
Job Scheduling Using successive Linear
Programming Approximations of a Sparse Model

Stephane Chretien1, Jean-Marc Nicod2, Laurent Philippe2,
Veronika Rehn-Sonigo2, and Lamiel Toch2

1 Department of Mathematics, Université de Franche-Comté, Besançon, FRANCE
2 FEMTO-ST Institute, UMR CNRS / UFC / ENSMM / UTBM, Besançon, France

Abstract. In this paper we tackle the well-known problem of scheduling
a collection of parallel jobs on a set of processors either in a cluster
or in a multiprocessor computer. For the makespan objective, i.e., the
completion time of the last job, this problem has been shown to be
NP-Hard and several heuristics have already been proposed to minimize
the execution time. We introduce a novel approach based on successive
linear programming (LP) approximations of a sparse model. The idea is
to relax an integer linear program and use `p norm-based operators to
force the solver to find almost-integer solutions that can be assimilated
to an integer solution. We consider the case where jobs are either rigid or
moldable. A rigid parallel job is performed with a predefined number of
processors while a moldable job can define the number of processors that
it is using just before it starts its execution. We compare the scheduling
approach with the classic Largest Task First list based algorithm and
we show that our approach provides good results for small instances of
the problem. The contributions of this paper are both the integration
of mathematical methods in the scheduling world and the design of a
promising approach which gives good results for scheduling problems
with less than a hundred processors.

1 Introduction

Nowadays clusters of computers or large shared memory computers are widely
used by many communities such as researchers, universities or industries to speed
up their applications. Due to their cost these computing facilities are usually
shared between several users and several parallel jobs must be run at the same
time on the same platform. The problem of scheduling parallel jobs on clusters
without knowing in advance the submission times of user jobs has been widely
studied [20]. In this case the scheduling problem is said to be “on-line” [12].
When all characteristics of the jobs are known in advance, the scheduling problem
becomes “off-line” and it has been widely studied for sequential jobs [13] and for
parallel jobs [8, 11].

The “off-line” problem considered here depends on the job characteristics.
In the literature one distinguishes three kinds of parallel jobs. Rigid jobs [16]
are performed with the number of processors originally required. Moldable jobs
introduced by Turek et al. in [18] may run with different numbers of processors
but cannot change their allocation after their start. Malleable jobs [9] can modify

the number of allocated processors during their execution. The rigid job model
can easily be used in most of the cases of parallel jobs. The two other models
however need an interaction between the application and the scheduler to define
the number of allocated processors. This is for instance the case of applications
developed with the Bulk Synchronous Parallel (BSP) model introduced in [19]
that can be run as moldable jobs. Processor virtualization however could be a
solution to transparently make standard parallel applications moldable as pre-
sented in [17]. Applying virtualization to malleable jobs is probably more difficult
as it would need to use virtual machine migration. For these reasons we focus
on rigid and moldable jobs.

The problem of scheduling several parallel rigid and moldable jobs on ho-
mogeneous computing resources has been shown to be NP-Hard respectively
in [11] and [8]. Several previous works have already tackled the issue of provid-
ing heuristics that give efficient sub-optimal solutions. In [2] static scheduling
of rigid parallel jobs for minimizing the makespan is studied and in [1] for min-
imizing the sum of the completion time of each job. In [10], Dutot et al. con-
sider the problem of scheduling moldable jobs with the objective of minimizing
the makespan. The authors present experimental results where the well-known
Largest Task First (LTF) algorithm is the best for the makespan objective.

The contribution of this paper is a novel approach for scheduling a collection
of rigid or moldable jobs using successive LP approximations based on the gra-
dient operator. To the best of our knowledge there is no existing work using this
promising approach based on the sparse recovery problem in statistics domain.

The remainder of the paper is organized as follows. In Section 2 we describe
the problem and the model of moldable jobs. In Section 3 we present the spar-
sity promoting penalization as well as linear approximation principles. Then, in
Section 4 we present how to adapt this method to our scheduling problem. In
Section 5 we compare our technique with the algorithm developed by Dutot et al.
in [10] and show experimental results to assess the performance of our approach,
and finally we conclude and give future work directions in Section 6.

