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Abstract. In-network data aggregation is considered an effective technique for
conserving energy communication in wireless sensor networks. Ristsnin
eliminating the inherent redundancy in raw data collected from the sendesn
Prior works on data aggregation protocols have focused on the reezsntrdata
redundancy. In this paper, our goal in addition of reducing measeadesdancy

is to identify near duplicate nodes that generate similar data sets. We aoaside
tree based bi-level periodic data aggregation approach implementee souttte
node and on the aggregator levels. We investigate the problem of findipajrel|

of nodes generating similar data sets such that similarity between eachf pair o
sets is above a thresholdWe propose a new frequency filtering approach and
several optimizations using sets similarity functions to solve this problem. To
evaluate the performance of the proposed filtering method, experimemntsl
sensor data have been conducted. The obtained results show thaipoomch
offers significant data reduction by eliminating in network redundanclyaan-
performs existing filtering techniques.

1 Introduction

Data collection from sensor networks can be made on demabg data streaming.
The first category is done by bi-directional dialogs betwt#ensensor nodes and the
base station. A request for data is sent from the end useheisitk to the sensor
nodes which, in return, send back the data to the user via haptcommunications.
On the other side, in data streaming, data flows primarilynfthe sensor node to the
sink. In this category we distinguish the periodic samplmgl the event driven data
models. In this paper we are interested in "periodic sargplaata model in sensor
networks, where the acquisition of sensor data from a numbamote sensor nodes
are forwarded to the gateway on a periodic basis. This datdelrs appropriate for
applications where certain conditions or processes nedxt tmonitored constantly,
such as the temperature in a conditioned space or pressangratess pipeline. There
are couple of important design considerations associatddtiae periodic sampling
data model. The most critical design issue is the phasaaelatnong multiple sensor
nodes. If two neighbor nodes operate with identical or siméihmpling rates, redundant
packets from the two nodes are likely to happen repeatediy.dssential for sensor
networks to be able to detect and clean redundant transéetedfrom the nodes to



the sink. In-network data aggregation has been proven adfegtiee technique for
eliminating redundancy and forwarding only the extractgrimation from the raw
data. Furthermore, by doing so data aggregation can ofthrcesthe communication
cost and extend the whole network lifetime.

In this paper we present a hierarchical multilevel dataeg@ation scheme aiming to
optimize the volume of data transmitted thus saving eneogygemption and reducing
bandwidth on the network level. A first level in-sensor pgxés done by the nodes
themselves. Instead of sending each sensor node’s rawadathase station, the data
is cleaned periodically by the sensor node itself beforelisgrit to an aggregator node
for a second level of aggregation. At this level, we are esgzd in exploring a new part
of the filtering aggregation problem, by focusing on ideyiti§ the similarity between
data sets generated by neighboring nodes and sent to theaggnmegator. Our objective
is to identify similarities between near sensor nodes, atejrate their captured data
into one record while preserving information integrity.

In this paper, we provide a new prefix filtering method to sttialy sets similar-
ity in sensor networks. We propose frequency filtering oation techniques, which
exploits the ordering of measurements according to thegufencies. A frequency of a
measure is defined by the number of occurrences of this messtire set defined at the
first aggregation level. Furthermore, we provide a new ogtition method for early
termination of sets similarity computing. To evaluate gop@ach we conducted exten-
sive experimental study using real data measurements. Gthéed results compared
to the existing algorithms show the effectiveness of ourhmetwhich significantly
reduces the number of duplicate data.

The rest of the paper is organized as follows, Section 2 gines/erview on related
works reported on data aggregation in sensor networksidhetlescribes our periodic
data aggregation scheme. The local aggregation level $epted in section 4. Review
on similarity functions and our proposed frequency filtgrtechniques are presented
in Section 5. Experimental results are given in Section 6tiSe 7 concludes the paper
with some directions to a future work.

