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Abstract—Recently, a new environment for high performance
peer-to-peer distributed computing was proposed. This en-
vironment, named P2PDC, addresses stable or volatile sys-
tems communicating in a decentralized manner using the
self-adaptive protocol P2PSAP. P2PDC is devoted to task
parallel applications like numerical simulation problems or
optimization problems solved via parallel or distributed iter-
ative algorithms. For distributed applications meant to run
with P2PDC, a performance prediction tool named dPerf was
proposed. dPerf combines static and dynamic analysis with
trace-based simulation to provide scientist with information
about the execution of their large scale numerical simulation
applications. dPerf addresses real parallel and distributed
numerical simulation and optimisation applications written in
C, C++ or Fortran for P2PDC.

This paper introduces an enhancement of the dPerf tool
which provides scalable performance prediction results. Scaling
is done with respect to (i) network configuration and (ii)
number of peers. Scaling predictions based on network con-
figuration is achieved through trace-based simulation, where
various architectures can be studied. Scaling predictions based
on the number of peers implies analyzing the communication
topology and modifying trace files prior to simulation.

We present experimental results obtained for the obsta-
cle problem, a C/P2PDC implementation of the code used
in mechanics and finance. Prediction for this application is
computed under real conditions, with a reduced slowdown and
by providing user with scalable results.

Keywords - Scalability, performance prediction, static anal-
ysis, dynamic analysis, peer-to-peer computing, high perfor-
mance computing, task parallel model, numerical simulation.

I. INTRODUCTION

High Performance Computing (HPC) architectures are

undergoing a continuous evolution. The increase in number

of computing nodes, or the choice of a new network topol-

ogy which provides better performance usually represent a

non-negligible investment. The development of parallel and

distributed applications for emerging computing architecture

requires adaptation of existing applications, otherwise the

computing resources risk being inefficiently used. Peer-

to-peer (P2P) architectures come as an alternative type

of computing platform to stable HPC systems. With the

recent development of P2PDC [1], a decentralized peer-

to-peer environment devoted to task parallel applications

necessitating frequent data exchanges between peers, like

the solution of numerical simulation problems via parallel

iterative methods, scientists may port their HPC applications

to P2P testbeds for exploiting computing power at a more

convenient cost.

For best usage of the computing potential of HPC sys-

tems, a key role is held by performance prediction tools.

For this reason, dPerf [2] was recently proposed to the

HPC community as a tool for predicting performance of

distributed applications which communicate either via the

P2PSAP protocol [3], employed by P2PDC, or using MPI.

In this way, scientists willing to port their HPC codes to

P2P testbeds have access to the computing environment as

well as to the prediction tool giving them estimates on their

application behavior.

This paper introduces the scalability of predictions calcu-

lated with dPerf.

From a prediction viewpoint, scientists expect specialized

methods to evaluate HPC applications under conditions close

to reality. For most of proposed tools, this implies executing

the compiled application which leads to an increased slow-

down of the prediction method. Moreover, execution of the

analyzed code imposes constraints regarding the scalability

of the prediction. dPerf was first introduced in this context

but only some aspects have previously been addressed.

This paper introduces new features of dPerf which extend

its functionality from HPC benchmarks to a large number

of real numerical simulation and optimisation applications

considered under real conditions. One such application is the

obstacle problem which occurs in finance and mechanics.

The real conditions are taken into account by considering

compiler optimizations when computing the prediction. The

novelty in dPerf features is the scalability of results which

extends previous work on dPerf [2, 4]. The development

of dPerf is a result of a thorough study of the state of art

in performance prediction tools which shows that several

aspects are hardly addressed by existing methods. These

aspects are related to (i) the slowdown of a method, (ii) the

support for decentralized high performance P2P computing,

(iii) the support for multiple programming languages by



the same tool, and (iv) the analysis of applications using

communication paradigms other than MPI.

