = X, σ[2] = Y, σ[3] = σ[4] = · · · = σ[ω] = Z. Its constrained words are
the maximal words of length at least 2, whose first two letters are in X and Y,
respectively, and whose other letters are all in Z.) Lemma 5 serves in the base
cases of signature-building, and Lem. 6 in the constructions of ξ(ϕ ∧ψ) and
ξ(�ϕ), and rule (⇒Σ)[p15];

Lemma 5 (No Constraints). We have RLΠ # εM = RLΠM.

Lemma 6 (Breaking Products). For any signatures σ, σ ′ ∈ Σ, and any language
Π, we have (1) RLΠ # σ� σ ′M = RLΠ # σM∩ RLΠ # σ ′M. Furthermore, this generalises
to infinitary cases: (2) given a sequence (σn)n∈N such that the infinite product⊗∞
n=0 σn converges, it holds that RLΠ #

⊗∞
n=0 σnM =

⋂∞
n=0

RLΠ # σnM.

Arithmetic Overloading. We overload the operators + and − on the profile
℘(N) × N → ℘(N) such that, for any S ∈ ℘(N) and n ∈ N, we have S + n

/

=

{k+ n | k ∈ S } and S− n

/

= {k− n | k ∈ S } ∩ N. Shifts Left & Right. Letm ∈ N;



then we define the strong m-left shift of σ as σ J m

/

= P∂σ(m + 1), . . . , ∂σ(#σ) #
∂σ(ω) | (∇σ − m) \ {0}Q and the weak m-left shift of σ as σ C m

/
= P∂σ(m +

1), . . . , ∂σ(#σ) # ∂σ(ω) | ∇σ − mQ. Conversely, the strong m-right shift of σ is
σ I m

/

= PR1, . . . ,Rm, ∂σ(1), . . . , ∂σ(#σ) # ∂σ(ω) | (∇σ \ {0}) +mQ, while the weak
m-right shift of σ is σ B m

/

= PR1, . . . ,Rm, ∂σ(1), . . . , ∂σ(#σ) # ∂σ(ω) | J0,mK ∪
(∇σ +m)Q, with R1 = R, . . . ,Rm = R. Note that for all m ∈ N and all k ∈ N1,
(σ C m)[k] = σ[k+m], for all k 6 m, (σ I m)[k] = (σ B m)[k] = R and for all
k > m, (σ I m)[k] = (σ B m)[k] = σ[k−m]. (e.g. Let σ = PX, Y # Z | N2Q; then
σ J 1 = σ C 1 = PY # Z | N1Q, σ I 1 = PR, X, Y # Z | N3Q, and σ B 1 = PR, X, Y # Z |

N \ {2}Q. )
Lemma 7 justifies the fact that the computation of ξ(�ϕ) always yields a

useable signature; a closed form of the limit is given in the proof.

Lemma 7 (Automatic Convergences). Let (σn)n∈N be any sequence of signatures,
and (ρn)n∈N its associated sequence of partial products (

⊗n
i=0 σi)n∈N. Then

(ρn)n∈N satisfies convergence criteria (1) and (2). Furthermore, if σ is a given
signature and σi = σ I i or σi = σ B i, for any i ∈ N, then criterion (3) is satisfied
as well, and the infinite product

⊗∞
n=0 σn converges.

Proof. (1) For all n ∈ N, ∇ρn =
⋂n
i=0∇σi, thus it is clear that ∇ρn =

⋂n
i=0∇σi ⊇⋂n+1

i=0 ∇σi = ∇ρn+1 or, in other words, (∇ρn)n∈N is a (trivial) contracting sequence
of finite sets. Therefore it converges towards

⋂∞
i=0∇σi. (2) Let k ∈ N1; we have

ρn[k] =

(
n⊗
i=0

σi

)
[k] =

n⋂
i=0

σi[k] ,

and thus ρn[k] =
⋂n
i=0 σi[k] ⊇

⋂n+1
i=0 σi[k] = ρn+1[k] and again, (ρn[k])n∈N is

a trivial contracting sequence of finite sets; therefore it converges towards a
limit which we denote by ρ∞[k] =

⋂∞
i=0 σi[k]. (3) Suppose now that σi = σ B i

(resp. σi = σ I i, the computation will be unchanged), we have

ρ∞[k] =
∞⋂
i=0

σi[k] =
∞⋂
i=0

(σ B i)[k] =

(
k−1⋂
i=0

(σ B i)[k]

)
∩

( ∞⋂
i=k

(σ B i)[k]

)

=

(
k−1⋂
i=0

σ[k− i]

)
∩

( ∞⋂
i=k

R

)
=
k−1⋂
i=0

σ[k− i] =
k⋂
i=1

σ[i] .

Given that for all i > #σ, σ[i] = σ[ω], it follows that for all k > #σ, ρ∞[k] =⋂#σ+1
i=1 σ[i]. Thus (ρ∞[k])k∈N1 converges. This shows that the infinite product⊗∞
n=0 σn is convergent. �



Building Signatures. Figure 3[p13] defines the function ξ(·) : A-LTL → Σ. As
Theorem 8 shows, the signature ξ(ϕ) essentially captures a model of ϕ.

ξ(>)

/

= P#R | NQ = ε ξ(⊥)

/

= P#∅ | ∅Q

ξ(X)

/

= PX # R | N1Q ξ(¬X)

/

= PR \ X # R | NQ

ξ(•mϕ)

/

= ξ(ϕ) I m ξ(◦mϕ)
/

= ξ(ϕ) B m

ξ(ϕ ∧ψ)

/

= ξ(ϕ)� ξ(ψ) ξ(�ϕ)

/

=
∞⊗
m=0

[
ξ(ϕ) B m

]

Fig. 3: Building Signatures on A-LTL

Theorem 8 (Signatures). For any Π ⊆ T(A) and any ϕ ∈ A-LTL,

RLΠ # ξ(ϕ)M =
{
w ∈ RLΠM

∣∣ w |= ϕ
}
.

3.4 The Translation Rules

Now that the main technical tools are in place, there remains to define what
is meant by “translation rule”, and to state the rules themselves. For any µ ∈
{w, s }, ϕ ∈ LTL, Π ⊆ T(A), σ ∈ Σ, we define 〈Π # σ 
µ ϕ〉 as shorthand for
∀w ∈ RLΠ # σM, w |=µ ϕ. We call such a notation 〈Π # σ 
µ ϕ〉 a translation block.
A translation rule is of the form

l A P(σ,ϕ)

E
or ↑ A P(σ,ϕ)

E
or ?

A ↑ P(σ,ϕ) l Q(σ,ϕ)

E
,

where A stands for some translation block 〈Π # σ 
µ ϕ〉, P,Q ∈ Σ× R-LTL→ B

are predicates on signatures and formulæ, and E is a mixed translation/reach-
ability proposition. More precisely, E is generated by the grammar given in
Sec. 2.3[p6], with the added production γ := Υ, where Υ is a translation block.
The l-rules (exact translations) are defined to hold iff P(σ,ϕ) =⇒ (A⇔ E), the
↑-rules (under-approximations) hold iff P(σ,ϕ) =⇒ (E⇒ A), and the ?-rules
hold iff P(σ,ϕ) =⇒ (E ⇒ A) and (P(σ,ϕ) ∧Q(σ,ϕ)) =⇒ (A ⇔ E). When
omitted, P is assumed to be >.