2 Previous Data Aggregation Work

Data aggregation in wireless sensor networks has beentwdied in recent years [1]
[2] [3]. It means computing and transmitting partially aggated data to the end user
rather than transmitting raw data in networks to reduce thexgy consumption [4].
There are vast amount of extant works on in-network dataegggion in the literature.

Some of the methods reported recently are query based nsefbpfb]. A query
is generated at the sink and then broadcasted through thenketSome nodes just
process the query, while others propagate it, receivegbagsults, aggregate results,
and send them back to the sink. Various algorithmic techeschave been proposed to
allow efficient aggregation without increasing the message[7].

Some works, such as [8] [9] [10], use the clustering methodsafigregating data
packets in each cluster separately. Among these methaal$,BACH protocol [11]
[12]. In [9], the authors propose a self-organizing methmdbfygregating data based on
the architecture CODA (Cluster-based self-OrganizingpgBaggregation), based on the



Kohonen Self-Organizing Map to aggregate sensor data steslun a first step before
deployment, the nodes are trained to have the ability tesifiathe sensor data. Thus,
it increases the quality of data and reduces data traffic #isawenergy-conserving.
An adaptive data aggregation (ADA) scheme for clustered@enetworks has been
proposed in [10]. In this scheme, a time based as well assépatijregation degrees are
introduced. They are controlled by the reporting frequeasiicyensor nodes and by the
aggregation ratio at cluster heads (CHs) respectivelyfiihetion of the ADA scheme
is mainly performed at the sink node, with a little functidrCis and sensor nodes.

In atree based network as our presented work, sensor naleanized into a tree
where data aggregation is performed at aggregators alengetd to arrive to the sink.
Tree based data aggregation approaches are suitable fietviork data aggregation.
The authors in [13] [14], have proposed Tree on DAG (ToD) fatadaggregation, a
semistructured approach that uses Dynamic Forwarding dmplicitly constructed
structure composed of multiple shortest path trees to stpgbwork scalability. The
key principle behind ToD was that adjacent nodes in a grafihave low stretch in
one of these trees in ToD, thus resulting in early aggregatigpackets.

In our previous work [3], we have shown that existing prefixefing methods
are very complex and not suitable for sensor networks and rapoged a heuristic
based on the frequency ordering. In this paper, we proposepiimization techniques
based on frequency filtering extention which can be integratith our previous prefix
method [3] to find similar data sets efficiently. Furthermaeeprovide a new and faster
technique for sets similarity computation.

3 Periodic Data Aggregation

Due to resource restricted sensor nodes, it is importanirionize the amount of data
transmission among sensor networks so that the averagenkdifetime and the over-
all bandwidth utilization are improved. To reduce the anmaifisending data, an aggre-
gation approach can be applied along the path from sensdhg tsink. Sensor nodes
collect information from the region of interest and senaiaggregators. Each aggre-
gator then condenses the data prior to sending it on.

Our data aggregation method works in two phases, the firsabti® nodes level,
which we call local aggregation and the second at the aggegiavel. At each period
p each node sends its aggregated data set to its proper amggredpch subsequently
aggregates all data sets coming from different sensor rattsends them to the sink.

4 Local aggregation

In periodic sensor networks, we consider that each senstwirat each slot takes a
new measurement,. Then node forms a new set of captured measuremeiiswith
periodp, and sends it to the aggregator. It is likely that a sensoe nakks the same (or
very similar) measurements several times especially wghertoo short. In this phase
of aggregation, we are interested in identifying locallyplitate data measurements in
order to reduce the size of the gdt. Therefore, to identify the similarity between two
measures, we provide the two following definitions:



Definition 1 (link function). We define théink function between two measurements
as:

_ [0 i — sl <6,
llnk(yzsl ) y232) - { 0 otherwise

where/ is a threshold determined by the application. Furthermtwve,measures are
similar if and only if theirlink function is equal to 1.

Definition 2 (Measure’s frequency).The frequency of a measureme is defined
as the number of the subsequent occurrence of the same dars{atcording to the
link function) measurements in the same set. It is representgyby).