Relevant related work is presented in section II, showing

the main characteristics of existing methods for P2P comput-

ing and for HPC performance prediction in general. Section

III of this paper presents the peer-to-peer decentralized

computing environment P2PDC, then the scalability aspect

of dPerf is introduced in section IV. A case study on the

obstacle problem is presented in section V. We conclude

this contribution with section VI, where we also present our

perspectives on future improvements to P2PDC and dPerf.

II. RELATED WORK

Performance prediction methods have always accompa-

nied the evolution in computing systems and applications.

Most prediction tools are lagged behind by today’s comput-

ing architectures.

The usability of the numerous existing performance pre-

diction tools varies from providing developers with an in-

sights on their application behavior, to assisting scientists in

better choosing future computing system configuration. We

can classify, performance prediction tools as: analytical [5–

7], profile-based (based on compilers and instrumentation

tools) [8, 9], and hybrid [10–14]. The hybrid methods are

a combination of analytical- and profile- based. Our tool,

dPerf, belongs to the latter category.

Most research works for predicting application perfor-

mance address single-processor systems, are developed for

specific applications, or are executed in centralized envi-

ronments. Previous performance prediction tools do not

address decentralized peer-to-peer environments. For this

reason, we developed dPerf based on existing analysis and

simulation tools such as ROSE and Simgrid, which we

adapted and extended to the peer-to-peer decentralized com-

puting environment P2PDC. To the best of our knowledge,

P2PDC is the first decentralized computing environment

designed for peer-to-peer HPC applications with frequent

direct communications between peers and dPerf is the only

prediction tool that can analyze the performance of parallel

or distributed applications written for the P2PDC environ-

ment. Performance prediction tools developed prior to dPerf

and to the existence of P2PDC environment did not take

into account the decentralization in the logical topology of

computing systems.

III. P2PDC

In this section, we recall briefly some features of the

decentralized version of the P2PDC environment. The reader

is referred to [4] for more details on P2PDC. We recall that

P2PDC relies on a reduced set of communication operations

(P2Psend, P2Preceive and P2Pwait) and that the program-

mer cares only about the choice of distributed iterative

scheme of computation (synchronous or asynchronous) he

wants to be implemented via P2PDC and does not care

Figure 1: General topology architecture.

about the communication mode between any two peers.

The programmer has also the possibility to select a hybrid

iterative scheme of computation whereby computations are

synchronous locally and asynchronous at the global level.

P2PSAP chooses dynamically the most appropriate commu-

nication mode between any two peers according to decisions

made at application level like schemes of computation

and elements of context like network topology at transport

level. The decentralized version of P2PDC is based on a

hybrid topology manager and a hierarchical task allocation

mechanism which make P2PDC more scalable. In the sequel,

a task is a computation submitted to P2PDC and a subtask

is a part of the computation assigned to a given peer.

A. Hybrid topology manager

The topology manager of the decentralized version of

P2PDC is based on a hybrid architecture. This hybrid

architecture is simple and ensures scalability and efficient

peer collection for computation.

1) General topology architecture: Figure 1 illustrates

the general topology architecture. It consists of a Server,

Trackers and Peers.

• Server manages informations regarding trackers con-

nection / disconnection. It is the contact point of new

nodes joining overlay network for the first time. When

trackers or peers have no contact to join overlay net-

work, they contact the server in order to receive a list of

closest connected trackers, then they connect to trackers

in the received list. The server can also store statistic

information regarding connection/disconnection time,

resources donated/consumed of all nodes in the overlay

network.

• A tracker manages informations regarding a set of

peers, called a zone. It collects statistic information

regarding connection/disconnection time, resources do-

nated/consumed in his zone and periodically sends

these data to server.

• Peers are donors of computational resources. Peers are

grouped in zones and managed by the tracker of the

zone.

Trackers topology is a line (see Figure 2). Each tracker

T i maintains a set of closest trackers Ni in order to avoid



Figure 2: Trackers topology.

the case where some trackers are isolated. There are in the

set Ni, |Ni|/2 closest trackers having IP address greater

than IP address of owner tracker and |Ni|/2 closest trackers

having IP address smaller than IP address of owner tracker.

