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Abstract—In our previous researches, a new digital
watermarking scheme based on chaotic iterations has
been introduced. This scheme was both stego-secure and
topologically secure. The stego-security is to face an attacker in
the “watermark only attack” category, whereas the topological
security concerns other categories of attacks. Its Lyapunov
exponent is evaluated here, to quantify the chaos generated
by this scheme.
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I. I NTRODUCTION

In the field of data hiding, it exists a great number of
various watermarking schemes [10], [8], [9], [13]. However
it currently exists only three data hiding schemes being
both stego-secure and topologically secure. The first one
is the “Natural Watermarking” with parameterη = 1 [4].
The two others are based on chaotic iterations. The first
of them is a one bit watermarking scheme [7], [2], whereas
the last one allows steganographic operations [6]. In orderto
enlarge the knowledge about the security of these processes,
the Lyapunov exponent of the digital watermarking scheme
based on chaotic iterations is evaluated here.

This document is organized as follows. In Section II, some
basic reminders are given. The semiconjugacy allowing the
exponent evaluation is described in Sect. III. In the next one,
the exponent is evaluated. This paper ends by a conclusion
section where our contribution is summarized.

II. BASIC REMINDERS

A. Chaotic Iterations and Watermarking Scheme

Let us consider asystemwith a finite numberN ∈ N
∗

of cells, so that each cell has a booleanstate. A sequence
which elements belong intoJ1;NK is a strategy. Finally, the
set of all strategies is denoted byJ1,NKN. Let Sn denotes
thenth term of a sequenceS, andVi the ith component of
a vectorV .

Definition 1 The setB denoting{0, 1}, let f : BN −→ B
N

be a function andS ∈ J1,NKN. The chaotic iterationsare

defined byx0 ∈ B
N and

∀n ∈ N
∗, ∀i ∈ J1;NK, xn

i =

{

xn−1
i if Sn 6= i

(

f(xn−1)
)

Sn if Sn = i.

In other words, at thenth iteration, only theSn−th cell is
“iterated”. Let us now recall how to define a suitable metric
space where chaotic iterations are continuous [3].

Let δ be thediscrete boolean metric, δ(x, y) = 0 ⇔ x =
y. Given a functionf , define the function:

Ff : J1;NK ×B
N −→ B

N

(k,E) 7−→
(

Ej .δ(k, j) + f(E)k.δ(k, j)
)

j∈J1;NK

Consider the phase spaceX = J1;NKN × B
N, and the map

defined onX by:

Gf (S,E) =
(

σ(S), Ff (i(S), E)
)

, (1)

whereσ : (Sn)n∈N ∈ J1,NKN −→ (Sn+1)n∈N ∈ J1,NKN

andi : (Sn)n∈N ∈ J1,NKN −→ S0 ∈ J1,NK are respectively
theshift and theinitial functions. Then chaotic iterations can
be described by the following discreet dynamical system:

{

X0 ∈ X
Xk+1 = Gf (X

k).
(2)

To study whether this dynamical system is chaotic [5], a
distance betweenX = (S,E) and Y = (Š, Ě) ∈ X has
been introduced in [3] as follows:d(X,Y ) = de(E, Ě) +
ds(S, Š), where:

de(E, Ě) =

N
∑

k=1

δ(Ek, Ěk) andds(S, Š) =
9

N

∞
∑

k=1

|Sk − Šk|

10k
.

This distance has been introduced to satisfy the following
requirements. If the floor value⌊d(X,Y )⌋ is equal ton,
then the statesE and Ě differ in n cells. In addition, its
floating part is less than10−k if and only if the first k
terms of the two strategies are equal. Moreover, if thekth

digit is nonzero, then thekth terms of the two strategies
are different. With this metric, and the boolean vectorial
negationf0, it has been proven in [3] that,

Theorem 1 Gf0 is continuous and chaotic in(X , d).