2 Framework

In this section we formally define the targeted framework and the problem. We
consider the problem of scheduling a collection of n independent parallel jobs.
We tackle both cases of rigid and moldable jobs.

The jobs are run on a homogeneous cluster of distributed computing nodes
or on a shared memory multiprocessor or multicore computer. In a cluster each
node is made up of identical processors which are in turn made up of identical
cores. The scheduling policy used on most clusters does not pay any attention
to the exact distribution of the cores allocated on the nodes provided that the
job is parallel. For this reason, in this paper, we will only consider the number of
allocated cores, assimilated to processors and called Processing Elements (PEs).
The results can then be applied either on clusters or on multiprocessor-multicore
computers. In the remainder of the paper m denotes the number of available PEs
in the execution platform.

Rigid jobs are defined by an execution time and a static number of requested
PEs, i.e., the job cannot be run on neither more nor less PEs than originally
requested. Each rigid job i is defined by its number of requested PEs reqproci
and its duration reqtimei.

Moldable jobs can be run on a different number of PEs or cores but this num-
ber is fixed at the job execution start and cannot change during the execution.
The considered moldable jobs respect the model defined in [10]. Let reqtimei
be the duration of job i which requires at most reqproci PEs. Let ti(n) be the
duration of the job i if n PEs are allocated for job i. The relation between the
duration of a job i and its number of allocated PEs is stated as:

∀i, ∀n ≤ reqproci, ti(n) =
⌈reqproci

n

⌉
reqtimei

Given this framework our objective is to minimize the makespan of the sched-
ule. According to the α|β|γ (platform | application | optimized criterion) classi-
fication of scheduling problems given by Graham in [15], the above problem is
denoted by P |parallel jobs|Cmax.

3 Sparsity promoting penalization with successive
linearizations

The optimization method presented in the paper relays on two steps. First we
formulate the problem as an integer linear program, then we relax it and apply
the sparsity promoting penalization which tries to find almost integer solutions.
As the sparsity promoting penalization implies to minimize a non linear objective
function we use successive LP approximations to linearize it. In this section we
detail the main steps of the method.

3.1 Sparsity promoting penalization

Recent works on the sparse recovery problem in statistics and signal processing
have brought to general attention the fact that using non-differentiable penalties
such as the `p norm can be an efficient ersatz to combinatorial constraints in
order to promote sparsity. This approach for constructing continuous relaxations
to hard combinatorial problems is a key ingredient in e.g., the new field called
Compressed Sensing which originated in the work of Candès, Romberg and Tao
[3]. Donoho [7] showed that finding the sparsest solution to an under-determined
system of linear equations may sometimes be equivalent to finding the solution
with smallest `1-norm. This discovery lead to a intense research activity in the
recent years focusing on finding weaker sufficient conditions on the linear system
under which it is possible to prove this equivalence. It was found in particular
that for matrices satisfying certain incoherence conditions (implying that the
columns of the associated matrix are almost orthogonal), the equivalence be-
tween finding the sparsest and the least `1 norm solution holds for systems with
a number of unknowns to the order of exponential of the number of equations.
Other non-differentiable penalties have also been proposed in order to increase
the performance of sparse recovery procedures. Candès, Wakin and Boyd pro-
posed an iterative reweighted `1 procedure in [4]. In our setting, the standard

`1 relaxation is not suitable. Indeed, as will be detailed in the sequel (e.g. equa-
tion 1 below), our constraints will always imply that the `1 is constant. A more
appropriate sparsity promoting penalization in this case is the `p-quasi-norm
relaxation, for p ∈ (0, 1). This corresponds to minimizing ‖x‖p := (

∑
k x

p
k)1/p

instead of ‖x‖1, under the same design constraints. Such a non–convex relation
was successfully implemented in, e.g. [6].

