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ABSTRACT
This paper extends an elitist multi-objective evolutionary
algorithm, named GAME, based on several Pareto fronts
corresponding to various fitness definitions. An additional
operator is defined to create an adaptive version of this al-
gorithm, called aGAME. This new operator alternates dif-
ferent modes of exploration of the search place all along
aGAME execution. Mode switching is controlled accord-
ing to the values of two performance indicators, in order to
maintain a good compromise between quality and diversity
of the returned solutions. aGAME is compared with the pre-
vious version (GAME) and with the three best ranked algo-
rithms of the CEC 2009 competition, using five bi-objective
benchmarks and the rules of this competition. This exper-
imental comparison shows that aGAME outperforms these
four algorithms, which validate both the efficiency of the
proposed dynamic adaptive operator and the algorithm per-
formance.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms
Algorithms, Experimentation

Keywords
Adaptive multi-objective evolutionary algorithm, Quality and
diversity indicators, Pareto ranking

1. INTRODUCTION
Over the last decade, many research works dealing with

evolutionary algorithms (EA) focused on multi-objective al-
gorithms. They are often based on very famous algorithms
using Pareto ranking and non-dominated archives. Besides,
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designing adaptive algorithms is one of the most studied top-
ics in this area. Section 2 gives a brief survey on these sub-
jects. In the same way, this paper proposes a new adaptive
multi-objective algorithm, called aGAME. It extends the
previous version of an archive-based multi-objective algo-
rithm called Genetic Algorithm with Multiple parEto fronts
(GAME) [1]. The main parts of GAME are succinctly de-
scribed in Section 3. GAME lies on a ranking process in
which population is separated in several Pareto fronts. As-
sociated selection strategies and several fitness definitions
are also used. A parametric study based on design of ex-
periments allowed GAME to outperform three algorithms
in an experimental comparison based on the procedure of
CEC 2009 competition. In aGAME, an adaptive mecha-
nism is added in order to improve both performances and
robustness. This new contribution is presented in section
4. Both selection probability of non-dominated individu-
als and mutation rate vary during the evolutionary process.
This makes aGAME regularly switch between four behav-
ior modes: initialization, normal search, exploration and ex-
ploitation. These changes are activated according to the val-
ues of two metrics measuring both the quality and the diver-
sity of individuals. Finally, in section 5, the resulting algo-
rithm behavior is analyzed and compared to the behavior of
the previous static version GAME. This shows the impact of
the proposed dynamic adaptation operator (DAO). Besides,
all constrained bi-objective benchmarks of the CEC 2009
competition are used to measure the provided benefits and
to validate aGAME performance. Section 6 ends the paper
by giving the main conclusions of this work and developing
several promising prospects.

2. RELATED WORK

2.1 Elitist Pareto-based MOEAs
Many multi-objective evolutionary algorithms (MOEAs)

use the concept of Pareto dominance to rank solutions and
to apply selection strategies based on non-domination ranks.
Generally, such algorithms are elitists: the best solutions
(i.e. non-dominated solutions) are kept either in the popu-
lation itself or in a separate archive. In the first case, they
participate to reproduction process which guides the explo-
ration of the search space towards interesting areas. But
the number of non-dominated solutions might greatly in-
crease with the number of objectives, which limits the num-
ber of places reserved for new individuals. Therefore, such
algorithms generally use a specific operator to preserve di-
versity. Elitist Non-dominated Sorting Genetic Al-