The digital watermarking scheme proposed in [7], [2]
is simply the iterations of this dynamical system on the
least significant coefficients of the considered media. Each
property exhibited by the dynamical system will then be
possessed too by the watermarking scheme. For further
explanations, see [7], [2].

B. The Lyapunov Exponent

Some dynamical systems are very sensitive to small
changes in their initial condition, which is illustrated by
both the constants of sensitivity to initial conditions and
of expansivity [3]. However, these variations can quickly
take enormous proportions, grow exponentially, and none of
these constants can illustrate that. Alexander Lyapunov has
examined this phenomenon and introduced an exponent that
measures the rate at which these small variations can grow:

Definition 2 Given f : R −→ R, the Lyapunov exponent
of the system composed byx0 ∈ R andxn+1 = f(xn) is

defined byλ(x0) = lim
n→+∞

1

n

n
∑

i=1

ln

∣

∣

∣

∣

f ′

(

xi−1
)

∣

∣

∣

∣

.

Consider a dynamic system with an infinitesimal error
on the initial conditionx0. When the Lyapunov exponent is
positive, this error will increase (situation of chaos), whereas
it will decrease ifλ(x0) 6 0.

Example 1 The Lyapunov exponent of the logistic map [1]
becomes positive forµ > 3, 54, but it is always smaller than
1. The tent map [12] and the doubling map of the circle [11]
have a Lyapunov exponent equal toln(2).

To evaluate the Lyapunov exponent of our digital water-
marking scheme, chaotic iterations must be described by
a differentiable function onR. To do so, a topological
semiconjugacy between the phase spaceX andR must be
written.

III. A T OPOLOGICAL SEMICONJUGACY

A. The Phase Space is an Interval of the Real Line

1) Toward a Topological Semiconjugacy:We show, by
using a topological semiconjugacy, that chaotic iterations on
X can be described as iterations on a real interval. To do
so, some notations and terminologies must be introduced.

Let SN = J1;NKN be the set of sequences belonging
into J1;NK and XN = SN × B

N. In what follows and for
easy understanding, we will assume thatN = 10. However,
an equivalent formulation of the following can be easily
obtained by replacing the base10 by any baseN.

Definition 3 The functionϕ : S10 × B
10 →

[

0, 210
[

is
defined by:

ϕ : X10 = S10 ×B
10 −→

[

0, 210
[

(

(S0, S1, . . .); (E0, . . . , E9)
)

7−→ ϕ
(

(S,E)
)

where (S,E) =
(

(S0, S1, . . .); (E0, . . . , E9)
)

, and
ϕ
(

(S,E)
)

is the real number:

• whose integral parte is
9

∑

k=0

29−kEk, that is, the binary

digits of e areE0 E1 . . . E9.
• whose decimal parts is equal tos = 0, S0 S1 S2 . . . =

∑+∞

k=1
10−kSk−1.

ϕ realizes the association between a point ofX10 and a
real number into

[

0, 210
[

. We must now translate the digital
watermarking processGf0 based on chaotic iterations on
this real interval. To do so, two intermediate functions over
[

0, 210
[

denoted bye ands must be introduced:

Definition 4 Let x ∈
[

0, 210
[

and:

• e0, . . . , e9 the binary digits of the integral part ofx:

⌊x⌋ =

9
∑

k=0

29−kek.

• (sk)k∈N the digits of x, where the chosen decimal
decomposition ofx is the one that does not have an

infinite number of 9:x = ⌊x⌋+

+∞
∑

k=0

sk10−k−1.

e ands are thus defined as follows:

e :
[

0, 210
[

−→ B
10

x 7−→ (e0, . . . , e9)

and
s :

[

0, 210
[

−→ J0, 9KN

x 7−→ (sk)k∈N

We are now able to define the functiong, whose goal is
to translate the chaotic iterationsGf0 on an interval ofR.