Using the notations defined above the local aggregatiorrittigo is done as fol-
lows [3]. For each new sensed measurement (at each slot)sarseode searches for
the similar measure already captured. If a similar measeneis found, it deletes the
new one while incrementing the corresponding frequency bgise it adds the new
measure to the set and initialize its frequency to 1. At treadrthe periodh, each node
1 will possess a local aggregated 8éf and send it to its aggregator.

5 Duplicate data sets aggregation

At this level of aggregation, each aggregator has recdiveets of measurements and
their frequencies. The idea here is to identify all pairs @ssvhose similarities are
above a given threshold For this reason we use a similarity function which measures
the degree of similarity between the two sets and returndweva [0, 1]. A higher
similarity value indicates that the sets are more similauswe can treat pairs of sets
with high similarity value as duplicates and reduce the sfzbe final data set that will

be sent to the sink.

5.1 Similarity Functions

A variety of similarity functions have been used in the biieire such as overlap thresh-
old, Jaccard similarity and Cosine similarity [15-17]. Wendte| M;| as the number of
elements (measures) in the 8¢f. The following functions can be used to measure the
similarity between two sets of measuremehfsandM; :

Overlap similarity: O(M;, M;) = |M; N M;|

Jaccard similarity: J(M;, M;) = [M:00]

B IJ\/I‘iUMjl |
Cosine similarity:  C(M;, M) = —2L0M]
) VM| x| M|

. .. s _ 2X|A[,jﬂM7J|
Dice similarity: D(M;, M;) = TG

All these functions are commutative and can be transforméag Overlap similar-
ity easily. For instance, we can present the Jaccard sityifanction as follows:
B O(M;, M;)

|Mi| + |Mj] — O(M;, M;)

J(M;, M)



In our approach, we will focus on the Jaccard similaritys lbne of the most widely
accepted function because it can support many other sityifanctions [16]. In our
application, two given setd/; andM; are considered similar if and only if:

J(M;, M;) >t

wheret is a threshold given by the application itself. This equatian be transformed
as:

where,a = 5. (|M;| + [M;]).

In order to study the similarity functions for data aggrégatin sensor networks,
we define a new function for overlapping;” between two sets of measurements as
follows:

Definition 3 (Overlap function). Consider two sets of measuremeis and Mo,
then we define:

MiNgMs = {(ylva) € M1xM?2 such thaTlmk(yl,yg) = 1}, andOs(MhMg) =
| My Ng M.

To evaluate the similarity between two sets we obtain:

t
J(M;, Mj) > t < |M; Ns M| Za:m(\Mi\HMﬂ) 2

5.2 Sets similarity computation

In this section we provide techniques for computing the lsirity between the received
sets. A néve solution to find all similar sets is to enumerate and campaery pair of
sets. This method is obviously prohibitively expensivelfmge data sets (such the case
of sensor networks), as total number of comparisai(is?).

To reduce the number of comparisons between sets a prefiniijtemnethod has
been proposed. Several approaches for traditional sitgijam between sets are based
on the prefix filtering principle [15] [17] [3]. This methodlimsed on the intuition that if
all sets of measures are sorted by a global ordering, somménats of them must share
several common tokens with each other in order to meet theshiotd similarity. An
inverted index maps a given measuremeno a list of identifiers of sets that contaim,
such thatink(m;, m) = 1. After inverted indices for all measures in the set are puilt
we can scan each one, probe the indices using every meashesset)/, and obtain a
set of candidates; merging these candidates together ggvikwir actual overlap with
the current sef/; final results can be extracted by removing sets whose qverith
M is less thar t£5.(|M;] 4- |M;])](Equation 1).

This intuition is formalized by the followind.emma inspired from [17]:

Lemma 1. Consider two sets of sensor measutésand M, such that their elements
are ordered by a global defined ordering. Let there fix be the first p elements 8f;.