Theorem 9 entails that any derivation (i.e. tree of rule applications with no
translation blocks left in the leaves) starting with 〈Π # ε 
s ϕ〉 yields an exact
translation of ϕ (if only exact rules are involved), or an under-approximation (if
some ↑-rules are used).



Theorem 9 (Translation Satisfaction). 〈Π # ε 
s ϕ〉 ⇐⇒ R, Π |= ϕ.

A few additional definitions and results about signatures are needed in order
to justify some translation rules: Remark 10 is needed by rule (�  h)[p15]; Lem. 13
intervenes in rules (•m)[p15] and (◦m); Lem. 11 and Cor. 12 in rule (•m); Rmk. 14
and Lem. 15 in rule (� ∗); Prp. 16[p15] justifies that rule (�  h) eventually terminates.
Signature Iteration. Let Π ⊆ T(A) a language, and σ ∈ Σ a signature; then
for n ∈ N we let Πnσ

/

= σ[n]
(
σ[n− 1] (· · ·σ[1] (Π) · · ·)

)
be the n-iteration of the

signature σ. More formally, it is defined recursively such that Π0σ

/

= Π and
Πn+1σ

/

=σ[n+ 1] (Πnσ). LengthRejector. Forn ∈ N, the rewrite propositionΨσΠ(n)
is called the n-length rejector, and defined as ΨσΠ(n)

/

= Πnσ ⊆ σ[n+ 1]
−1 (T(A)).

Strengthening. If σ is a signature, then ?σ

/

= *∂σ | ∇σ \ {0} + is its strengthening.
Note that (σ J m) = ?(σ C m), for allm.

Remark 10 (Strengthening of Always). Let Π ⊆ T(A), σ ∈ Σ, and ϕ ∈ R-LTL.
Then 〈Π # σ 
µ �ϕ〉 ⇐⇒ 〈Π # ?σ 
µ �ϕ〉.

Lemma 11. Let σ be a signature and Π ⊆ T(A) a language; then for any n ∈ N,
the proposition ΨσΠ(n) holds iff for all w ∈ RLΠ # σM, #w , n.

Corollary 12 (Length Rejection). Let S ∈ ℘(N), σ a signature and Π a language;
the rewrite proposition

∧
n∈S∩∇σΨ

σ
Π(n) holds iff for all w ∈ RLΠ # σM, #w < S.

Lemma 13 (Shifting Words). Let σ be a signature and Π ⊆ T(A) a language; then
RLΠmσ # σ C mM =

{
wm+1

∣∣ w ∈ RLΠ # σM ∧ #w > m
}

.

Remark 14 (Constrained Union). Let σ ∈ Σ, I ⊆ N, and for each i ∈ I, Πi ⊆ T(A).
Then

⋃
i∈I

RLΠi # σM = RL
⋃
i∈IΠi # σM.

Stability. A signature σ ∈ Σ is called stable if σ C 1 = σ; this is equivalent
to the condition #σ = 0 and ∇σ ∈ {∅, {+∞} ,N,N }, and also to the condition
∀n ∈ N, σ C n = σ. High Point. The high point  hσ of a signature σ is the smallest
h ∈ N such that σ C h is stable. Note that σ is stable if and only if  hσ = 0. Given
the characterisation of stability given above, an alternative definition of  hσwould
be the smallest h > #σ such that either Nh ⊆ ∇σ or ∇σ ∩ Nh = ∅. If no such h
exists (b), we take by convention  hσ = +∞. Low Point. The low point `σ of a
signature σ is the smallest length authorised by σ; more precisely, it is defined as
`σ

/

= min∇σ.
(b) Consider a signature σ such that∇σ is the set of odd numbers, or the set of prime numbers, for instance.

Such a signature cannot be stabilised. Fortunately, Proposition 16[p15] shows that such exotic cases are
irrelevant to this paper.



Lemma 15 (All Suffixes). Let σ be a stable signature, and Π ⊆ T(A) a language.
Then we have

{
w1+n

∣∣ n ∈ N, w ∈ RLΠ # σM, #w > n
}

= RLσ[ω]∗ (Π) # σM.

Proposition 16 (Stability of ξ(·)). The signature of any formula ϕ ∈ A-LTL is
stabilisable; in other words,  hξ(ϕ) ∈ N, ∀ϕ ∈ A-LTL.

Theorem 17 (Translation). All the following translation rules hold.

l
〈Π # σ 
µ >〉

>
(>) l

〈Π # σ 
µ ⊥〉
⊥

(⊥)

l
〈Π # σ 
µ X ∧ Y〉
〈Π # σ 
µ X ∩ Y〉

(∧X) l
〈Π # σ 
µ X ∨ Y〉
〈Π # σ 
µ X ∪ Y〉

(∨X)

l
〈Π # σ 
µ ϕ ∧ψ〉

〈Π # σ 
µ ϕ〉 ∧ 〈Π # σ 
µ ψ〉
(∧)

l
〈Π # σ 
µ [ϕ ∨ϕ ′]⇒ ψ〉

〈Π # σ 
µ ϕ⇒ ψ〉 ∧ 〈Π # σ 
µ ϕ ′ ⇒ ψ〉
(∨⇒
∧

)

l
〈Π # σ 
µ ϕ ∨ψ〉 ¬ϕ ∈ A-LTL

〈Π # σ 
µ ¬ϕ⇒ ψ〉
(∨¬⇒)

↑
〈Π # σ 
µ ϕ ∨ψ〉

〈Π # σ 
µ ϕ〉 ∨ 〈Π # σ 
µ ψ〉
(∨↑)

l
〈Π # σ 
µ ϕ⇒ ψ〉
〈Π # σ� ξ(ϕ) 
s ψ〉

(⇒Σ)

l
〈Π # σ 
µ ◦mϕ〉
〈Πmσ # σ J m 
w ϕ〉

(◦m)

l
〈Π # σ 
µ •mϕ〉

〈Π # σ 
µ ◦mϕ〉 ∧
∧

n∈J0,mK∩∇σ

ΨσΠ(n)
(•m)

l
〈Π # σ 
µ �ϕ〉 σ is stable
〈σ[ω]∗(Π) # ?σ 
w ϕ〉

(� ∗)

l
〈Π # σ 
µ �ϕ〉  hσ ∈ N1〈

Π # σ 
µ
 hσ−1∧
k=0

◦
kϕ

〉
∧

〈
Π hσ
σ # σ C  hσ 
µ �ϕ

〉 (�  h)

l
〈Π # σ 
µ ¬X〉
〈Π # σ 
w R \ X〉

(¬X)

Additionally, the following four rules are being explored as a possible coverage of
the difficult case of the atomX. While the main bodies of those rules encompass all



the necessary translations, adjusting their exact respective application predicates
is still ongoing work, which sets them apart from the proven formulæ of Thm. 17.