Definition 5 g :
[

0, 210
[

−→
[

0, 210
[

is by definition such
that g(x) is the real number of

[

0, 210
[

defined bellow:

• its integral part has a binary decomposition equal to
e′0, . . . , e

′

9, with:

e′i =

{

e(x)i if i 6= s0

e(x)i + 1 (mod 2) if i = s0

• whose decimal part iss(x)1, s(x)2, . . .

In other words, ifx =
9

∑

k=0

29−kek +
+∞
∑

k=0

sk 10−k−1, then:

g(x) =
9

∑

k=0

29−k(ek + δ(k, s0) (mod 2)) +
+∞
∑

k=0

sk+110−k−1.

2) Defining a Metric on
[

0, 210
[

: Numerous metrics can
be defined on the set

[

0, 210
[

, the most usual one being
the Euclidian distance∆(x, y) = |y − x|2. This Euclidian
distance does not reproduce exactly the notion of proximity
induced by our first distanced on X . Indeedd is richer
than ∆. This is the reason why we have to introduce the
following metric:



(a) Functionx → dist(x; 1, 234)
on the interval(0; 5).

(b) Functionx → dist(x; 3) on the
interval (0; 5).

Figure 1. Comparison betweenD (in blue) and the Euclidian distance (in
green).

Definition 6 Given x, y ∈
[

0, 210
[

, D denotes the func-

tion from
[

0, 210
[2

to R
+ defined by: D(x, y) =

De

(

e(x), e(y)
)

+Ds

(

s(x), s(y)
)

, where:

De(e, ě) =

9
∑

k=0

δ(ek, ěk), and Ds(s, š) =

∞
∑

k=1

|sk − šk|

10k
.

Proposition 1 D is a distance on
[

0, 210
[

.

Proof: The three axioms defining a distance must be
checked.

• D > 0, because everything is positive in its definition.
If D(x, y) = 0, then De(x, y) = 0, so the integral
parts ofx andy are equal (they have the same binary
decomposition). Additionally,Ds(x, y) = 0, then∀k ∈
N

∗, s(x)k = s(y)k. In other words,x and y have the
samek−th decimal digit,∀k ∈ N

∗. And sox = y.
• D(x, y) = D(y, x).
• Finally, the triangular inequality is obtained due to the

fact that bothδ and |x− y| satisfy it.

The convergence of sequences according toD is not the
same than the usual convergence related to the Euclidian
metric. For instance, ifxn → x according toD, then
necessarily the integral part of eachxn is equal to the
integral part ofx (at least after a given threshold), and
the decimal part ofxn corresponds to the one ofx “as far
as required”. To illustrate this fact, a comparison between
D and the Euclidian distance is given Figure 1. These
illustrations show thatD is richer and more refined than
the Euclidian distance, and thus is more precise.

3) The Semiconjugacy:It is now possible to define a
topological semiconjugacy betweenX and an interval ofR:

Theorem 2 Chaotic iterations on the phase spaceX are
simple iterations onR, which is illustrated by the semicon-

jugacy given bellow:
(

S10 ×B
10, d

) Gf0−−−−→
(

S10 ×B
10, d

)

ϕ





y





y

ϕ

(

[

0, 210
[

, D
)

−−−−→
g

(

[

0, 210
[

, D
)

Proof: ϕ has been constructed in order to be continuous
and onto.

In other words,X is approximately equal to
[

0, 2N
[

.

B. Chaotic Iterations Described as a Real Function

It can be remarked that the functiong is a piecewise
linear function: it is linear on each interval having the form
[

n

10
,
n+ 1

10

[

, n ∈ J0; 210× 10K and its slope is equal to 10.

Let us justify these claims:

Proposition 2 Chaotic iterations g defined onR have
derivatives of all orders on

[

0, 210
[

, except on the 10241

points inI defined by

{

n

10

/

n ∈ J0; 210 × 10K

}

.

Furthermore, on each interval of the form

[

n

10
,
n+ 1

10

[

,

with n ∈ J0; 210×10K, g is a linear function, having a slope
equal to 10:∀x /∈ I, g′(x) = 10.