If [M;Ns M;| > «, then the(|M;|—a+1)-pre fixz of M; and the(| M| —a+1)-pre fiz
of M; must share at least one element.



Proof. Lemma 1 can be proven similarly to the lemma of pédge [17].

To ensure the prefix filtering based approach does not missiarikarity set result,
as shown in Lemma 1 we need a prefix of lengthy| — [¢.|M;|] + 1 for every set
M, [3]. The algorithm for finding similarity sets based on préfitering technique is
given in Algorithm 1. It takes as input a collection of dataseoming from different
sensor nodes already sorted according to a defined ordérstans sequentially each
setM;, selects the candidates that intersects with its prefiemMards,M; and all its
candidates will be verified against the jaccard similatityeshold to finally return the
set of correct similar measurements sets.

Algorithm 1 Prefix-filtering based algorithm.

Require: Set of measures’ sefd = {M;, M>...M,}, and a threshold.
Ensure: All pairs of sets(M;, M;), such that/(M;, M) > t.

1. S« 0

2: I; + 0 (1 < i < total number of measures)

3: for each setM; € M do

4 p [Mi] = [t x [Mi]] +1

5 X + empty map from set id to int

6: fork+ 1topdo
7:
8

: if (1w, exists such thafink(w,ws) = 1) then
9: for each Measuremeif\/;[{]), f(M;,[l]) € L., do
11: end for
12: Ly, < Ly, U{M;}
13: else
14: createl,,
15: Iy + I, U{M;}
16: end if
17:  end for
18: for eachM; such thatX[M;] > 0 do
19: if OS(MI,M7) Zathen
20: (S < {(Mi, M;)})
21: end if
22:  end for
23: end for
24: returnS

Prefix filtering algorithm helps prune out unfeasible setmefsures, however, in
practice the number of non-similar sets surviving aftes technique is still quadratic
growth [18]. Following the prefix filtering, many optimizati methods [18] [19] were
proposed to prune out further the unfeasible non-similts. getrade-off of these pre-
fix filtering optimizations is that usually require more camggtional efforts which is
unsuitable by heavy resources sensor networks. In our apprave provide some opti-



mizations for prefix filtering techniques based on measuszgiEncy while taking into
account this trade-off.

5.3 Frequency filtering approach

In this section, we present our frequency filtering methoskelbaon prefix extension.
We begin by introducing some definitions and notations whithbe the basis of what
follows. In periodic sensor networks, two data sets arelamifi their measurements
overlap with each other, and especially the ones halvigler frequencies values

Definition 4 (Ordering ©). We define an ordering which arranges the measure-
ments of a given set by the decreasing order of their fregesnc

For two similar measures:; andm; such thatlink(m;,m;) = 1, we denote
fmin(ms, m;) = Min(f(m;), f(m;)) the minimum value of the frequency of these
measures.

Definition 5 (fs(M;, M;)). Consider two sets of measurks and M, we define
Oy (M;,M,;
FoM, M) = S0 MM (£ (i, my) € My 0 M),

In this paper, we consider that all sensor nodes operatethdtbame sampling rate,
and every node capturesmeasures with each perigpd Thus we can deduce that for
every received se¥/; from nodei we have:ZL”jl‘ (f(my € M;) = 7.

Using the Jaccard similarity function, two sét andM; are similar if and only
if: Os(M;, M;) > « wherea = 45.(|M;| + |M;]) (Equation (2)). Supposing that
the sets were sent to the aggregators without applying tsteafjjgregation phase and
without computing measures frequencies, thus we can obteat:

|]\/-[z‘ = ‘Mj|:Tande(Mi,Mj):OS(Mi,Mj). (3)
Hence, from Equation (2) and Equation (3) we can deduce that:

o 2%t
M; andM; are similar iff: fs(M;, M;) > % 4)

Frequency filter principle Lemma 1 states that the prefixes of two sets of measures
must share at least one measure in order to satisfy the piedikig condition P F'C).
Nevertheless, in sensor networks this condition is easitisfeed. In this section, we
will present an extension of the prefix filtering techniqueking the PFC' condition
more difficult to be satisfied.