3.2 Linear and conic approximation

In physics and mathematics a function f is often approximated with a linear
formulation at point x0, if f is differentiable at point x0. The gradient of a
function with several parameters (f : Rn → R), noted ∇f , is the vector whose
components are equal to derivatives of f with respect to the parameters. Taylor’s
expansion gives

f(x+ h) = f(x) + 〈∇f, h〉+ o(h)

where x and h belong to Rn, and 〈 〉 represents the dot product.
In cases such as x 7→ ‖x‖p, where f is non-differentiable, it is still possi-

ble linearize by using the appropriate generalization of the gradient, called the
Clarke-subdifferential. In simple words, a non-differentiable function may have
several tangents in a generalized sense and the Clarke-subdifferential, denoted
by ∂f(x), is the set of all such generalized tangents. The nonsmooth counterpart
to Taylor’s expansion is given by

f(x+ h) = f(x) + sup
g∈∂f(x)

〈g, h〉+ o(h)

.
In order to implement our `p-based relaxation, we will implement successive

linearizations on a standard linear programming solver.

4 Applying the method on the job scheduling problem

In this section we apply the method on the job scheduling problem. First it
implies to define a sparse representation of the problem then we apply the two
steps of sparsity promoting penalization and linear approximation.

4.1 Formulation as an integer linear program

In the defined framework a solution to the scheduling problem must provide at
least the start time of the jobs for the rigid jobs as their duration and the number
of used PEs are constants of the problem. For the moldable jobs, the duration
depends upon the number of PEs that are allocated to the jobs. So the scheduled
jobs are characterized by their start time and the number of allocated PEs and
the duration of the job is determined as soon as this number of allocated PEs is
determined. We call “configuration” of a job the number of allocated PEs. We
call “position” of a job, its position determined by its start time in a discrete
time scale. Finally, we call “slot” the couple (configuration, position).

Let us create a list of slots (configurations, positions) for each job. The idea
is to create a vector xi for each job i. Each component xi,j of the vector xi is a

binary variable which indicates whether slot j of job i is chosen or not. Then we
fix a time horizon T and we let a linear program find a solution. We iteratively
reduce the time horizon T until the linear program cannot find a solution any
more.

The following constant values are defined to formulate the problem:

– proci,j : the number of PEs for the configuration j of job i
– nconfi: the number of all possible configurations for job i (for rigid jobs i,
nconfi = 1)

– nslotsi: the number of all possible slots for job i
– Ci,s: the configuration index of job i used in the slot s of job i
– runi,s,t indicates whether in the slot s the job i is running at time t.

Then we define the binary variable xi,s which indicates whether slot s of job
i is chosen or not. For each job i, we note xi the vector whose components are
the values xi,s and we define a vector x which is equal to the concatenation of
the n vectors xi of every job i, 1 ≤ i ≤ n.

The problem can be formulated as an integer linear program. Since we only
have to determine whether a feasible solution exists or not for a given time
horizon T , we only need the constraints to be respected. That is why we set all the
coefficients of the variables in the objective function to 0. The problem is stated
as: “find a feasible solution which respects the following linear constraints:”

∀1 ≤ i ≤ n,
s=nsloti∑

s=1

xi,s = 1 (1)

∀1 ≤ t ≤ T ,
i=n∑
i=1

s=nsloti∑
s=1

xi,s × runi,s,t × proci,Ci,s
≤ m (2)

Constraint 1 imposes the unicity of the chosen slot s on each job i. Con-
straint 2 means that at each time t, the set of all running jobs does not consume
more than the m available PEs in the considered cluster.

4.2 Relaxation via sparsity promoting penalization

The solution of the Integer formulation of the problem cannot be found in poly-
nomial execution time. So we make a relaxation of it. We transform all binary
variables xi,s into rational variables and with 0 ≤ xi,s ≤ 1. Since vector x – the
concatenation of xi vectors – indicates which slots are chosen, we are tempted
to strongly enforce its sparsity. In fact, vector x must have exactly n “1” and
many “0”. Thus, we legitimately expect the binary constraints to be naturally
recovered by imposing sufficient sparsity. Notice that the proposed constraints
impose that the sum of the components of x is equal to one jobwise. Since the
components are positive, this implies that the `1 norm is equal to one jobwise,
which explains why minimizing the `1 norm for promoting sparsity is unfortu-
nately useless in the present context. In order to overcome this difficulty, we

Algorithm 1: A successive LP scheme
1 lb← lower bound of makespan
2 sched← compute a schedule with LTF ; listMakepsan← makepsan(sched) ;