Moreover, each tracker maintains connection with the closest

tracker on the right side and the closest tracker on the left

side.

2) IP-based proximity metric: In the literature, there are

several proximity metrics that can be used in order to

calculate the proximity between peers in the network such

as IP path length, AS path length, geographic distance, and

measures related to RTT, etc (see [15]). Each metric has its

own advantages and drawbacks. We have chosen IP-based

proximity metric since it makes use of local information

(IP address) to calculate the proximity, hence it does not

consume network resource and it is faster than other metrics.

3) Initial topology: We assume that the system has

initially a server and some trackers managed by system

administrator. These nodes are the core of the system and are

on-line permanently. When the number of peers increases,

the system administrator chooses some reliable volunteers

(peers) to become trackers. The choice of trackers relies

on on-line time, i.e. volunteers peers with largest on-line

time are chosen. Moreover, trackers are chosen in order to

ensure that the number of peers in the different zones is well

balanced. When the P2PDC environment is downloaded and

installed at a node, the IP address of the server and a list of

trackers are set and stored in the local memory. This tracker

list will be updated when node joins the overlay network.

B. Hierarchical task allocation

When the submitter has collected enough peers, it divides

peers into groups based on proximity; in each group, a peer

is chosen by submitter to become a coordinator that will

manage others peers in the group. The number of peers in

a group cannot exceed Cmax in order to ensure efficient

management of coordinator. We have chosen Cmax = 32.

The submitter sends peers list of a group to the coordinator.

Then, the coordinator connects to all peers in its group and

sends a ”reverse” message to peers. When a peer is reserved

for a computation, it sends a message to its tracker to inform

that it is not free anymore. Figure 3 illustrates the allocation

graph.

The submitter decomposes task into subtasks and sends

subtasks to groups coordinators. Subtasks are then sent by

coordinators to peers. Subtasks results are sent in reverse

Figure 3: Allocation graph.

direction, i.e. peers send their subtask result to coordinator,

then coordinator transfers them to the submitter.

IV. SCALABLE PERFORMANCE PREDICTIONS

We propose a novel method for obtaining scalable predic-

tions. Scaling the performances of a computing architecture

has direct impact on the application execution. Studying

how an applications scales with respect to the architecture

is one of the main concerns of application developers in

the HPC domain. Our method gives results which can be

scaled to any number of processes and to any network

configuration. The scalability of predictions made by dPerf

relies on the usage of execution traces and of the trace-based

parametrized network simulator SimGrid [16].

A. Prerequisites

Several libraries and frameworks are required by dPerf.

These prerequisites are necessary for obtaining accurate

results which take into account the compiler optimization

levels, as well as for reducing dPerf slowdown and supplying

users with scalable results.

Our contribution to the performance prediction category

of tools uses a static approach for analysis and instrumen-

tation of an input source code. For this we use Rose [17], a

compiler framework which supports multiple programming

languages, such as C, C++ or Fortran, and provides a

front-end, mid-end and back-end to develop custom static

analysers. We use the front-end for parsing source codes

and for obtaining intermediate representations such as the

Abstract Syntax Tree or the System Dependence Graph.

Rose mid-end is useful for traversal and transformation of

the intermediate representations, while the back-end is es-

sentially designed for unparsing an AST into a transformed

source code, correct from syntax point of view.

We propose performance predictions that give accurate

results and consider a real context. For this, our contribution

makes use of hardware counters. These registers are now the

main tools for measurement since they are present in most

processing units. Performance registers are very accurate and

the stored information is accessible via interfaces such as

perfmon [18], perfctr [19] or PAPI [20, 21]. Our focus is

on the use of PAPI because it provides low and high level

interfaces which introduce a reduced noise in the measured

system. Details about dPerf usage of hardware counters were



presented previously in [2] (section III) and [4] (section

III.D.2).