Lemma 2. Assume that all the measures in the seftsand M are ordered according
to the global ordering). Let thep-pre fix be the first p elements 8f;. If f,(M;, M;) >

- M _
25T then f(p-M, p-M;) > Zle ‘(f(mk €p-My)) — 155 x 7.




Proof. We denote by-M; the prefix of the sef/; andr-M; the set of reminder mea-
sures wheré/; = {p-M; + r-M;}. We have:

fs(p-M;, M) + fs(r-M;, M)

fs(p-M;, p-Mj) + fo(p-M;,m-M;) +

fs(r-M;, My)

fS(p'Mivp'Mj) + fs(r-M;, Mj)
|r-DM; |

< folp-Mi,p-My) + Y (f(my € r-M;))
k=1

fS(Miij)

1%

In the second line we can omit the terfy(p-M;, r-M;) because we have assumed
that it is negligible compared to the other terms in the equatndeed, if the two sets
are similar then the measures having highest frequenciss lmeuin the prefix set and
not in the reminder, which means that the overlapping betvikep-1/; andr-M; is
almost empty. From the above equations and equation (4Msity1 condition) we can
deduce:

|r-M;|
2xXtxT
< -M.: v-M.: . -M.:
T S LMo+ ) (fm € r-Mi) (5)
From the following equation:
[p-M; | [r-M;]|
(f(my € p-M)) + Y (f(my € 7-M;)) =7 (6)
k=1 k=1
We obtain:
|p-M; | 1t
fs(p-M;, p-M;) > (flmi € p-M)) = g5 X 7 ©)

>
Il

1

The lemma is proved.

Algorithm 2 describes our method to find similar sets of measibased on the
frequency filtering approach. It is a hybrid solution, where integrate our frequency
condition presented in Lemma 2 to the prefix filtering apphopoesented in Algo-
rithm 1.

Jaccard similarity computation Although filtering approaches reduce the number
of comparisons between the received sets of measures, thieenwf candidate sets
surviving after this phase is still non negligible. Furtimere, the computation of the
jaccard similarity between two candidates sets can be vamptex, especially when

it comes to sensor networks where measures’ sets can hakearidreds or thousands
elements. Therefore, to continue filtering out further ¢datk sets we propose a new
frequency filtering constraint in the verification phasedting so, we can also reduce
the overhead of the jaccard similarity computation.



Algorithm 2 Frequency-filtering based algorithm.

Require: Set of measures’ sefd = {M;, Ms...M,}, ¢, 7.

Ensure: All pairs of sets(M;, M;), such that/(M;, M) > t.
Replace line 5 in Algorithm 1 with

— F's + empty map from set id to int
— sumFreq <+ 0
— fork + 1topdo
sumFreq < sumFreq+ f(mi € p-M,;)
— end for

Replace line 10 in Algorithm 1 with
= F's[M;] < Fs[M;] + fmin(M;[k], M;[l])
Replace line 18 in Algorithm 1 with

— for eachM; such thatF's[M;] > sumFreq — 15¢ x 7 do

Assume that we want to compute the similarity between twesgtand);. Then,
these sets are similar if they satisfy the overlap condifigdi/;, M;) > 2?% We also
assume that a measurec M, dividesM; into two partitions: one partition containing
all the measures having frequencies higher tfiém) including m denoted byh-M;
and the secondM; containing all the measures having frequencies less fttan).
Similarly, we assume that any measurelif) divides it in two partitionsh-A; andi-
M;. The idea of dividing the sets is to find a measure where apthégion a similarity
upper bound is estimated and checked against the simitarigéghold. As soon as the
check is failed we can stop the overlap computing early. Tijgothesis is formalized
by the following lemma:

Lemma 3. Assume thatM/;| < |M;| and all measures i/, are ordered according to
the global ordering®. M; and M; are similar = for anym € M, dividing M; into

h-M; andI-M; we have:f, (h-M;, M;) > 200 S (p (€ 1-0)).