T ← listMakespan ; end← false ; incT ← false;
3 while T > lb and not end do
4 proc← compute the configurations (J) ; run← compute all possible slots (J ,m, T) ;

iter ← 1 ; found← false

5 ∀i, k, x
(iter)
i,k ← 0

6 while iter < maxIter and not found do
7 set the objective function of LP(J ,m, T, proc, run) to∑|J |

i f(x
(iter)
i) + 〈∇f(x

(iter)
i), xi − x

(iter)
i 〉

8 x← execute LP(J ,m, T, proc, run)
9 if ∀i, xi contains exactly one “1” then

10 sched← convert into schedule (x, proc, run)
11 T ← makespan(sched)
12 T ← T − 1
13 found← true
14 if incT = true then
15 end← true

16 ∀i, k, x
(iter)
i,k ← xi,k ; iter ← iter + 1

17 if not found then
18 if T = listMakespan then
19 incT ← true

20 if incT = true then
21 T ← T + 1

22 else
23 end← true

24 return sched

chose to minimize the `p norm non-convex function

f(x) =
∑
i

‖xi‖p (3)

under constraints (1) and (2) for p ∈]0, 1[.

4.3 Successive LP approximation scheme

We now apply successive LP approximation schemes to linearize the problem.
Let fi(xi) = ‖xi‖p, for all jobs i. Thus, f =

∑
i fi. We use the value of each vari-

able computed during the previous iteration. We will use the following arbitrary
choice g ∈ ∂f among all possible subgradients of f :

gi,j =

xp−1
i,j × fi (xi)

1−p
if xi,j 6= 0

0 otherwise.

(4)

The method is implemented in Algorithm 1. It starts with any initial value
e.g. the zero vector. First we compute a lower bound of the makespan at line 1,
which is equal to the maximum between the duration of the longest job and∑

i reqproci×reqtimei
m . The time horizon T is set to the makespan of the LTF

list algorithm. If the linear program LP finds a satisfactory solution (line 9),
it reduces the time horizon (line 12) until it cannot (line 23) before maxIter
iterations. If it does not find a satisfactory solution with T = Listmakespan
before maxIter iterations (line), it increases the time horizon T (line 21). For a
given time horizon T , it iteratively updates the objective function of the linear
program (line 7) according to the subgradient-based Taylor approximation rule
of the sparsity promoting penalization.

4.4 Improving the algorithm efficiency

During the experiment step of our work a problem appeared in the linear reso-
lution. Satisfactory solutions for Algorithm 1 are only detected (at line 9) if all
jobs i have their vector xi with exactly one “1” as the algorithm is designed to
find exclusively exact solutions. In fact, for a given time horizon T , the succes-
sive linear approximations manage to find a schedule for most of the jobs of the
collection but it let few jobs j of the collection with fuzzy schedules. That is to
say, vectors xi contain exactly one “1” while vectors xj do not. In this case the
algorithm often continues to iterate, even if xj is close to 1, until maxIter is
reached without being able to find a solution. This leads to longer computing
times for the algorithm while giving inefficient solutions.

So we modify Algorithm 1 and its detection criterion at line 9 as follows:
when a valid rational schedule is found we keep the exact schedule for jobs i
whose xi have exactly one “1” and we schedule the rest of the jobs for which the
linear program gives fuzzy schedules with the LTF list algorithm. If a solution
shorter than the time horizon T is found, then the found variable is set to true
otherwise we continue to iterate.

5 Simulation and results

In this section we present the results obtained on the two versions of the algo-
rithm and we compare them to the well-known Largest Task First algorithm.
We assess both cases of rigid and moldable jobs. Notice that the problem we
propose to solve is nonconvex and very high dimensional. Moreover, no theoret-
ical guarantee for convergence of the proposed iterative procedure is available
and it is well known that minimizing an `p quasi-norm, 0 < p < 1, is NP-hard
already. On the other hand, various non-convex `p-based strategies have been
successfully used for promoting sparsity in the literature. Despite the current
lack of appropriate theoretical foundation, in most reported experiments the `p-
based approach managed to reach a local solution significantly superior to the `1
minimizer for, e.g., the Compressed Sensing reconstruction problem [6]. The goal
of this section is to show that such a good performance can also be observed for
the studied scheduling problem. Notice that we did not optimize the computa-
tional aspects of the problem, in particular, we made no use of the very special
properties of the constraint matrix. This explains why the computing time is
currently much higher than what could be obtained after a careful design of the
algebraic aspects of our algorithms.