Scaling of performance predictions with dPerf is achieved

(i) through simulation and (ii) by identifying the communi-

cation topology. dPerf makes use of a trace-replay module

available from SimGrid, a framework for building custom

simulators. By relying on SimGrid for replying traces, we

can (i) use any communication protocol, (ii) vary the system

parameters, (iii) study various network configurations, and

(iv) scale the number of computing nodes. Trace-based

simulations output the result extremely fast (see Figure 10

from [2]), the cost (tsimulation) being ten to one hundred

times faster than actual application execution (treal execution)

or the total time for obtaining a prediction result (tprediction).

Another important role in scaling the prediction results

is identifying the logical topology used by the analyzed

application. This is done with methods available from Rose

compiler. dPerf is able to identify the communication pat-

terns of certain application types in a static manner. For this,

dPerf uses the AST and SDG representation and it calculates

the neighbors of each process according to our rules. In this

paper we address the following logical topologies: master-

worker, 2D mesh and 3D torus.

B. Prediction under real conditions

For accurate predictions we consider the different levels

for optimizing a code at compilation time. This is achieved

by automatic instrumentation, compilation and execution.

The automatic instrumentation is implemented in dPerf

based on Rose Compiler Framework. We chose to implement

our contribution using Rose due to its support for multiple

languages, its front-end parser, the intermediate representa-

tions and the back-end unparser. This powerful framework

allows creating intermediate representations among which

we mention the Abstract Syntax Tree (AST) and the System

Dependence Graph (SDG). dPerf searches for relevant in-

structions in the AST and proceeds to their instrumentation.

The SDG is useful for solving some data dependencies such

as the propagation of variables throughout the program.

During the static analysis, dPerf applies a technique of

benchmarking by blocks of instructions, first introduced in

[2]. This technique separates the code into computation and

communication phases and yields accurate results with a

slowdown of approximately one. The slowdown is one of

the factors characterizing prediction tools. It is defined as

slowdownper process =
tprediction

treal execution × No. of processes
(1)

with slowdownper process the slowdown expressed per sim-

ulated process, tprediction the time necessary for obtaining

a prediction, treal execution the analyzed application execu-

tion time. A value equal to one means that the prediction

takes as much time as the real execution of the analyzed

application (see tnormal execution and tprediction curves in

Fig.4). The slowdown shows by how much a prediction tools

is slower than the actual execution time of the analyzed

application. For this reason, a prediction should tend to

be lower or equal to one. Otherwise, the efficiency of the

prediction tool decreases by spending more time computing

the prediction than to actually run the analyzed code. Most

performance prediction tools have a slowdown greater than

one, i.e.[22, 23]. This places our implementation in the group

of rapid prediction tools, such as [14, 24] .

C. Reducing the slowdown

Knowing that an important metric for classifying perfor-

mance prediction tools is the slowdown, we previously pro-

posed an optimized block benchmarking technique presented

in [2]. This method computes a threshold value which,

together with information identified in SDG (see section

IV-B) helps reducing the number of iterations for out-most

loops. By reducing the number of iterations in relevant loops,

the application behavior remains unchanged while the run

time is shortened. The tthreshold prediction curve in Fig. 4

depicts the time for obtaining a prediction with dPerf using

optimized block benchmarking (tthreshold prediction) with re-

spect to real execution (treal execution) and prediction using

simple block benchmarking (tprediction). It can be noticed

that tthreshold prediction is much smaller than treal execution,

hence the slowdown is less than 1. This places dPerf in the

group of tools such as [9], which are characterized by a gain

rather than by a slowdown.

 0

 5

 10

 15

 20

 25

 30

 2  4  8  16

T
im

e 
[s

]

Number of peers

NAS Integer Sort; Optimization level O 

tnormal execution
tprediction

tthreshold prediction

Figure 4: Measured time for the NAS IS benchmark (Class A); duration
of the prediction process with simple block benchmarking; duration of the
prediction process with optimized block benchmarking technique.

D. Scaling the prediction

We aim at predicting performance for a number of nodes

different from the one of the host architecture. This allows

the study of the impact of the variation of the number of

nodes on application performance. Scaling the prediction

is done with respect to system (i) network configuration

and (ii) number of computing nodes. It is achieved through

simulation and identification of communication topology.