Proof. M; andM; are similar

2XtXT
M. M:,)>=22"2"
= fS( 9 ]) = 1+t (8)
2xtx
= fulh-M;, M;) + fo(-M; M;) > = ©)
= Lulh-Mi M) > T M) (10)

1+t



Then we have:

[1-M;| | M|
Fo(-M;, M) < min(Y ) (f(mi), Y (F(mi)) (11)
k=1 k=1
[1- M|
< min( Y (f(mg € 1-M;)), 7) (12)
|1-M; | =
< D (flmy € 1-M)) (13)
k=1

From equations (10) and (13) we can deduce that:

|l' 11'
2XtXT
fs(h-M;, M) > ———— —

T (f(my, € I-M;)).

k=1
The lemma is proved.

The algorithm of overlap computation is given in Algorithm 3

Algorithm 3 Overlap Computation.
Require: Two sets of measure¥l; andMj, t, 7.
Ensure: Oy (M;, Mj).

1: Os <0

2: Considef M;| < |M;]

3: sumFreqH < 0

4: sumFreql < T
5: M; <« sort(M;,|M,|) M; is sorted in increasing order of the measures
6
7
8
9

: for k < 0to|M;| do
: sumFregl < sumFreql — f(M;[k])
Search similar of\/;[k] in M;
o find M;[1)/link(M;[k], M;[l]) =1
10:  sumFreqH < sumFreqH + fmin(M;[k], M;][l])
11:  if sumFreqH > Zit% — sumF'reql then

12: Os + 0Os+1
13: else

14: Return—oo
15: endif

16: end for

17: ReturnOg

In this algorithm, we used two kinds of measures orderingeddimg on the sets
sizes. The first one according to the global ordedh@)/; in the above algorithm) and
the second is sorted in increasing order of the measureséteaate a measure seafch

Lin our experiments we used the binary search



6 Experimental Results

To evaluate our approach, we conducted multiple seriesnadilations using the dis-
crete event simulator OMNET++ [20]. The objective of theisewudations is to confirm
that our prefix frequency filtering (PFF) technique can sssfidly achieve desirable
results for data aggregation in periodic sensor networksrdfore, In our simulations
we used real readings collected frafh sensor nodes deployed in the Intel Berkeley
Research Lab [21]. Every 31 seconds, sensors with weatlaedbavere collecting hu-
midity, temperature, light and voltage values. For the safk@mplicity, in this paper
we are interested in one field of sensor measurements: tipetatare?. We performed
several runs of the algorithms (an average of 15 runs). In eggerimental run, we gen-
erated a network of6 nodes corresponding to those was deployed in the Intel Bsrke
Lab. Each node then reads periodically real measures savadile while applying
the first aggregation algorithm. At the end of this step, esmite sends its set of mea-
sures/frequencies to an aggregator node which in his typhiespprefix and filtering
algorithms to theses sets. Furthermore, we compare ouoagiptto the ToD protocol
proposed in [13] [14]. As our real data sensor network cessiil6 nodes, we use ToD
in a one dimensional Network as explained in [14] and we oividd the network into
two F-cluster.

We evaluated the performance of the protocols using theviiilg parametersa)
the number of sensor measurements taken by all nodes dupegad 7, andb) the
threshold of the Jaccard similarity functien The threshold is fixed t00.07. The
aggregation function used for the ToD protocol is the saneel irs our approach (PFF)
based on the link function (cf section 4). We employ four mestim our simulations:

— The number of candidate sets generated after applying éfie filtering approach [3],
the frequency filtering algorithms with optimizations (BFRd the final result (the
real number of duplicate sets);

— Percentage of received measures: It represents how effectirotocol is in aggre-
gating data. It is the number of measures received by thecsiekthe number of
measures taken by all nodes.