5.1 Experimental settings

Carrying out real experiments on clusters is difficult: experiments are not repro-
ducible and may be long. Furthermore a cluster is expensive and meant to be
used for calculations while experiments may monopolize it. For these reasons, we
have developed a simulator of a homogeneous cluster based on a master/slave
architecture. This simulator is also meant to check schedules obtained by the
different algorithms. The simulator is implemented using SimGrid [5] and its
MSG API. It takes a workload as input and it gives a schedule as output.

To simulate the job collection, we use synthetic workloads generated with
uniform distributions. The parameters associated with a workload is the job
granularity, the ratio of the duration of the longest job over the duration of the
shortest one.

5.2 Assessing performance of Algorithm 1

In a first set of experiments the simulations have been run with a `p norm where
p = 0.1, maxIter is set to 15000 in the algorithm and the machine is made up of
64 PEs. We have scheduled a collection of 60 jobs and, for each number of jobs in
the collection, we performed 40 experiments to compute an average value of the
ratio of the makespan over the lower bound. The results where disappointing:
they were far from the optimal and very time consuming.

So we ran another set of experiments with less jobs, `p norm where p = 0.1,
maxIter set to 15000. The machine is made up of 32 PEs and the number of PEs
requested by each job is uniformly chosen between 1 and 8. The granularity is
set to 25. For each number of jobs in the collection we perform 20 experiments,
then we remove the best and the worse results in order to reduce the deviation,
and we compute an average of the ratio of the makespan over the lower bound.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 5 10 15 20 25 30 35 40

m
ak

es
p
an

 /
 l

o
w

er
 b

o
u
n
d

number of jobs

LIST
succ. LP approx.

(a) rigid jobs

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 5 10 15 20 25 30 35 40

m
ak

es
p
an

 /
 l

o
w

er
 b

o
u
n
d

number of jobs

LIST
succ. LP approx.

(b) moldable jobs

Fig. 1: Performance comparison 32 PEs

Figure 1a shows the ratio of the makespan over the lower bound against the
number of rigid jobs, while Figure 1b shows this ration for moldable jobs. In the
figures the algorithms are noted succ. LP approx for our algorithm and LIST for

the LTF implementation. The figures also show the standard deviation σ: the
height of a vertical line is equal to 2σ.

We can note that for less than 25 jobs the successive LP approximation algo-
rithm gives better results than the LTF algorithm and with more than 25 jobs
the latter outperforms successive LP approximation. Note that after 40 jobs the
performance ratio of LTF quickly tends toward 1.1 which means, on the one
hand, that it probably finds most of the time the optimal solution and, on the
other hand, that it is difficult to find better solutions. Moreover, with more than
25 jobs, the problem becomes so complex that the successive LP approximation
algorithm must increase its T to find a solution. Under this threshold the maxi-
mum gain is about 15% for 16 moldable or rigid jobs. Furthermore the standard
deviation of the experiments with our new approach is less than the standard
deviation of LTF. We can easily understand that for 5 jobs the optimal is found
due to the experimental settings: the number of PEs that each job requires is
uniformly chosen between 1 and 8. As a consequence, all jobs may start at time
0. That also explains the peak with 15 jobs which do not necessarily start at time
0. We can also notice that for rigid jobs and moldable jobs the successive LP
approximation algorithm has the same behavior, that is to say, when the number
of jobs increases, the ratio of the makespan over the lower bound increases.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5 10 15 20 25 30 35 40

C
P

U
 T

im
e

(m
s)

number of jobs

LIST
succ. LP approx.

(a) rigid jobs

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5 10 15 20 25 30 35 40

C
P

U
 T

im
e

(m
s)

number of jobs

LIST
succ. LP approx.