?
〈Π # σ 
w X〉 ↑ `σ 6 1 l σ C 1 = ε[

R \ (X ∩ σ[1])
]
(Π) = ∅

(Xw
`61)

?
〈Π # σ 
s X〉 ↑ `σ = 0 l σ C 1 = ε

〈Π # σ 
w X〉 ∧ Π ⊆
(
X ∩ σ[1]

)−1
(T(A))

(Xs
`0)

?
〈Π # σ 
s X〉 ↑ `σ = 1 l σ C 1 = ε

〈Π # σ 
w X〉
(Xs
`1)

?
〈Π # σ 
µ X〉 ↑ `σ > 2 l σ C `σ = ε

σ[`σ]

(
· · ·σ[2]

( [
R \ (X ∩ σ[1])

]
(Π)
)
· · ·
)

= ∅

(Xµ`2)

The general derivation algorithm consists in systematically applying the first
rule that matches, starting with the block 〈Π # ε 
s ϕ〉. Let it be noted that not
all of the given rules are strictly necessary. For instance (∨⇒

∧
) corresponds to

a basic tautology of propositional logic, which rewrites the formula in a form
more amenable to translation. Similarly, rule (∨¬⇒) relies on a transformation of
the antecedent into A-LTL (which is not always possible, in which case the rule
does not apply). While their presence is not fundamental to the system, they
extend the number of translatable cases. There are doubtless many other such
simplifications not listed here – an obvious one being the commutation of (∨¬⇒).
This sensitivity of the translation to transformations of the input formula makes
it difficult to give an exact characterisation of the supported fragment – it is not
simply R-LTL, restricted to A-LTL for antecedents. For instance, even though ^
cannot be translated in general, its presence in the NNF of the input ϕ is not
enough in itself to assert that ϕ cannot be translated: if it appears in, say, ^X∨ψ,
it can be handled using rule (∨¬⇒). We intend to expand the translatable fragment
in future works; this will hopefully make it easier to characterise.
Example. Let us derive the translation of ϕ = �(X⇒ •1Y).

l
〈
Π # ε 
s �(X⇒ •1Y)

〉
(� ∗)

l
〈
R∗(Π) # ?ε 
w X⇒ •1Y

〉
(⇒Σ)

l
〈
R∗(Π) # PX # R | N1Q 
s •1Y

〉
(•m)

Ψ
PX#R|N1Q
R∗(Π) (1)∧ l

〈
R∗(Π) # PX # R | N1Q 
s

◦
1Y
〉

(◦m)

l
〈X(R∗(Π)) # P#R | N1Q 
w Y〉 (Xw

`61)
[R \ Y] (X(R∗(Π))) = ∅

.



This yields the exact translation [R \ Y] (X(R∗(Π))) = ∅ ∧ Ψ
PX#R|N1Q
R∗(Π) (1) which,

once expanded, yields [R \ Y] (X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ R−1 (T(A)). This
is equivalent to [R \ Y] (X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y−1 (T(A)), which is the
expected exact translation.

4 Conclusions & Perspectives

In the term rewriting framework, to perform reachability analysis guided by
properties of interest, the present paper addresses the question of a systematic
translation of linear temporal logic properties into rewrite propositions. More
precisely, we have investigated suitable semantics for LTL on maximal rewriting
words and their influence on the feasibility of a translation, and proposed a
framework providing exact translations on a fragment of LTL corresponding
mainly to safety formulæ, and approximations on a larger fragment.

As a future work, we intend to expand the fragment for which translations
and approximations can be provided, and study the feasibility of handling
equational theories in the same framework. The present work being a part of
a rewrite approximation based analysis, the end goal is the integration of the
paper’s proposals into the verification chain dedicated to the automatic analysis
of security-/safety-critical applications.
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Appendix: Proofs

Lemma 1[p5]

Proof. (1)

(w, i) |=

∞∧
m=0

◦
mϕ ⇐⇒

∞∧
m=0

(w, i) |= ◦mϕ

⇐⇒
∞∧
m=0

i+m < domw ∨ (w, i+m) |= ϕ

⇐⇒
∞∧
m=i

m < domw ∨ (w,m) |= ϕ

⇐⇒
#w∧
m=i

(⊥ ∨ (w,m) |= ϕ) ∧

∞∧
m=1+#w

(> ∨ (w,m) |= ϕ)

⇐⇒
#w∧
m=i

(w,m) |= ϕ ⇐⇒
#w∧
j=i

(w, j) |= ϕ

⇐⇒ ∀j ∈ domw, j > i⇒ (w, j) |= ϕ

⇐⇒ (w, i) |= �ϕ

(2)

(w, i) |=

∞∧
m=0

◦
mϕ

⇐⇒ (w, i) |=

k−1∧
m=0

(
◦
m ϕ

)
∧

∞∧
m=k

(
◦
m ϕ

)
⇐⇒ (w, i) |=

k−1∧
m=0

(
◦
m ϕ

)
︸            ︷︷            ︸

A

∧(w, i) |=

∞∧
m=k

(
◦
m ϕ

)

⇐⇒
(
(w, i) |= A

)
∧

∞∧
m=k

(w, i) |= ◦mϕ

⇐⇒
(
(w, i) |= A

)
∧

∞∧
m=k

(
i+m < domw ∨ (w, i+m) |= ϕ

)



⇐⇒
(
(w, i) |= A

)
∧

∞∧
m=0

(
i+ k+m < domw ∨ (w, i+ k+m) |= ϕ

)
⇐⇒

(
(w, i) |= A

)
∧

∞∧
m=0

(w, i+ k) |= ◦mϕ

⇐⇒
(
(w, i) |= A

)
∧ (w, i+ k) |=

∞∧
m=0

◦
mϕ

⇐⇒
(
(w, i) |= A

)
∧ (w, i+ k) |= �ϕ

⇐⇒
(
(w, i) |= A

)
∧

(
i+ k < domw ∨ (w, i+ k) |= �ϕ

)
⇐⇒

(
(w, i) |= A

)
∧ (w, i) |= ◦k �ϕ

⇐⇒ (w, i) |= A ∧ ◦k �ϕ

⇐⇒ (w, i) |=

k−1∧
m=0

(
◦
m ϕ

)
∧ ◦

k �ϕ

�

Lemma 2[p9]

Proof. Assume that i ∈ domw; the proof is done by induction on ϕ ∈ R-LTL.
Base Cases. Weak and strong semantics are identical by definition except for
ϕ = X. In that case (w, i) |=s X ⇐⇒ w(i) ∈ X ⇐⇒ (w, i) |=w X, because
i ∈ domw. Inductive Cases. Let > ∈ {∧,∨ }. We have

(w, i) |=s (ϕ >ψ) ⇐⇒ (w, i) |=s ϕ > (w, i) |=s ψ

⇐⇒ (w, i) |=w ϕ > (w, i) |=w ψ

⇐⇒ (w, i) |=w (ϕ >ψ) ,

the second step being of course by induction hypothesis. Cases ϕ = ψ ⇒ ψ ′,
ϕ = •mψ, ϕ = ◦mψ and ϕ = �ψ: weak and strong semantics are identical by
definition. �

Lemma 3[p10]

Proof. By induction on the structure ofϕ. Let us start by noting that |=s is defined
in the exact same way as |= in all cases but (1) ϕ = �ψ and (2) ϕ = ◦mψ. This
automatically takes care of all those cases, which include the base cases, strong
next, material implication, conjunction and disjunction. Now there only remains
to deal with the two remaining cases. Let us start by (1) ϕ = �ψ. We have the



induction hypothesis H ≡ ∀i ∈ N1, (w, i) |=s ψ ⇐⇒ (w, i) |= ψ. With this in
mind, recall that by definition

(w, i) |=s �ψ ⇐⇒ ∀j ∈ domw, j > i⇒ (w, j) |=w ψ .