Scalability from network point of view was presented in [4],



but the current paper proposes an improved performance pre-

diction method with respect to system network configuration

and node computing power.

A first way of expressing application performance is with

respect to network configuration. For this, dPerf relies on

simulations done using SimGrid MSG module. This allows

studying various network configurations for homogeneous

or heterogeneous systems. The different network types are

defined in terms of computing power of each machine, as

well as network fabric characteristics, i.e. links, bandwidth,

latency. The computing power of participant nodes can be

customized so that it can match the trace files. In our

implementation, machine power is taken from trace files

and it is expressed in nanoseconds. The cost for studying

different network configurations is very low due to the

simulation based on trace files. These traces are obtained

upon execution of the instrumented source code. SimGrid

allows users to choose the desired format for the traces,

permitting the definition of handlers for this custom format.

Another way for expressing application performance is

with respect to the number of computing nodes. We distin-

guish three phases in dPerf: (i) identifying the communi-

cation topology, (ii) modifying traces, and (iii) simulating

performances based on trace files. For simplicity, we denote

by dPerftopologthe communication topology identified with

dPerf.

Identifying the communication topology used by an ap-

plication requires source code analysis. Depending on com-

plexity and resolution of data dependency, applications may

require static or dynamic analysis. The current approach ad-

dresses only those applications having statically identifiable

parameters. This includes constants and variables which are

independent of the runtime data. The three virtual topologies

identified by our method are (i) master-worker, (ii) 2d

mesh and (iii) 3d torus. The master-worker communication

topology is identified according to formula (1) from [25]. We

recall that a program P follows a master-worker paradigm

if and only if:

∀k ∈ [1; ntasks], k ∈ N, ∄ vj/vivj ∈ E(Gi) with j 6= 0 (2)

with Gk(V,E) are k directed graphs with V (Gk) represent-

ing the tasks and E(Gk) the communications of program P .

Gk(V,E) represents therefore the communication scheme

of task number k. For this, the application must use a

star communication pattern having only one element at

the center of the star, the master process. By deriving

the above-presented formula, we identify 2d mesh and

3d torus topologies using the position of a current node

with respect to its communication neighbors. Knowledge

about application logical topology is necessary for changing

the scale of the computing architecture, hence this step

must be successfully completed before proceeding to trace

modification and simulation.

Modifying traces is the second step towards the scaling of
predictions with respect to the number of computing nodes.
The scaling of an application’s performances is tightly
connected to its logical topology. Let N be the number of
nodes on the host architecture and N ′ the number of nodes of
the scaled system, with N ′ < N . If dPerftopologis master-
worker, we modify traces from N peer such that

N ′ =







N + i , N = j

2k+p , N = 2k

N + 2 × k × p , N = 2 × k

(3)

∀i, j, k, p > 0, i, j, k ∈ N, with i the number of extra peers
when any number j of peers can be used; 2k+p or 2×k×p
the number of additional peers when the application requires
a multiple of 2k or 2×k peers respectively. If dPerftopologis
2d mesh, scaling from N to N ′ is done according to the
following formulae:

N ′ = N + c × i, ∀i > 0, i ∈ N (4)

for adding i rows to the mesh, with c the number of peers

in each row;

N ′ = N + l × i, ∀i > 0, i ∈ N (5)

for adding j columns to the mesh, with l the number of peers
in each column. When dPerf identifies a 3d torus topology,
we extend the formulae presented for 2d mesh such that:

∀i > 0, i ∈ N, N ′ =







N + c × i, to add i rows

N + l × i, to add i columns

N + p × i, to add i planes

(6)

where c, l and p are the number of columns, rows and planes

respectively.

Simulating performances using trace files is the last step

in scaling performance predictions with dPerf. This requires

the use of MSG, module available in SimGrid, the trace

replay process having been previously presented in this

section (see the performance scaling with respect to network

configuration).