gorithm (NSGA-II) [12], is certainly one of the most fa-
mous algorithms belonging to this first category. The second
class of MOEAs uses an archive of non-dominated solutions,
which does not necessary takes part in reproduction. Be-
sides, even if they use dominance to define the fitness of
individuals, they usually use indicators rather than rank-
ing in the strict sense of Pareto fronts. Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [30], as famous as
NSGA-II, is certainly the reference algorithm in this class of
MOEAs, known in literature as Indicator-based evolutionary
algorithms [29]. Therefore, several recent MOEAs were in-
spired either by NSGA-II or by SPEA2. This subsection can
not give an exhaustive survey of such approaches. It briefly
describes some of them, in order to give the main elements
required to position GAME, the algorithm on which this
contribution is based, in section 3. NSGA-II uses an elitist
selection strategy for replacement (with respect to fitness
and spread). For each generation, parents and offsprings
are gathered in a mating pool. A fast non-dominated sort-
ing approach is used to rank these individuals in subsequent
Pareto fronts. Then the next generation is built by prefer-
ing the individuals with the lower non-domination ranks. In
case of rank equality, the selection depends on a diversity
preservation mechanism. A density measure, called crowd-
ing distance, is computed in the objective space. For each
point, it represents the largest cuboid enclosing it without
including any other point in the population. Thus, when
two individuals have the same rank, the selection process
favors the individual with the largest cuboid. The tourna-
ment used to select parents for reproduction is also based on
this density measure. SPEA2 preserves elitism by using an
archive of non-dominated solutions. This set stores the best
individuals found by the algorithm. But it also participates
to genetic operations in order to guide the exploration of
the search space. For each generation, the non-dominated
solutions of the population are copied in this archive. This
may eliminate some other solutions in the archive (if they
are dominated by the entering ones). The fitness used in
SPEA2 is based both on dominance and neighborhood den-
sity. The algorithm assigns a weight to each solution S,
based on the number of non-dominated individuals (in the
archive and in the current population) which dominate S.
A density estimation is computed using the k-th nearest
neighbor method [12]. Finally, the fitness of S sums this
distance and the weights of the solutions which dominate
S. Only solutions of the archive participate to the repro-
duction selection. More recently, FastPGA (Fast Pareto
Genetic Algorithm) [9] combined the ideas introduced
in NSGA-II and SPEA2. FastPGA ranks parents and off-
springs in two sets: non-dominated solutions and dominated
ones. For non-dominated solutions, fitness is computed by
using the crowding distance defined in NSGA-II. For domi-
nated solutions, the calculation of fitness seems like the one
used in SPEA2. FastPGA generalizes the weight computa-
tion: the fitness of any dominated solution S is the sum of
the weights of individuals dominating S minus the sum of
the weights of individuals dominated by S. This allows to
limit the number of solutions which have the same fitness
value. Both non-domination rank and fitness are used in
the selection for reproduction. Besides, an additional mech-
anism dyamically controls the population size. This allows
FastPGA to keep good performances for optimization prob-
lems with complex objective functions (particularly those

the evaluation of which requires long computation times or
simulation). Indicator-based Evolutionary Algorithm
(IBEA) [29] is proposed in 2004. Its selection process ex-
plicitely lies on the computation of performance indicators.
The optimization goal is defined as one or several metrics
used to measure both quality and diversity of solutions (such
as those presented in section 4). Initially, such metrics were
defined to assess the performance of MOEAs at the end of
their execution. In IBEA, two metrics are used to define
individual fitness, but the authors indicate that any other
indicator may be used. Given that these metrics assess both
quality and diversity of solutions, no additional diversity
preservation mechanism is needed. In keeping with IBEA,
many EAs [28] and local search approaches [6] were de-
veloped, principally using hypervolume indicator to define
their selection process. Indeed, this indicator allows to both
estimate quality and diversity of individuals. Besides, it has
the advantage that it is the only quality indicator known
to be fully sensitive to Pareto dominance: if a set of solu-
tions entirely dominates an other set of solutions, then the
dominating set will have the best value of hypervolume indi-
cator [3]. Unfortunately, computing it is NP-hard, and it is
not easy to extend its computation to more than two objec-
tives. Therefore, many authors search for efficient methods
to compute or assess this indicator [3, 6, 7].