Since j ∈ domw, by the previous lemma we have (w, j) |=s ψ⇔ (w, j) |=w ψ and
can effect this replacement in the formula:

(w, i) |=s �ψ ⇐⇒ ∀j ∈ domw, j > i⇒ (w, j) |=s ψ .

There remains to recall our hypothesis H, : ∀j, (w, j) |=s ψ ⇐⇒ (w, j) |= ψ:

(w, i) |=s �ψ ⇐⇒ ∀j ∈ domw, j > i⇒ (w, j) |= ψ

⇐⇒ (w, i) |= �ψ ,

which concludes the proof for case (1). Now we deal with (2) ϕ = ◦mψ, using
the same arguments.

(w, i) |=s
◦
mϕ ⇐⇒ i+m < domw ∨ (w, i+m) |=w ϕ

⇐⇒ i+m ∈ domw =⇒ (w, i+m) |=w ϕ

⇐⇒ i+m ∈ domw =⇒ (w, i+m) |=s ϕ

⇐⇒ i+m ∈ domw =⇒ (w, i+m) |= ϕ

⇐⇒ (w, i) |= ◦mϕ .

�

Remark 4[p10]

Proof. The associativity and commutativity of � stem directly from those of ∪
and ∩. The neutrality of ε = P#R | NQ stems from that of N (= ∇ε) for ∩ within
℘(N), of R (= ε[k] ,∀k) for ∩ within ℘(R), and of ∅ (its domain) for ∪. �

Lemma 7[p12]

Proof. (1) For all n ∈ N, ∇ρn =
⋂n
i=0∇σi, thus it is clear that ∇ρn =

⋂n
i=0∇σi ⊇⋂n+1

i=0 ∇σi = ∇ρn+1 or, in other words, (∇ρn)n∈N is a (trivial) contracting sequence
of finite sets. Therefore it converges towards

⋂∞
i=0∇σi. (2) Let k ∈ N1; we have

ρn[k] =

(
n⊗
i=0

σi

)
[k] =

n⋂
i=0

σi[k] ,



and thus ρn[k] =
⋂n
i=0 σi[k] ⊇

⋂n+1
i=0 σi[k] = ρn+1[k] and again, (ρn[k])n∈N is

a trivial contracting sequence of finite sets; therefore it converges towards a
limit which we denote by ρ∞[k] =

⋂∞
i=0 σi[k]. (3) Suppose now that σi = σ B i

(resp. σi = σ I i, the computation will be unchanged), we have

ρ∞[k] =
∞⋂
i=0

σi[k] =
∞⋂
i=0

(σ B i)[k] =

(
k−1⋂
i=0

(σ B i)[k]

)
∩

( ∞⋂
i=k

(σ B i)[k]

)

=

(
k−1⋂
i=0

σ[k− i]

)
∩

( ∞⋂
i=k

R

)
=
k−1⋂
i=0

σ[k− i] =
k⋂
i=1

σ[i] .

Given that for all i > #σ, σ[i] = σ[ω], it follows that for all k > #σ, ρ∞[k] =⋂#σ+1
i=1 σ[i]. Thus (ρ∞[k])k∈N1 converges. This shows that the infinite product⊗∞
n=0 σn is convergent. �

Lemma 5[p11]

Proof.

RLΠ # εM =
{
w ∈ RLΠM

∣∣ #w ∈ ∇ε ∧ ∀k ∈ domw, w(k) ∈ ε[k]
}

=
{
w ∈ RLΠM

∣∣ #w ∈ N ∧ ∀k ∈ domw, w(k) ∈ R
}

=
{
w ∈ RLΠM

∣∣ > ∧ >} =
{
w ∈ RLΠM

∣∣ >} =
{
w ∈ RLΠM

∣∣ w |= >
}

=
{
w ∈ RLΠM

}
= RLΠM .

�

Lemma 6[p11]

Proof. (1) Let ρ = σ� σ ′. RLΠ # ρM =
{
w ∈ RLΠM

∣∣ #w ∈ ∇ρ ∧ ∀k ∈ domw,w(k) ∈

ρ[k]
}

. Let us rewrite this condition using the definition of ρ:

#w ∈ ∇ρ ∧ ∀k ∈ domw,w(k) ∈ ρ[k]

⇐⇒ #w ∈ ∇σ ∩∇σ ′ ∧ ∀k ∈ domw,w(k) ∈ σ[k] ∩ σ ′[k]
⇐⇒ #w ∈ ∇σ ∧ ∀k ∈ domw,w(k) ∈ σ[k]

∧ #w ∈ ∇σ ′ ∧ ∀k ∈ domw,w(k) ∈ σ ′[k]

⇐⇒ w ∈ RLΠ # σM ∧w ∈ RLΠ # σ ′M

⇐⇒ w ∈ RLΠ # σM ∩ RLΠ # σ ′M ,

therefore
RLΠ # ρM =

{
w ∈ RLΠM

∣∣ w ∈ RLΠ # σM ∩ RLΠ # σ ′M
}



= RLΠM ∩ RLΠ # σM ∩ RLΠ # σ ′M

= RLΠ # σM ∩ RLΠ # σ ′M .

(2) Let ρ∞ =
⊗∞
n=0 σn. We have

RLΠ # ρ∞M =
{
w ∈ RLΠM

∣∣ #w ∈ ∇σ∞ ∧ ∀k ∈ domw,w(k) ∈ ρ∞[k]}
=

{
w ∈ RLΠM

∣∣∣∣∣ #w ∈
∞⋂
n=0

∇σn ∧ ∀k ∈ domw,w(k) ∈ ρ∞[k]
}

=

{
w ∈ RLΠM

∣∣∣∣∣ #w ∈
∞⋂
n=0

∇σn ∧ ∀k ∈ domw,w(k) ∈

∞⋂
n=0

σn[k]

}

=

{
w ∈ RLΠM

∣∣∣∣∣
∞∧
n=0

(
#w ∈ ∇σn

)
∧ ∀k ∈ domw,

∞∧
n=0

w(k) ∈ σn[k]

}

=

{
w ∈ RLΠM

∣∣∣∣∣
∞∧
n=0

(
#w ∈ ∇σn ∧ ∀k ∈ domw,w(k) ∈ σn[k]

)}

=

{
w ∈ RLΠM

∣∣∣∣∣
∞∧
n=0

w ∈ RLΠ # σnM

}

=

{
w ∈ RLΠM

∣∣∣∣∣ w ∈
∞⋂
n=0

RLΠ # σnM

}
=
∞⋂
n=0

RLΠ # σnM .