V. EXPERIMENTS

In this section, we present (i) scalable performance predic-

tion results made by dPerf for a real application, i.e. obstacle

problem, ported to the P2PDC environment, as well as (ii)

the performance of P2PDC.

A. The obstacle problem

The application we consider, i.e. the obstacle problem, be-

longs to a large class of numerical simulation problems (see

[26]). The obstacle problem occurs in many domains like

mechanics and financial mathematics, e.g. Black-Scholes

problem for options pricing. We measured the time spent

by this code in computation and communication, the ratio

being shown in Fig. 5. The ratio varies with the number

of peers. However, the test code remain balanced from

communication-computation viewpoint, hence allowing us

to analyze its performance with respect to network configu-

ration and number of peers.
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Figure 5: Network and CPU time for the obstacle problem compiled with
GCC, optimization level 2.

1) Problem formulation: We briefly present the problem.
In the stationary case, the obstacle problem can be formu-
lated as follows:











Find u∗ such that
A.u∗ − f ≥ 0, u∗ ≥ φ everywhere in Ω,
(A.u∗ − f)(φ − u∗) = 0 everywhere in Ω,
B.C.,

where φ ∈ R2(or R3) is an open set, A is an elliptic

operator, φ a given function and B.C. denotes the boundary

conditions on ∂Ω.
There are many equivalent formulations of the obsta-

cle problem in the literature like complementary problem,
variational inequality and constrained optimization problem.
Reference is made to [26] for more details. We concentrate
here on the following variational inequality formulation:

{

Find u∗ ∈ Ksuch that
∀v ∈ K, 〈A.u∗, v − u∗〉 ≥ 〈f, v − u∗〉,

where K is a closed convex set defined by

K = v|v ≥ φ everywhere in Ω,

and 〈., .〉 denotes the dot product 〈u, v〉 =
∫

uvdx

2) Fixed point problem and projected Richardson method:
The discretization of the obstacle problem leads to the
following large scale fixed point problem whose solution
via distributed iterative algorithms (i.e. successive approxi-
mation methods) presents many interests.

{

Find u∗ ∈ V such that
u∗ = F (u∗),

(7)

where V is an Hilbert space and the mapping F : v → F (v)
is a fixed point mapping from V into V . Let α be a positive
integer, for all v ∈ V , we consider the following block-
decomposition of v and the associated block-decomposition
of the mapping F for distributed implementation purpose:

v = (v1, . . . , vα)

F (v) = (F1(v), . . . , Fα(v)) .

We have V = Πa
i=1Vi, where Vi are Hilbert spaces; we

denote by 〈., .〉i the scalar product on Vi and |.|i the

associated norm, i ∈ {1, . . . , α}; for all u, v ∈ V , we denote
by 〈u, v〉 =

∑α
i=1〈ui, vi〉i, the scalar product on V and |.|

the associated norm on V . In the sequel, we shall denote by
A a linear continuous operator from V onto V , such that
A.v = (A1.v, . . . , Aα.v) and which satisfies:

∀i ∈ {1, . . . , α}, ∀v ∈ V, 〈Ai.v, vi〉 ≥

α
∑

j=1

ni,j |vi|i|vj |j , (8)

where

N = (ni,j)i≤i,j≤α is an M − matrix of size α × α (9)

The reader is referred to [27] for the definition of M −
matrix. Similarly, we denote by Ki, a closed convex set
such that Ki ⊂ Vi,∀i ∈ {1, . . . , α}, we denote by K,
the closed convex set such that K = Πa

i=1Ki and b, a
vector of V that can be written as: b = (b1, . . . , bα).
For all v ∈ V , let PK(v) be the projection of v on
K such that PK(v) = (PK1

(v1), . . . , PKα
(vα)), where

PKi
denotes the mapping that projects elements of Vi onto

Ki,∀i ∈ {1, . . . , α}. For any δ ∈ R, δ > 0, we define the
fixed point mapping Fδ as follows (see [26]).