Proof: Let In =

[

n

10
,
n+ 1

10

[

, with n ∈ J0; 210 × 10K.

All the points of In have the same integral parte and the
same decimal parts0: on the setIn, functions e(x) and
x 7→ s(x)0 of Definition 4 only depend onn. So all the
imagesg(x) of these pointsx:

• Have the same integral part, which ise, except probably
the bit numbers0. In other words, this integer has
approximately the same binary decomposition thane,
the sole exception being the digits0 (this number is
then eithere+210−s0 or e− 210−s0 , depending on the
parity of s0, i.e., it is equal toe+ (−1)s

0

× 210−s0 ).
• A shift to the left has been applied to the decimal part

y, losing by doing so the common first digits0. In other
words,y has been mapped into10× y − s0.

To sum up, the action ofg on the points of I is
as follows: first, make a multiplication by 10, and sec-
ond, add the same constant to each term, which is
1

10

(

e+ (−1)s
0

× 210−s0
)

− s0.

Remark 1 Finally, chaotic iterations used in our water-
marking scheme are elements of the large family of functions
that are both chaotic and piecewise linear (like the tent
map [12]).

We are now able to evaluate the Lyapunov exponent of
our digital watermarking scheme based on chaotic iterations,
which is now described by the iterations onR of the g
function introduced in Definition 5.



IV. EVALUATION OF THE LYAPUNOV EXPONENT

Let L =
{

x0 ∈
[

0, 210
[ /

∀n ∈ N, xn /∈ I
}

, where I

is the set of points in the real interval whereg is not
differentiable (as it is explained in Proposition 2). Then,

Theorem 3 ∀x0 ∈ L, the Lyapunov exponent of chaotic
iterations havingx0 for initial condition is equal toλ(x0) =
ln(10).

Proof: It is reminded that g is piecewise
linear, with a slop of 10 (g′(x) = 10 where
the function g is differentiable). Then ∀x ∈ L,

λ(x) = limn→+∞

1

n

∑n

i=1
ln
∣

∣

∣
g′
(

xi−1
)

∣

∣

∣
=

limn→+∞

1

n

∑n
i=1 ln |10| = limn→+∞

1

n
n ln |10| = ln 10.

Remark 2 The set of initial conditions for which this expo-
nent is not calculable is countable. This is indeed the initial
conditions such that an iteration value will be a number
having the form

n

10
, with n ∈ N. We can reach such a real

number only by starting iterations on adecimal number, as
this latter must have a finite fractional part.

Remark 3 For a system havingN cells, we will find,
mutatis mutandis, an infinite uncountable set of initial con-
ditionsx0 ∈

[

0; 2N
[

such thatλ(x0) = ln(N).

So, it is possible to make the Lyapunov exponent of our
digital watermarking scheme as large as possible, depending
on the number of least significant coefficients of the cover
media we decide to consider. Obviously, a large Lyapunov
exponent make it impossible to achieve the well-known
Original Estimated Attacks [4].

V. CONCLUSION AND FUTURE WORKS

As a conclusion, we have available to us now a new quan-
titative property concerning our digital watermarking scheme
based on chaotic iteration: its Lyapunov exponent is equal to
ln(N), whereN is the number of least significant coefficients
of the cover media. This exponent allows to quantify the
amplification of the ignorance on the exact initial condition
(the media without watermark) after several iterations of the
watermaking process. It illustrates the disorder generated
by iterations of our watermarking process, reinforcing its
chaotic nature.

Using the semiconjugacy described here, it will be possi-
ble in a future work to compare the topological behavior
of chaotic iterations onX and R, and to explore the
topological security of the watermarking scheme using this
new topology. Finally, an analogue study of the two other
topologically secure schemes will be also conducted in
order to compare these processes, being thus able to choose
the best one according to the type of applications under
consideration.
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