�

Lemma 13[p14]

Proof. (1 : ⊆) Let x ∈ RLΠmσ # σ C mM. There exists um ∈ Πmσ such that um
x(1)−−→

um+1
x(2)−−→ um+2

x(3)−−→ · · ·, and um+#x < R−1 (T(A)). By definition of Πmσ ,
there exist u0, . . . , um−1 ∈ T(A) such that u0 ∈ Π0σ = Π, . . . , um−1 ∈ Π

m−1
σ

and ρ1, . . . , ρm ∈ R such that ρ1 ∈ σ[1] , . . . , ρm ∈ σ[m] and u0
ρ1−→ u1

ρ2−→
· · · ρm−−→ um. Let us consider the word w = ρ1 . . . ρmx; its length is #w =

#x + m and #x ∈ ∇(σ C m) = ∇σ − m, thus #w ∈ (∇σ − m) + m = ∇σ \

J0,m− 1K. Furthermore, for all k ∈ J1,mK, we have by construction w(k) =

ρk ∈ σ[k], and for all k ∈ Jm+ 1, #wK, w(k) = x(k − m). By definition of
x ∈ RLΠmσ # σ C mM, for all i ∈ dom x, x(i) ∈ (σ C m)[i] = σ[i+m], thus for
all k ∈ Jm+ 1, #wK, w(k) = x(k −m) ∈ σ[k−m+m] = σ[k−m+m] = σ[k].
So we have that for all k ∈ domw, w(k) ∈ σ[k]. Thus we have built a word
w ∈ RLΠ # *∂σ | ∇σ \ J0,m− 1K +M such that wm+1 = x. There only remains to
remark that w ∈ RLΠ # *∂σ | ∇σ \ J0,m− 1K +M ⇐⇒ w ∈ RLΠ # σM ∧ #w > m, and



we can conclude this part. (2 : ⊇) Let x ∈
{
wm+1

∣∣ w ∈ RLΠ # σM ∧ #w > m
}

,
and let w ∈ RLΠ # σM such that x = wm+1; by the same type of immedi-
ate arguments as for (1), x ∈ RLΠmσ M. For all k ∈ domw, w(k) ∈ σ[k], so
for all k ∈ dom x, x(k) = wm+1(k) = w(k + m) ∈ σ[k+m] = (σ C m)[k].
As above, we have #w ∈ ∇σ \ J0,m− 1K, and since #x = #w − m, it fol-
lows that #x ∈ (∇σ \ J0,m− 1K) − m = (∇σ − m) ∩ N = ∇(σ C m). Thus
x ∈ RLΠmσ # σ C mM. �

Lemma 11[p14]

Proof. Let us start by noting that the statements (#w , n) and (#w > n⇒ #w > n)
are equivalent, and keeping in mind that if w ∈ RLΠ # σM is of length n, we
have u0

w(1)−−−→ u1
w(2)−−−→ · · · w(n)−−−→ un, with u0 ∈ Π0σ = Π and un ∈ Πnσ . This

said, ΨσΠ(n) holds by definition if and only if Πnσ ⊆ σ[n+ 1]
−1 (T(A)), which

is the formal way of saying “any term in Πnσ can be rewritten by a rule in
σ[n+ 1]”. It is equivalent to saying that for any w ∈ RLΠ # σM, if n ∈ domw,
then n + 1 ∈ domw, because only the maximal rewrite words are in RLΠ # σM.
In other words, ∀w ∈ RLΠ # σM, #w > n ⇒ #w > n + 1, or even more simply,
∀w ∈ RLΠ # σM, #w , n. �

Corollary 12[p14]

Proof. By Lemma 11[p14], we have immediately∧
n∈S∩∇σ

ΨσΠ(n) ⇐⇒ ∀w ∈ RLΠ # σM, #w < S ∩∇σ
⇐⇒ ∀w ∈ RLΠ # σM, #w < S ∨ #w < ∇σ
⇐⇒ ∀w ∈ RLΠ # σM, #w < S ∨⊥
⇐⇒ ∀w ∈ RLΠ # σM, #w < S .

�

Remark 14[p14]

Proof. It is immediate from the definition that we have
⋃
i∈I

RLΠiM = RL
⋃
i∈IΠiM.

Likewise, we have by definition RLΠ # σM =
{
w ∈ RLΠM

∣∣ P(w,σ)}, where P(w,σ)
is some predicate depending only on onw andσ, the details of which are irrelevant
for this proof. We have

⋃
i∈I

RLΠi # σM =
⋃
i∈I

{
w ∈ RLΠiM

∣∣ P(w,σ)} =
{
w ∈⋃

n∈I
RLΠiM

∣∣ P(w,σ)} =
{
w ∈ RL

⋃
n∈IΠiM

∣∣ P(w,σ)} = RL
⋃
n∈IΠi # σM. �

Lemma 15[p15]



Proof. Using Lemma 13[p14].{
w1+n

∣∣ n ∈ N, w ∈ RLΠ # σM, #w > n
}

=
∞⋃
n=0

{
w1+n

∣∣ w ∈ RLΠ # σM, #w > n
}

=
∞⋃
n=0

RLΠnσ # σ C nM =
∞⋃
n=0

RLΠnσ # σM = RL
∞⋃
n=0

Πnσ # σM

= RL
∞⋃
n=0

σ[ω]n (Π) # σM = RLσ[ω]∗ (Π) # σM .

�

Theorem 8[p13]

Proof. By induction on the structure of ϕ. Case σ = ξ(>):
RLΠ # ξ(>)M = RLΠ # εM = RLΠM =

{
w ∈ RLΠM

∣∣ w |= >
}

.

Case σ = ξ(⊥):
RLΠ # ξ(⊥)M = RLΠ # P#∅ | ∅QM

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σ ∧ ∀k ∈ domw,w(k) ∈ σ[k]
}

=
{
w ∈ RLΠM

∣∣ #w ∈ ∅ ∧ ∀k ∈ domw,w(k) ∈ ∅
}

=
{
w ∈ RLΠM

∣∣ ⊥ ∧⊥} =
{
w ∈ RLΠM

∣∣ ⊥}
=
{
w ∈ RLΠM

∣∣ w |= ⊥
}

Case σ = ξ(X):

RLΠ # ξ(X)M = RLΠ # PX # R | N1QM

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σ ∧ ∀k ∈ domw,w(k) ∈ σ[k]
}

=
{
w ∈ RLΠM

∣∣ #w > 1 ∧w(1) ∈ X ∧ ∀k ∈ domw, k > 1⇒ w(k) ∈ σ[k]
}

=
{
w ∈ RLΠM

∣∣ 1 ∈ domw ∧w(1) ∈ X ∧ ∀k ∈ domw, k > 1⇒ w(k) ∈ R
}

=
{
w ∈ RLΠM

∣∣ 1 ∈ domw ∧w(1) ∈ X
}

=
{
w ∈ RLΠM

∣∣ (w, 1) |= X} =
{
w ∈ RLΠM

∣∣ w |= X
}

Case σ = ξ(¬X):

RLΠ # ξ(¬X)M = RLΠ # PR \ X # R | NQM



=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σ ∧ ∀k ∈ domw,w(k) ∈ σ[k]
}

=
{
w ∈ RLΠM

∣∣ #w ∈ N ∧ ∀k ∈ domw,w(k) ∈ σ[k]
}

=
{
w ∈ RLΠM

∣∣ > ∧ ∀k ∈ domw,w(k) ∈ σ[k]
}

=
{
w ∈ RLΠM

∣∣ ∀k ∈ domw,w(k) ∈ σ[k]
}

=

{
w ∈ RLΠM

∣∣∣∣ 1 ∈ domw⇒ w(1) ∈ R \ X ∧

∀k ∈ domw, k > 1⇒ w(k) ∈ σ[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ 1 ∈ domw⇒ w(1) ∈ R \ X ∧

∀k ∈ domw, k > 1⇒ w(k) ∈ R

}
=
{
w ∈ RLΠM

∣∣ 1 ∈ domw⇒ w(1) ∈ R \ X
}

=
{
w ∈ RLΠM

∣∣ 1 < domw ∨w(1) ∈ R \ X
}

=
{
w ∈ RLΠM

∣∣ 1 < domw ∨w(1) < X
}

=
{
w ∈ RLΠM

∣∣ w |= ¬X
}

Case σ = ξ(X ∧ Y): In the first steps, we successively use the definition of the
signature, the signature-product lemma, and the induction hypothesis.