2.2 Adaptive MOEAs
An other way is explored in literature to increase both

quality and diversity of solutions returned by EAs. Indeed,
such algorithms are often criticized because they involve sev-
eral parameters, the values of which are difficult to choose.
Inadequate values might significantly decrease the algorithm
performance. Therefore, many recent research works focus
either on statistical tuning approaches [5, 16] or on adap-
tive algorithms. Such algorithms dynamically adapt their
parameter values. They can be classified according to the
type of adaptation they perform - i.e. how are the parame-
ters modified ? - or to the adaptation level - i.e. where are
the modifications performed (on each individual or on the
whole population)? These two classes may be combined to
get a hierarchical classification. Eiben et al. [14] first dis-
tinguish approaches which use parameter tuning from those
which focus on parameter monitoring. Then, they sepa-
rate this last category in three sub-classes: deterministic,
adaptive and self-adaptive approaches. Deterministic moni-
toring modifies parameters independently from intermediate
results provided by the algorithm. Typically, some indica-
tors, such as the generation number, are used to make the
values of parameters vary according to a given range of val-
ues or to a deterministic function. For instance, the popula-
tion size periodically varies in Saw-Tooth GA, the algorithm
proposed by Koumousis and Katsaras [17]. Tan et al. [20]
also presented such a method for binary genetic algorithms.
It associates a crossover rate and a mutation rate with each
bit. Variations of most significant bits are favoured at the
beginning of execution to allow a large exploration of the
search space. This probability then decreases in the course
of the execution. But according to De Jong [8], determin-
istic methods can hardly be applied, because predicting the
behavior an algorithm will have at a given generation is a
difficult task. Adaptive methods explore an other way. They
modify the evolution process of the optimization algorithm
by monitoring some of its characteristics. Deb et al. [13]



proposed a crossover operator which adapts the algorithm
evolution according to both the fitness of parents and the
fitness of the resulting offsprings. It is an adaptive version
of SBX (Simulated Binary Crossover ) [10]. Zeng et al. [25]
extended this contribution in such a way that the probability
distribution used by SBX is dynamically adjusted according
to diversity measures. Hippolyte et al. propose a multi-
agent based EA in which the population size results from
interactions between the solutions (each of them being rep-
resented as an agent) [?]. Finally, self-adaptive algorithms
insert the information which defines the adaptation strategy,
the parameters to be controlled for instance, in the chromo-
somes themselves. These additional genes participate to the
reproduction operations (in particular crossover). Solutions
with efficient adaptation strategies are more likely to survive
and to transmit this information to offsprings. Hinterding
et al. [15] introduced the gaussian mutation, which is based
on this principle: the parameter which permits to control
the gaussian function is added to the chromosome.

The new MOEA proposed in this paper, aGAME, be-
longs to the second category: some of its parameters, such
as mutation rate, vary in the course of its execution. These
variations depend on performance indicators, which are pe-
riodically computed to assess the quality and the diversity
of solutions. This is an adaptive version of GAME [1], a
MOEA which includes several pareto fronts to rank individ-
uals, a fitness function depending on the pareto set, and a
specific selection mechanism. The following section gives a
rundown on the main GAME’s principles, required to clearly
describe the improvements brought in the adaptive version.

3. GAME: STATIC MOEA WITH MULTI-
PLE PARETO FRONTS

GAME is an elitist MOEA which includes several pareto
fronts to rank individuals, like NSGA-II. But it defines sev-
eral fitness functions, like FastPGA. Indeed the fitness of
individuals depends on the pareto set they belong to. Be-
sides, a specific 2-step selection mechanism is also proposed.
All these particularities of GAME are detailed in this sec-
tion.

3.1 Ranking and fitness assignment
GAME (Genetic Algorithm with Multiple parEto sets)

splits the population into several Pareto fronts. This per-
mits to progressively rank individuals from non-dominated
ones (first Pareto front PF1) to dominated ones (last Pareto
front). An archive PF0 is also used to store non-dominated
solutions found since the beginning of the execution in order
to preserve elitism. When the optimization problem to be
solved includes constraints, this is taken into account while
building the successive Pareto fronts, using a penalty strat-
egy. Solutions which do not satisfy constraints (i.e. unfea-
sible solutions) are not allowed to enter PF1. Nevertheless,
when this set is empty, such solutions may be accepted by
default. Such a case may occur during the first generations
of the algorithm. But this is fastly corrected, as soon as fea-
sible solutions are found. They are more likely to survive,
they transmit their characteristics to their descendants, and
then unfeasible solutions naturally leave PF1.