— Data accuracy: represents the measures loss rate. It ilavaf measures taken
by the source nodes and did not received at the base stati@h (sis defined also
as the aggregation error.

— Overall energy dissipation: is the total energy dissipatibthe entire network. To
evaluate the energy consumption of our approach we useathe adio model as
discussed in [21].

6.1 Prefix frequency filtering optimizations

In this section we compared the number of candidates (nuwfbesmparisons) gen-
erated respectively by our frequency filtering techniqueR)? the prefix filtering al-
gorithm and the results obtained after applying the Jacsamilarity function. We

2 the others are done by the same manner
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fixed the number of the total measuremtns taken by all the xddeing a period to

7 = 8.F 4 04. The obtained result is shown in figure 1. We notice that, whersimi-
larity threshold increases from7 to 0.9, the number of comparisons of the frequency
filtering and the prefix filtering becomes closer. We can a¢sothat our frequency fil-
tering technique (PFF) outperforms the prefix filtering noelthin all cases. Moreover,
the number of candidates generated by all the algorithnmar iBifjger than the results
number. This is to prove that under this circumstance, apglgarly termination algo-
rithm is very effective (Algorithm 3).

6.2 Percentage of received measures and data accuracy

Figure 2 shows the percentage of received measures overtéh@amber taken by all
nodes for the temperature field. These experiments persticde how well aggregation
protocols do aggregation and reduce redundant measurfepdpierms better than ToD
in terms of data aggregation because of it is ability to camg&ts of data instead of
single packets. In other words, PFF reduces the number ohdaoht data traveling into
the networks better than TOD especially when the numberaafings increase (the case
of periodic networks). We also notice that, the percentdgeceived packets remains
almost unchangeable while increasing the sensor readings.



Figure 3 depicts the resulsts of the aggregation error.fmbisic is an important per-
formance index, and the high measures loss rate will imbectise of the data greatly.
The obtained results show that the two protocols have goddmeance regarding the
aggregation error. As expected, when we increase the thicksbf the similarity func-
tion we reduce the measures loss rate. For instance, we tiaa timt PFF outperforms
ToD in terms of data accuracy for= 0.9.

6.3 Overall energy dissipation

The overall energy dissipation is the total energy consionpif the entire network.
Figure 4 shows the results for total energy consumptioninédawhile varying the
total number of sensor readings. The figure shows that thalbeaergy dissipation for
different protocols increases as the number of readingsdses. We notice that ToD
consumes not too much, but does not scale well as the numtesadihgs increases. For
all the values of the threshoidested, PFF always outperforms the ToD protocol in total
energy dissipation. This is because, the packet-packepadson used in ToD instead
of data sets in PFF generates more transmissions in the mefwdhermore, the packet
construction in ToD contains additional information regdlifor the aggregation which
is not the case in PFF.

7 Conclusion and future work

In this paper we proposed a tree based bi-level model foratggeegation in periodic
sensor networks: Local aggregation and Frequency filtergiggegation. In the first one
we provided an aggregator for simple captured measurerhasésl on a link similarity
function while in the second level our objective is to deteud aggregate multiple data
sets generated by different neighboring nodes. We propasev frequency filtering
approach and several optimizations using sets similanitigtions to find similar data
sets. It was shown through simulations on real data measuntsnthat our method
reduces drastically the redundant sensor measures anerfoutps the existing prefix
filtering approaches.

We have two major directions for our future work. The firsediion seeks to adapt
our proposed method to take into account reactive pericelis@ networks, where
sensor nodes operate with different sampling rate. In gerapplications the dynamics
of the monitored condition or process can slow down or spgedind to save more
energy the sensor node can adapt its sampling rates to thgingadynamics of the
condition or process. The second direction is to developvaswdfix frequency filter
algorithm beside the frequency filtering approach propasdtiis paper. Our goal is
to use additional filtering method that prunes erroneouslidates that survive after
applying the prefix and frequency filtering technique.
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