RLΠ # ξ(ϕ ∧ψ)M = RLΠ # ξ(ϕ)� ξ(ψ)M

= RLΠ # ξ(ϕ)M ∩ RLΠ # ξ(ψ)M

=
{
w ∈ RLΠM

∣∣ w |= ϕ
}
∩
{
w ∈ RLΠM

∣∣ w |= ψ
}

=
{
w ∈ RLΠM

∣∣ w |= ψ ∧w |= ϕ
}

=
{
w ∈ RLΠM

∣∣ w |= ψ ∧ϕ
}

Case ξ(•mϕ) = ξ(ϕ) I m: For simplicity of notation, let σ

/

= ξ(ϕ) and
σm = ξ(ϕ) I m. By induction hypothesis we have RLΠ # ξ(ϕ)M =

{
w ∈ RLΠM∣∣ w |= ϕ

}
. Let us note before beginning that #w ∈ ∇σm implies that #w > m. We

have:
RLΠ # ξ(•mϕ)M
= RLΠ # ξ(ϕ) I mM = RLΠ # σ I mM = RLΠ # σmM

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σm ∧ ∀k ∈ domw, w(k) ∈ σm[k]
}

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σm ∧ ∀1 6 k 6 #w, w(k) ∈ σm[k]
}

=

{
w ∈ RLΠM

∣∣∣∣ #w ∈ ∇σm ∧
∣∣∣∣∀1 6 k 6 m, w(k) ∈ σm[k]∀m+ 1 6 k 6 #w, w(k) ∈ σm[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ #w ∈ ∇σm ∧
∣∣∣∣∀1 6 k 6 m, w(k) ∈ R∀m+ 1 6 k 6 #w, w(k) ∈ σm[k]

}



=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σm ∧ ∀m+ 1 6 k 6 #w, w(k) ∈ σm[k]
}

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σm ∧ ∀m+ 1 6 k 6 #w, w(k) ∈ σ[k−m]
}

=

{
w ∈ RLΠM

∣∣∣∣ #w ∈ ∇σm∧
∀1 6 k−m 6 #w−m, w(k−m+m) ∈ σ[k−m]

}
=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σm ∧ ∀1 6 k 6 #w−m, w(k+m) ∈ σ[k]
}

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σm ∧ ∀1 6 k 6 #wm+1, wm+1(k) ∈ σ[k]
}

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σm ∧ ∀k ∈ domwm+1, wm+1(k) ∈ σ[k]
}

=

{
w ∈ RLΠM

∣∣∣∣ #w ∈ (∇σ \ {0}) +m ∧

∀k ∈ domwm+1, wm+1(k) ∈ σ[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ #wm+1 +m ∈ (∇σ \ {0}) +m ∧

∀k ∈ domwm+1, wm+1(k) ∈ σ[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ #wm+1
∈ (∇σ \ {0}) ∧

∀k ∈ domwm+1, wm+1(k) ∈ σ[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ #wm+1 , 0 ∧ #wm+1
∈ ∇σ ∧

∀k ∈ domwm+1, wm+1(k) ∈ σ[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ m+ 1 ∈ domw ∧ #wm+1
∈ ∇σ ∧

∀k ∈ domwm+1, wm+1(k) ∈ σ[k]

}
=
{
w ∈ RLΠM

∣∣ m+ 1 ∈ domw ∧wm+1
∈

RLΠ # σM
}

=
{
w ∈ RLΠM

∣∣ m+ 1 ∈ domw ∧wm+1
∈

RLΠ # ξ(ϕ)M
}

=
{
w ∈ RLΠM

∣∣ m+ 1 ∈ domw ∧wm+1
∈
{
w ∈ RLΠM

∣∣ w |= ϕ
}}

=
{
w ∈ RLΠM

∣∣ m+ 1 ∈ domw ∧wm+1 |= ϕ
}

=
{
w ∈ RLΠM

∣∣ m+ 1 ∈ domw ∧ (w,m+ 1) |= ϕ
}

=
{
w ∈ RLΠM

∣∣ (w, 1) |= •mϕ} =
{
w ∈ RLΠM

∣∣ w |= •mϕ
}

.

Case ξ(◦mϕ) = ξ(ϕ) B m: For simplicity of notation, let σ

/

= ξ(ϕ) and σm =

ξ(ϕ) B m. By induction hypothesis we have RLΠ # ξ(ϕ)M =
{
w ∈ RLΠM

∣∣ w |= ϕ
}

.
Note that we will reuse steps from the strong case, as the two proofs are very
similar. Indeed they only differ where∇σm is concerned. We have:

RLΠ # ξ(◦mϕ)M

= RLΠ # ξ(ϕ) B mM = RLΠ # σ B mM = RLΠ # σmM

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σm ∧ ∀k ∈ domw, w(k) ∈ σm[k]
}

=
{
w ∈ RLΠM

∣∣ #w ∈ ∇σm ∧ ∀k ∈ domwm+1, wm+1(k) ∈ σ[k]
}



=

{
w ∈ RLΠM

∣∣∣∣ #w ∈ J0,mK ∪ (∇σ+m) ∧

∀k ∈ domwm+1, wm+1(k) ∈ σ[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ (#w < m+ 1 ∨ #w ∈ ∇σ+m) ∧

∀k ∈ domwm+1, wm+1(k) ∈ σ[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ (#w < m+ 1 ∨ #wm+1 +m ∈ ∇σ+m) ∧

∀k ∈ domwm+1, wm+1(k) ∈ σ[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ (#w < m+ 1 ∨ #wm+1
∈ ∇σ) ∧

∀k ∈ domwm+1, wm+1(k) ∈ σ[k]

}
=

{
w ∈ RLΠM

∣∣∣∣ (#w < m+ 1 ∧ ∀k ∈ domwm+1, wm+1(k) ∈ σ[k])

∨(#wm+1
∈ ∇σ ∧ ∀k ∈ domwm+1, wm+1(k) ∈ σ[k])

}
=

{
w ∈ RLΠM

∣∣∣∣ (#w < m+ 1 ∧ ∀k ∈ ∅, wm+1(k) ∈ σ[k])

∨(#wm+1
∈ ∇σ ∧ ∀k ∈ domwm+1, wm+1(k) ∈ σ[k])

}
=

{
w ∈ RLΠM

∣∣∣∣ #w < m+ 1

∨(#wm+1
∈ ∇σ ∧ ∀k ∈ domwm+1, wm+1(k) ∈ σ[k])

}
=
{
w ∈ RLΠM

∣∣ #w < m+ 1 ∨ (w,m+ 1) |= ϕ
}

=
{
w ∈ RLΠM

∣∣ m+ 1 < domw ∨ (w,m+ 1) |= ϕ
}

=
{
w ∈ RLΠM

∣∣ w |= ◦mϕ
}

.