Individual fitness depends on the Pareto front the evalu-
ated solution belongs to. GAME distinguishes three fitness
definitions. Given that the algorithm must return solutions

as close as possible to the optimal front PF ∗ while pre-
serving their diversity, the fitness of the solutions contained
in PF0 and PF1 is a diversity indicator: the crowding dis-
tance [12]. This indicator gives information about the distri-
bution of solutions within the front. GAME uses a normal-
ized crowding distance in order to avoid bias which might
be involved by the sizes of the different objective ranges. In
the second front PF2, GAME favours the solutions which are
closest to PF1. The used indicator is generational distance.
It measures the proximity between the solutions belonging
to the two fronts. Using a fitness based on this indicator in-
creases the selection probability of the solutions near PF1,
for reproduction and survival. Finally, for solutions in all
the remaining fronts, the fitness is defined as an indicator
called gain. The gain of solution −→xi in relation to −→xj for
objective function fk is called gain(−→xi ,

−→xj , k). It represents
the improvement brought by −→xi in comparison to −→xj for the
considered function. This gain, defined by equation 1, takes
values between -1 and 1. A negative value indicates that the
second solution is better than the first one for this objective.
The gain equals zero when the two solutions are equivalent.

gain(−→xi ,
−→xj , k) =

λ(fk(−→xi)− fk(−→xj))

Max(fk(−→xi), fk(−→xj))
(1)

where λ is a coefficient equal to 1 for maximization prob-
lems and -1 for minimization. The fitness of each individual
is the sum of its gains (for all the objective functions) in
relation to the other solutions belonging to the same front
(see equation 2).

fitness(−→xi) =

|PF |X
j=1

mX
k=1

gain(−→xi ,
−→xj , k) (2)

where

• |PF | is the size of the front to which −→xi belongs;

• m is the number of objective functions of the tackled
problem;

Each of these fitness definitions only makes sense within
the same front. Selection works in two steps. The first one
selects a front, while adapting to the number of fronts and to
their sizes. Indeed, a great selection probability assigned to
a front which size is low should give too much strength to the
individuals it contains. This would reduce diversity rate in
the next generation. The selection probability Proba(PFi)
GAME assigns to each front PFi takes into account both
its rank i and its size, in order to overcome this problem.
Finally, in the second selection step, a fitness-based tourna-
ment is used to select an individual among those belonging
to the selected front.

An experimental study was conducted to show the useful-
ness and the efficiency of the proposed ranking and selection
process. GAME compared favorably against the three best
ranked algorithms of the CEC 2009 competition [27]. Nev-
ertheless, for this static version, tuning of parameters was
performed in a preliminary parametric study based on sta-
tistical tools. Although the tuned values provided promising
results, they are certainly not adequate for all kinds of prob-
lems. Constant parameter values hardly allow algorithms to
adapt to search spaces which might have very different char-
acteristics. This motivated the design of an adaptive version



of GAME, called aGAME, in which a new dynamic adapta-
tion operator (DAO) is added to increase robustness. The
following section describes this contribution.

4. DYNAMIC ADAPTATION OPERATOR
Dynamic adaptation must allow MOEAs to adapt to var-

ious search spaces, particularly to detect local optima and
to climb out of them. It must also increase the algorithm
performance by making it find final solutions that are both
very various and as close as possible to global optima.

According to [9], an efficient MOEA must satisfy two con-
flicting goals: ensuring a wide exploration of the search space
while guiding the algorithm towards one (or several) global
optimum(a). In literature, many works [20, 21, 22, 4] show
that a wide exploration should be favoured at the beginning
of the algorithm execution. This strategy is known as ex-
plore first, exploit later . Exploration permits to identify
good solutions. Then, in the second phase, exploitation, the
neighborhood of these solutions is more intensively exam-
ined. The performance of the various proposed approaches
are generally compared using some indicators which measure
both quality and diversity of solutions. This work proposes
a new way to maintain the equilibrium between exploration
and exploitation phases. The proposed dynamic adaptation
operator periodically alternates various modes of exploration
all along aGAME execution. Mode switching occurs accord-
ing to the values of quality and diversity indicators. The fol-
lowing subsection presents the chosen metrics and motivates
this choice.

4.1 Quality indicators
In literature, many indicators were proposed to assess the

quality of the solutions returned by MOEAs. Like some pre-
vious adaptive approaches, aGAME uses such measures to
control the algorithm behavior. But, the proposed dynamic
adaptation operator uses two separate indicators, rather than
using a single metric to measure both diversity and quality
of solutions, like hypervolume indicator. First, this choice
was made to ensure the scalability of aGAME. Indeed, since
the computation of hypervolume indicator is NP-hard, us-
ing it would complicate the extension of aGAME to solve
optimization problems involving more than two objective
functions. Besides, Deb and Jain [11] explain that it is
best to use an indicator to measure the diversity of solutions
and an other one to assess the convergence of solutions to
the Pareto-optimal front. Therefore, the proposed operator,
DAO, uses the Inverted generational distance (IGD) to
measure the proximity between solutions and the optimal
Pareto front, when this one is known. Otherwise, the non-
dominated archive, which constitutes the best estimation of
this reference front, is used instead. IGD lies on the com-
putation of an euclidean distance to assess the mean of the
minimal distance between all the points of PF ∗ and those
of PF (see equation 3).