∀v ∈ V, Fδ(v) = PK(v − δ(A.v − b)). (10)

3) Parallel projected Richardson method: We consider

the distributed solution of fixed point problem (7) via pro-

jected Richardson method combined with several schemes of

computation. In this paper, we study essentially synchronous

iterative schemes of computation. Nevertheless, we present

and briefly analyze a first series of computational results for

asynchronous and hybrid schemes of computation at the end

of this section [28, 29].

B. Platform

Experiments are carried out on Grid’5000 testbed [30], the

French grid platform, that is composed of 2970 processors

with a total of 6906 cores distributed over 9 sites in France.

All of them have at least a Gigabyte Ethernet network for

local machines. Nodes between the different sites range from

2.5 Gflops up to 10 Gflops. Sites of Grid 5000 have several

clusters with different performances.

For experimenting with our performance prediction imple-

mentation, one part of the available resources of Grid’5000

are used, i.e. 2n peers of the Bordeplage cluster [31], with

n ∈ {1, 2, 3, 4, 5}. On each working node, only one core is

employed, regardless of the total number of available cores

per node. The nodes are Intel Xeon EM64T 3GHz, 1 MB

L2 cache, 2 GB Memory.

C. Computational experiments

Using the platform described in section V-B, we run

experiments with dPerf and the C/P2PDC implementation

of the obstacle code, by choosing a 3D problem with size

64×64×64. In Stage-1 of our experiment, we measure the

execution time of the test code (denoted tnormal execution).

Then, dPerf applies a static analysis and code transformation

technique. It is based on the abstract syntax tree created



with ROSE and it instruments the source code as to sep-

arate sequential instruction blocks from the communication

calls. By applying the block benchmarking technique briefly

described in sections IV-B and IV-C, an instrumented code

is obtained and executed. The outcome is a set of trace files

which are passed to the network simulator SimGrid and we

obtained a prediction with dPerf (tpredicted). The prediction

is compared to the measured time to see the precision of our

tool with respect to the reference time. The measurement,

the prediction and the error percentage are shown in Fig. 6.

We notice that for our study on up to 32 peers, the error is

under 15 percent.

The obstacle code; P2P implementation
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Figure 6: Measured time compared to predicted time (top), and dPerf error
percentage (bottom).

In Stage-2, after having analyzed the accuracy of our

prediction method implemented in dPerf, we study the

network scaling capabilities of our tool. The curves in

Fig.7 depict the performance of the tested application if

we decide to modify the network configuration. First, we
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Figure 7: Predicting performance of scaled network.

get the reference time tnormal execution by measuring the

real execution of the test code. The same reference time is

reused in figures 6, 7, and 8. Second, we do a precision

test by predicting performance for the same type of com-
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Figure 8: Predicting performance for a greater number of peers.

puting system as the one used for obtaining the reference

measurements (tpredicted Grid5000)). The predicted values for

tpredicted Grid5000 are the same as those in green in Fig.6.

Then, we predict application performance for two different

network configurations: (i) LAN type (tpredicted LAN ), and

DSL type (tpredicted daisy(xDSL)). Not only we can study

performance over various potential networks, but we can

also find alternatives to a given network infrastructure e.g.

the obstacle code has the same performance with 8 peers

over LAN as with 4 peers from Grid’5000. Similarly, 4 peers

in DSL provide the same computing power as 2 peers over

LAN.

In Stage-3, we study the node scaling capability of dPerf.

During static analysis, dPerf identifies the 2d mesh commu-

nication pattern used by the test code. Afterwards, the traces

obtained for two peers are modified to create additional

traces corresponding in turn to 2n, where n ∈ {1, 2, 3, 4, 5}.

In Fig.8, from the measurements taken on two nodes,

dPerf scales the prediction for 4, 8, 16, 32, 64, 128, 256

peers. The predicted time in Fig.8 is a scaled performance

prediction, while tpredicted and tpredicted Grid5000 in Fig.7

are predictions obtained without scaling, from unmodified

trace files.

We conclude this Section with the presentation and anal-

ysis of computational results obtained for several distributed

iterative schemes carried out on Grid 5000 with up to 256

peers on five sites (see Table 1). For this, we consider the

solution of a 3D obstacle problem with size 256×256×256.