Case ξ(�ϕ) =
⊗∞
m=0

[
ξ(ϕ) B m

]
. Let us start by noting that, by application of

the product-breaking lemma, we have RLΠ # ξ(�ϕ)M = RLΠ #
⊗∞
m=0 ξ(ϕ) B mM =⋂∞

m=0
RLΠ # ξ(ϕ) B mM. Let w ∈ RLΠM; we have

w ∈ RLΠ # ξ(�ϕ)M ⇐⇒ w ∈

∞⋂
m=0

RLΠ # ξ(ϕ) B mM

⇐⇒
∞∧
m=0

w ∈ RLΠ # ξ(ϕ) B mM

⇐⇒
∞∧
m=0

w ∈ RLΠ # ξ(◦mϕ)M

⇐⇒
∞∧
m=0

w |= ◦mϕ ⇐⇒ w |=

∞∧
m=0

◦
mϕ

⇐⇒ w |= �ϕ ,

the last step being by lemma 1[p5]. So we have finally RLΠ # ξ(�ϕ)M =
{
w ∈ RLΠM∣∣ w |= �ϕ

}
. �



Proposition 16[p15]

Proof. By induction on ϕ. �

Theorem 9[p14]

Proof. Recall that the no-constraints lemma states that RLΠ # εM = RLΠM. Keeping
the Strong Semantics Lemma in mind as well, we have immediately

〈Π # ε 
s ϕ〉 ⇐⇒ ∀w ∈ RLΠ # εM, w |=s ϕ

⇐⇒ ∀w ∈ RLΠM, w |=s ϕ

⇐⇒ ∀w ∈ RLΠM, w |= ϕ

⇐⇒ R, Π |= ϕ .

�

Remark 10[p14]

Proof.

〈Π # σ 
µ �ϕ〉 ⇐⇒ ∀w ∈ RLΠ # σM, w |=µ �ϕ

⇐⇒ (λ ∈ RLΠ # ?σM⇒ λ |=µ �ϕ) ∧ ∀w ∈ RLΠ # ?σM, w |=µ �ϕ

⇐⇒ (λ ∈ RLΠ # ?σM⇒ >) ∧ ∀w ∈ RLΠ # ?σM, w |=µ �ϕ

⇐⇒ > ∧ ∀w ∈ RLΠ # ?σM, w |=µ �ϕ

⇐⇒ 〈Π # ?σ 
µ �ϕ〉 .

�

Proofs of translation rules.

Proof of rules (>)[p15] and (⊥). For all Π, σ, µ:

〈Π # σ 
µ >〉 ⇐⇒ ∀w ∈ RLΠ # σM, w |=µ >
⇐⇒ >

〈Π # σ 
µ ⊥〉 ⇐⇒ ∀w ∈ RLΠ # σM, w |=µ ⊥
⇐⇒ ⊥

�



Proof of rule (∧X)[p15]. Let us first assume that w is not the empty word, that is to
say, 1 ∈ domw; then w |=s X ⇐⇒ w |=w X ⇐⇒ w(1) ∈ X and we have, for all
Π, σ, µ:

〈Π # σ 
µ X ∧ Y〉 ⇐⇒ ∀w ∈ RLΠ # σM, w |=µ X ∧ Y

⇐⇒ ∀w ∈ RLΠ # σM, w |=µ X ∧ Y

⇐⇒ ∀w ∈ RLΠ # σM, (w |=µ X) ∧ (w |=µ Y)

⇐⇒ ∀w ∈ RLΠ # σM, (w(1) ∈ X) ∧ (w(1) ∈ Y)

⇐⇒ ∀w ∈ RLΠ # σM, w(1) ∈ X ∩ Y
⇐⇒ ∀w ∈ RLΠ # σM, w |=µ X ∩ Y
⇐⇒ 〈Π # σ 
µ X ∩ Y〉

Now, if w is the empty word, we have

〈Π # σ 
s X ∧ Y〉 ⇐⇒ ∀w ∈ RLΠ # σM, w |=s X ∧ Y

⇐⇒ ∀w ∈ RLΠ # σM, w |=s X ∧ Y

⇐⇒ ∀w ∈ RLΠ # σM, (w |=s X) ∧ (w |=s Y)

⇐⇒ ∀w ∈ RLΠ # σM, ⊥ ∧⊥
⇐⇒ ∀w ∈ RLΠ # σM, ⊥
⇐⇒ ∀w ∈ RLΠ # σM, w |=s X ∩ Y
⇐⇒ 〈Π # σ 
s X ∩ Y〉

〈Π # σ 
w X ∧ Y〉 ⇐⇒ ∀w ∈ RLΠ # σM, w |=w X ∧ Y

⇐⇒ ∀w ∈ RLΠ # σM, w |=w X ∧ Y

⇐⇒ ∀w ∈ RLΠ # σM, (w |=w X) ∧ (w |=w Y)

⇐⇒ ∀w ∈ RLΠ # σM, > ∧>
⇐⇒ ∀w ∈ RLΠ # σM, >
⇐⇒ ∀w ∈ RLΠ # σM, w |=w X ∩ Y
⇐⇒ 〈Π # σ 
w X ∩ Y〉

The proof of (∨X)[p15] is the same, with the substitution ∨/∧, ∪/∩. �

Proof of rule (∧)[p15].

〈Π # σ 
µ ϕ ∧ψ〉



⇐⇒ ∀w ∈ RLΠ # σM, w |=µ ϕ ∧ψ

⇐⇒ ∀w ∈ RLΠ # σM, w |=µ ϕ ∧w |=µ ψ

⇐⇒
(
∀w ∈ RLΠ # σM, w |=µ ϕ

)
∧
(
∀w ∈ RLΠ # σM, w |=µ ψ

)
⇐⇒ 〈Π # σ 
µ ϕ〉 ∧ 〈Π # σ 
µ ψ〉

�

Proof of rule (∨↑)[p15].

〈Π # σ 
µ ϕ〉 ∨ 〈Π # σ 
µ ψ〉
=⇒

(
∀w ∈ RLΠ # σM, w |=µ ϕ

)
∨
(
∀w ∈ RLΠ # σM, w |=µ ψ

)
=⇒

(
∀w ∈ RLΠ # σM, w |=µ ϕ ∨ψ

)
∨
(
∀w ∈ RLΠ # σM, w |=µ ϕ ∨ψ

)
=⇒

(
∀w ∈ RLΠ # σM, w |=µ ϕ ∨ψ

)
=⇒ 〈Π # σ 
µ ϕ ∨ψ〉

�

Proof of rule (∨¬⇒)[p15]. Obvious by ϕ ∨ ψ ⇐⇒ ¬ϕ ⇒ ψ. The only snag is that
¬ϕ is not necessarily an A-LTL formula and thus its signature may not exist. In
that case the rule cannot be invoked. �

Proof of rule (∨⇒
∧

)[p15].