IGD =

“P|PF∗|
i=1 d∗m(

−→
x∗i )
”1/m

|PF ∗| (3)

where

d∗m(
−→
x∗i ) =

|PF |
min
j=1

vuut mX
k=1

(fk(
−→
x∗i )− fk(−→xj))2 (4)

−→
x∗i is a solution belonging to PF ∗ and −→xj is a PF solution.

DAO also uses a diversity indicator proposed by Deb and
Jain, and named diversity running performance met-
ric (DM) [11]. It evaluates the distribution of solutions in
a given front, in relation to one objective function. DM
is computed, for each generation, by projecting the non-
dominated solutions (belonging to the first Pareto front PF1)
onto an hyperplane. The latter is then divided in n hyper-
cubes 1. The diversity measure depends on the presence,
or the absence, of solutions in each hypercube. The DM
value is maximal when each hypercube contains at least one
solution.

Zeng et al. [24, 26] propose to define n as the ratio between
the size of the population and the number of objective func-
tions.

DAO periodically calculates the values of IGD and DM .
IGD is used to detect if aGAME does not manage to re-
duce the proximity between the population and the refer-
ence front. DM is used to check if this is due to a lack
of diversity, which could indicate that aGAME is trapped
in a local optimum. According to these elements, aGAME
chooses the best mode of exploration to be used during the
next period. This is detailed in the following subsection.

4.2 Adaptation mechanism
Keeping in the explore first, exploit later strategy, DAO

first uses an initial exploration phase, widely exploring the
search space, at the beginning of aGAME execution. This
phase duration is tinit, expressed in number of generations.
During this phase, the mutation rate (pm) depends on the
diversity level within the population (see equation 5).

pm = 1−DM(population) (5)

DM(population) takes values between 0 and 1. The clos-
est to 1 they are, the best the diversity level of the popu-
lation is. When DM(population) is near 0, representing a
low diversity within the population, pm increases in order to
favour mutations.

Beyond tinit, exploitation must be strengthened while pre-
serving aGAME from being trapped in possible local optima.
DAO regularly supervises (with a periodicity tmonitoring) the
algorithm behavior. It guides its evolution, when necessary.
Figure 1 presents the general working of DAO.

When the IGD of the archive did not vary between two
successive monitorings, this indicates that a stagnation phase
of IGD has begun 2. The correction to be applied depends
on the diversity level within the best solutions evaluated at

1Hypercubes which dimension is m−1, m being the number
of objective functions of the tackled problem.
2Computing the IGD of the archive is only possible when the
optimal solutions are known. Otherwise, the archive is used
as a reference front, because it represents the best known
assessment of the optimal Pareto front. Therefore, the in-
struction If IGD(A(t)) = IGD(A(td)) must be replaced by
If IGD(PF1(t)) ≤ IGD(PF1(td)) in the algorithm given in
figure 1.



1: t: generation number
2: tinit: duration of the initialization phase
3: tmonitoring: monitoring period of the algorithm
4: td: number of the generation during which the latest

monitoring occurred
5: P (t): population at generation t
6: PF1(t): first Pareto front of the population at genera-

tion t
7: A(t): non-dominated archive built until generation t
8: mode: behavior the algorithm must choose (normal,
exploration, initial exploration, or exploitation)

9: if t < tinit then
10: mode← initial exploration
11: else
12: if t%tmonitoring = 0 then
13: if IGD(A(t)) = IGD(A(td)) then
14: if DM(PF1(t)) > DM(PF1(t− 1)) then
15: mode← exploitation
16: else
17: mode← exploration
18: end if
19: else
20: mode← normal
21: end if
22: end if
23: td ← t
24: end if
25: return mode

Figure 1: Dynamic adaptation algorithm

time t. If these solutions are more various than those belong-
ing to the previous generation, there is certainly no diversity
loss in the current population. The behavior to adopt, ex-
ploitation mode, consists in intensifying the search of new
solutions in the neighborhood of the best known solutions.
The archive of non-dominated solutions then participates to
reproduction operations. During the selection of parents, it
has a greater selection probability than any other set of so-
lutions. Consequently the solutions it contains have priority
when aGAME selects some parents.