Regarding the decentralized peer-to-peer computing envi-

ronment, we performed experiments on 8 clusters of 5 sites

on the Grid’5000 testbed. Machine characteristics on each

cluster and corresponding sequential computational time are

presented in table I, i.e. in an heterogeneous context.

The topology server is placed on the site Toulouse. On

each site, a tracker is launched in order to manage peers of

the site. The submitter is a machine of the cluster Sagittaire

at Lyon.

Figure 9 displays the speedup and efficiency of the

different parallel iterative schemes of computation, i.e.



Table I: Machine specification and sequential computational time.

Site Cluster Processor Memory Seq time

Lyon Sagittaire AMD 2.4 GHz 2 Gb 32166 s

Capricorne AMD 2.0 GHz 2 Gb 33942 s

Sophia Helios AMD 2.2 GHz 4 Gb 33178 s

Sol AMD 2.6 GHz 4 Gb 29400 s

Toulouse Pastel AMD 2.6 GHz 8 Gb 27843 s

Nancy Grelon Intel Xeon 1.6 GHz 2 Gb 32476 s

Orsay Gdx AMD 2.0/2.4 GHz 2 Gb 34636 s

Netgdx AMD 2.0 2 Gb 34711 s

synchronous, asynchronous and hybrid schemes. Hybrid

schemes of computation are a combination of synchronous

and asynchronous schemes; in particular, in a multi-cluster

context, computations can be carried out in a synchronous

way inside clusters and asynchronously at the global level.

We note that in the cases where the number of nodes is

less than 256 machines, computations are carried out on 4

clusters at 4 locations: cluster Pastel at Toulouse, cluster

Sagittaire at Lyon, cluster Grelon at Nancy and cluster Gdx

at Orsay. For each experiment, an equal number of nodes is

used at each site; for example, in experiment with 8 nodes, 2

nodes at Toulouse, 2 nodes at Orsay, 2 nodes at Nancy and 2

nodes at Lyon, respectively. In the case where the number of

nodes is 256, nodes of others clusters are used. Speedup and

efficiency are computed by using sequential computational

time on the most performant cluster, i.e cluster Pastel at

Toulouse.

Experimental results show that synchronous schemes of

computation carried out with P2PDC do not scale well

up on heterogeneous testbeds. Nevertheless, we note that

the combination of asynchronous schemes of computation

with P2PDC is very efficient. The lack of synchronization

overhead and idle time due to synchronization permit one

to obtain very good performance.

VI. CONCLUSION AND PERSPECTIVES

We observed the scalability of performance prediction

done by dPerf, a tool that can analyze C, C++ or Fortran

applications executed with the P2PDC decentralized envi-

ronment. dPerf is suited for predicting performances of nu-

merous HPC applications in numerical simulation and opti-

misation. We introduced notions about scalable performance

predictions made with dPerf. The static-analysis approach

of our tool, combined with execution and with trace-based

simulation allows studying application performance on a

scaled computing system.

For the application and topologies considered, we note

that asynchronous schemes of computation perform better

than the synchronous one. The efficiency of asynchronous

schemes of computation decreases slowly with the number

of processors; while the efficiency of synchronous schemes

of computation deteriorates greatly when the number of

processors increases; this is mainly due to synchronization

overhead and waiting time. The efficiency of hybrid schemes
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Figure 9: Computational results.

of computation is situated in between efficiencies of syn-

chronous and asynchronous schemes.

We are currently working on eliminating the dependency

of the instrumented code upon the host architecture. We aim

at providing performance prediction relatively to a reference

computing node. We plan on passing to the latest MSG

module from Simgrid. This will eliminate the constraint

related to the message size and thus improve the scalability

of the number of peers.

We also plan to extend dPerf so as to take into account non

determinism induced by distributed asynchronous iterative

schemes of computation.

Finally, we shall extend the P2PSAP protocol in order

to take into account Infiniband networks and carry out

experiments on more peers.
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