〈Π # σ 
µ [ϕ ∨ϕ ′]⇒ ψ〉
⇐⇒ ∀w ∈ RLΠ # σM, w |=µ [ϕ ∨ϕ ′]⇒ ψ

⇐⇒ ∀w ∈ RLΠ # σM, w |=µ (ϕ⇒ ψ) ∧ (ϕ ′ ⇒ ψ)

⇐⇒ ∀w ∈ RLΠ # σM, (w |=µ ϕ⇒ ψ) ∧ (w |=µ ϕ ′ ⇒ ψ)

⇐⇒
(
∀w ∈ RLΠ # σM, w |=µ ϕ⇒ ψ

)
∧
(
∀w ∈ RLΠ # σM, w |=µ ϕ ′ ⇒ ψ

)
⇐⇒ 〈Π # σ 
µ ϕ⇒ ψ〉 ∧ 〈Π # σ 
µ ϕ ′ ⇒ ψ〉

�

Proof of rule (⇒Σ)[p15].

〈Π # σ 
µ ϕ⇒ ψ〉 ⇐⇒ ∀w ∈ RLΠ # σM, w |=µ ϕ⇒ ψ

⇐⇒ ∀w ∈ RLΠ # σM, (w |=s ϕ)⇒ (w |=s ψ)

⇐⇒ ∀w ∈ RLΠ # σM, (w |= ϕ)⇒ (w |=s ψ)

⇐⇒ ∀w ∈ RLΠ # σM, (w ∈ RLΠ # ξ(ϕ)M)⇒ (w |=s ψ)



⇐⇒ ∀w ∈ RLΠ # σM ∩ RLΠ # ξ(ϕ)M, w |=s ψ

⇐⇒ ∀w ∈ RLΠ # σ� ξ(ϕ)M, w |=s ψ

⇐⇒ 〈Π # σ� ξ(ϕ) 
s ψ〉

�

Proof of rule (◦m)[p15]. We use Lemma 13[p14].

〈Π # σ 
µ ◦mϕ〉
⇐⇒ ∀w ∈ RLΠ # σM, w |=µ ◦mϕ

⇐⇒ ∀w ∈ RLΠ # σM, 1+m < domw ∨ (w, 1+m) |=w ϕ

⇐⇒ ∀w ∈ RLΠ # σM, #w > 1+m =⇒ w1+m |=w ϕ

⇐⇒ ∀x ∈ RLΠmσ # σ C mM, #x+m > 1+m =⇒ x |=w ϕ

⇐⇒ ∀x ∈ RLΠmσ # σ C mM, #x > 1 =⇒ x |=w ϕ

⇐⇒ ∀x ∈ RLΠmσ # σ J mM, x |=w ϕ

⇐⇒ 〈Πmσ # σ J m 
w ϕ〉 .

�

Proof of rule (•m)[p15]. We use Corollary 12[p14], as well as Lemma 2[p9].

〈Π # σ 
µ •mϕ〉
⇐⇒ ∀w ∈ RLΠ # σM, w |=µ •mϕ
⇐⇒ ∀w ∈ RLΠ # σM, 1+m ∈ domw ∧ (w, 1+m) |=s ϕ

⇐⇒ ∀w ∈ RLΠ # σM, #w > m ∧ (w, 1+m) |=s ϕ

⇐⇒ ∀w ∈ RLΠ # σM, #w > m ∧ (1+m ∈ domw⇒ (w, 1+m) |=s ϕ)

⇐⇒
{
∀w ∈ RLΠ # σM, #w > m
∀w ∈ RLΠ # σM, (1+m ∈ domw⇒ (w, 1+m) |=s ϕ)

⇐⇒

{∧
n∈J0,mK∩∇σΨ

σ
Π(n)

∀w ∈ RLΠ # σM, (1+m ∈ domw⇒ (w, 1+m) |=w ϕ)

⇐⇒

{∧
n∈J0,mK∩∇σΨ

σ
Π(n)

∀w ∈ RLΠ # σM, w |=µ ◦mϕ

⇐⇒ 〈Π # σ 
µ ◦mϕ〉 ∧
∧

n∈J0,mK∩∇σ

ΨσΠ(n) .

�



Proof of rule (� ∗)[p15].. Assume that σ is stable.

〈Π # σ 
µ �ϕ〉
⇐⇒ ∀w ∈ RLΠ # σM, w |=µ �ϕ

⇐⇒ ∀w ∈ RLΠ # σM, ∀i ∈ domw, (w, i) |=w ϕ

⇐⇒ ∀w ∈ RLΠ # σM, ∀i ∈ domw, wi |=w ϕ

⇐⇒ ∀w ∈ RLΠ # σM, ∀i ∈ N1, i ∈ domw⇒ wi |=w ϕ

⇐⇒ ∀w ∈ RLΠ # σM, ∀i ∈ N1, #w > i⇒ wi |=w ϕ

⇐⇒ ∀x ∈
{
wi
∣∣ i ∈ N1, w ∈ RLΠ # σM, #w > i

}
, x |=w ϕ

⇐⇒ ∀x ∈
{
wn+1

∣∣ n ∈ N, w ∈ RLΠ # σM, #w > n+ 1
}
, x |=w ϕ

⇐⇒ ∀x ∈
{
wn+1

∣∣ n ∈ N, w ∈ RLΠ # σM, #w > n
}
\ {λ} , x |=w ϕ

⇐⇒ ∀x ∈ RLσ[ω]∗ (Π) # σM \ {λ} , x |=w ϕ

⇐⇒ ∀x ∈ RLσ[ω]∗ (Π) # ?σM, x |=w ϕ

⇐⇒ 〈σ[ω]∗(Π) # ?σ 
w ϕ〉 .

�

Proof of rule (�  h)[p15]. Using Lemma 1[p5] and Remark 10[p14]. Assume that σ is
unstable but can be stabilised, with  hσ ∈ N1.

〈Π # σ 
µ �ϕ〉 ⇐⇒

〈
Π # σ 
µ

[
 hσ−1∧
k=0

◦
kϕ

]
∧ ◦

 hσ �ϕ

〉

⇐⇒

〈
Π # σ 
µ

 hσ−1∧
k=0

◦
kϕ

〉
︸                          ︷︷                          ︸

A

∧

〈
Π # σ 
µ ◦ hσ �ϕ

〉

⇐⇒ A ∧
〈
Π

 hσ
σ # σ J  hσ 
µ �ϕ

〉
⇐⇒ A ∧

〈
Π

 hσ
σ # ?(σ C  hσ) 
µ �ϕ

〉
⇐⇒

〈
Π # σ 
µ

 hσ−1∧
k=0

◦
kϕ

〉
∧

〈
Π

 hσ
σ # σ C  hσ 
µ �ϕ

〉
.

�

Proof of rule (¬X)[p15].

〈Π # σ 
µ ¬X〉 ⇐⇒ ∀w ∈ RLΠ # σM, w |=µ ¬X



⇐⇒ ∀w ∈ RLΠ # σM, 1 < domw ∨w(1) < X

⇐⇒ ∀w ∈ RLΠ # σM, 1 < domw ∨w(1) ∈ R \ X

⇐⇒ ∀w ∈ RLΠ # σM, w |=w R \ X

⇐⇒ 〈Π # σ 
w R \ X〉 .

�
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