If IGD stagnates and the diversity of the best found solu-
tions did not change or decreased, the algorithm might be
trapped in an optimum, which may be either local or global.
In case of global optimum, finding no improvement in the
quality of the solutions anymore is normal. All the behavior
corrections brought by DAO will be unsuccessful, but this
will not damage the archive quality. Otherwise, if the al-
gorithm is in a local optimum, increasing its mutation rate
could allow it to escape from this trap. The strategy to be
used is then the exploration mode. Equation 6 precises
the formula used to control the mutation rate variation.

pm = DM(PF1) (6)

If DAO does not detect any IGD stagnation at the time
of monitoring, it selects the normal mode which works as
GAME. In this case, the mutation rate equals a value usually
used in literature (equation 7).

pm =
1

number of variables
(7)

Thus, periodical monitorings based on the proposed DAO
permit to guide aGAME all along its execution.

5. VALIDATION AND PERFORMANCE AS-
SESSMENT

The specific characteristics of aGAME are validated in
this section. The impact of multiple Pareto fronts was il-
lustrated in previous work [1]. This paper focuses on the
influence of the dynamic adaptation operator and the com-
parison of aGAME with other algorithms in the literature.

5.1 Experimental procedure
The experimentations carried out in this paper are based

on all constrained bi-objective problems proposed for the
CEC 2009 competition [27]. It consists in seven minimiza-
tion problems with 10 real-valued decision variables.

In accordance with the experimental procedure indicated
for the CEC 2009 competition, each evolutionary algorithm
executes thirty independent runs for each addressed prob-
lem. The maximum number of evaluations is 30,000. In
order to meet this requirement, GAME and aGAME use a
population size equals to 100 and a number of generations
equals to 300. Moreover, they use a 2-point crossover and
a bitflip mutation operators. The crossover rate is 0.8 and
the mutation rate is 1

number of variables
(it may vary during

aGAME’s execution, due to DAO).
The parameters of each algorithm should be the same for

all the problems with the same number of objective func-
tions.

The performance indicator to be used as a comparison
criterion is the IGD (see Equation 3). The IGD is to be
minimized.

5.2 Influence of the dynamic adaptation oper-
ator

Since evolutionary algorithms are stochastic processes, they
are usually carried out several times before drawing up con-
clusions based on statistically reliable results. The first con-
strained problem of the CEC 2009 competition has been
solved in thirty independent runs by GAME (non-adaptive
algorithm) and aGAME, in order to assess the impact of
the proposed dynamic adaptation operator. The evolution
of the IGD over generations for the two algorithms is shown
in Figure 2. In this figure, each point represents the aver-
age of thirty IGD (30 runs) for the corresponding generation
number.

At the end of 300 generations, aGAME provides a lower
value of IGD than GAME. The curve of the IGD provided
by aGAME decreases slower than the one given by GAME.
This is due to the initial phase of exploration which favors a
quick scan of the search space. The two curves in Figure 2
are obtained by computing the average of the IGD (of each
generation) for thirty executions. A detailed examination
of the progress of GAME for a randomly selected execution
shows that the curve of the IGD is a staircase curve, with
relatively long periods of stagnation. This is illustrated in
Figures 3 to 8, which are representative of the evolution of
the IGD along 300 generations for 6 independent trials (with
5 Pareto fronts).

The experience that allowed to plot Figure 3 was taken
with aGAME (using the same algorithmic parameters and
the same set of random numbers) in order to illustrate the
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Figure 2: Average IGD for 30 independent runs of
GAME and aGAME on the CEC 2009 first con-
strained problem
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Figure 3: Trial 1
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Figure 4: Trial 2
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Figure 5: Trial 3
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Figure 6: Trial 4
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Figure 7: Trial 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  50  100  150  200  250  300

I
G

D

Generation number

Figure 8: Trial 6

influence of DAO on the progress of aGAME. The following
values were arbitrarily set to the parameters required by
DAO:

• tinit = 15% of the total number of generations

• tmonitoring = 5% of the total number of generations

The IGD of the archive of non-dominated solutions of
aGAME (Figure 9) does not decline as rapidly as in the
case of GAME (Figure 3). Indeed, aGAME begins with an
initial exploration phase during which the probability of mu-
tations is generally higher than in the GAME version. The
goal is to enable a broad scan of the search space during the
early generations and gather as much information as possi-
ble. The best solutions are added to the archive and their
characteristics can be used during the exploitation phase.
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Figure 9: Trial 1 with
DAO
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Figure 10: Dynamic
mode switching

For this example, the initial exploration phase is 45 gen-
erations long. After the expiration of tinit, aGAME alter-
nates between three modes: normal, exploitation and explo-
ration (see Figure 10). This dynamic change strategy allows
aGAME to steady improve its convergence indicator. This
enables aGAME to reach lower IGD values at the end of the
optimization process.

5.3 Comparison with other MOEAs
aGAME is compared to some algorithms of the literature.

This comparative study is based on constrained bi-objective
problems proposed for the CEC 2009 competition. Thus,
it is compared to the three best ranked algorithms in this
category (Constrained problems)during the CEC 2009 com-
petition: DMOEA-DD [19], LiuLi [18] and MTS [23].

DMOEAD-DD (Dynamical Multiobjective Evolutionary
Algorithm - Domain Decomposition) improves DMOEA [31]
that used an aggregated fitness function including the no-
tion of Pareto dominance, entropy and density (based on
crowding distance). In the improved variant, authors split
the search space into several subsets. DMOEA computes
Pareto fronts for each of them. Genetic operators permit
information exchange between these subsets.

LiuLi (concatenation of the authors’name: Hai-Lin Liu
and Xueqiang Li) splits the search space into sub-areas in
order to reduce algorithm complexity. Genetic operations,
particularly reproduction, are performed in a single sub-
area. Information exchange between areas is based on chil-
dren, because they may be assigned to other areas.

MTS (Multiple Trajectory Search) is an algorithm based
on three local search methods. For each solution, MTS de-
termines the method which corresponds to its neighborhood.



This algorithm begins with a large search. The size of neigh-
borhood is progressively reduced until it reaches a given
minimal size. Then its size is set to its initial value and
the regression re-starts.

To illustrate the gain brought by the dynamic adaptation
operator (DAO), aGAME performance is also compared to
those of its non-adaptive version (GAME). The comparison
is made in accordance to the experimental conditions defined
in the competition. For each algorithm, Table 1 presents
the average of the IGD values computed in the sets of final
solutions, in 30 independent executions. This study shows
that, globally, GAME reaches solutions which are quite close
to the reference front. This results in low IGD values in
table 1. Moreover the adaptive version, aGAME, performs
better than GAME.

In Table 1, the values in brackets represent the gain of the
associated algorithm with respect to aGAME. A negative
value indicates that aGAME outperforms that algorithm.

This study shows that, globally, GAME reaches solutions
which are quite close to the reference front. This results in
low IGD values in table 1. Moreover the adaptive version,
aGAME, performs better that GAME

6. CONCLUSION
To sum up, GAME is an elitist multi-objective genetic

algorithm, based on the building of multiple Pareto fronts.
This ranking strategy and the associated 2-step selection
provided gains both in terms of proximity with optimal so-
lutions and in terms of diversity in the set of final solutions
returned by GAME.

Moreover, aGAME improves the results of GAME adding
an adaptive strategy (DAO). Each loop is more efficient by
selecting the right mode (exploration or exploitation) at the
right time.

Finally, using the experimental conditions of the CEC 2009
competition showed that aGAME would have been quite
well ranked in this competition, which constitutes a promis-
ing result. In addition, aGAME uses a parallel evaluation
procedure based on a master-slave model. This model al-
lowed to reduce the experimentation duration in previous
work in the field of mobile networks [2]. In this context,
a previous version of the algorithm allowed to solve con-
strained problems with four objectives, the evaluation of
which was done using a network simulator. Nevertheless,
designing an asynchronous version of aGAME would be very
interesting. Such a version would no longer rely on an archi-
tecture where the master must wait until all the slaves have
finished their task before building the next generation.
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