(b) moldable jobs

Fig. 2: Compute time for 32 PEs

As we can see in Figure 2a and Figure 2b, Algorithm 1 is very time consuming
with both rigid jobs and moldable jobs compared to the LTF algorithm. Note
however that for 15 jobs, in the case where gives the best results, the time taken
by the LP approximation is not more than 1.5 minutes which is still reasonable.
We assess the performance of the improved version in the following section.

5.3 Performance of the improved algorithm

To assess the improved algorithm, we performed experiments with two simulated
machines made up of 64 and 128 PEs. The number of PEs requested by each
job is uniformly chosen between 1 and 16 for the machine with 64 PEs, and
between 1 and 32 for the machine with 128 PEs. Granularity is set to 25 for the

machine with 64 PEs and to 10 for the machine with 128 PEs. We set p = 0.1
and maxIter = 200. For each number of jobs in the collection, we perform 40
experiments.

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 10 20 30 40 50 60

m
ak

es
p
an

 /
 l

o
w

er
 b

o
u
n
d

number of jobs

LIST
succ. LP approx. + LIST

(a) rigid jobs

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 10 20 30 40 50 60

m
ak

es
p
an

 /
 l

o
w

er
 b

o
u
n
d

number of jobs

LIST
succ. LP approx. + LIST

(b) moldable jobs

Fig. 3: Performance of the algorithms with 64 PEs

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 20 40 60 80 100 120

m
ak

es
p
an

 /
 l

o
w

er
 b

o
u
n
d

number of jobs

LIST
succ. LP approx. + LIST

(a) rigid jobs

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 20 40 60 80 100 120

m
ak

es
p
an

 /
 l

o
w

er
 b

o
u
n
d

number of jobs

LIST
succ. LP approx. + LIST

(b) moldable jobs

Fig. 4: Performance of the algorithms with 128 PEs

Figure 3a shows the ratio of the makespan over the lower bound against
the number of rigid jobs in a cluster of 64 PEs, while in Figure 3b we consider
scheduling moldable jobs. The performances of the new approach are better than
LTF for moldable and rigid jobs, and better than the unmodified algorithm.
Figure 4a and Figure 4b give the results for a machine with 128 PEs.

We can note that in the four cases the performance ratio between LTF and
our approach is up to 20%. The results obtained with a 128 PEs machine show
an improvement for the LTF algorithm compared to 64 case while the behavior
of the new algorithm is quite similar. This is probably because our solution is
very close to (if not at) the optimal solution and nothing more can be gained.

We have also recorded some statistics data after each execution of the linear
program. On average with 64 PEs and 16 jobs almost 75% of jobs have exact
schedules, while with 64 jobs 50% of them have exact schedules. We notice that
when the number of jobs to schedule increases the number of exact schedules

found by the linear program decreases. We get the same behaviour with 128 PEs:
on average with 128 PEs and 16 jobs almost 80% of jobs have exact schedules,
while with 128 jobs 60% of them have exact schedules.

 10

 100

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60

C
P

U
 T

im
e

(m
s)

number of jobs

LIST
succ. LP approx. + LIST

(a) rigid jobs

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60

C
P

U
 T

im
e

(m
s)

number of jobs

LIST
succ. LP approx. + LIST

(b) moldable jobs

Fig. 5: CPU Time consumed to compute a schedule with 64 PEs

Figures 5a and 5b show the time spend by the two algorithms. We notice
that the hybrid algorithm is less time consuming than the original algorithm
but still consumes more time than the LTF algorithm.

6 Conclusion and Future Work
In this paper, we assess the use of successive linear programming approxima-
tions of a sparse model for job scheduling. This method is applied on clusters to
schedule rigid and moldable jobs. Experimental results show that the pure suc-
cessive LP approximation only gives good performances regarding the makespan
for scheduling up to dozens jobs on a machine with dozens PEs. In contrast, a
variant associated with LTF gives good results for bigger instances with up to
a hundred jobs on machines with up to a hundred PEs. This variant is a good
alternative to the LTF algorithm and provides a significant improvement of the
schedules for the range of machine size where the LTF algorithm is less efficient.

For future work we plan to implement the Split Bregman Method [14] to
speed up the solving time and try other relaxations of the linear program. We
also plan to use a multi-level scheduling approach for which we distinguish small
jobs and large jobs. We then apply our method on different collections of jobs.

An important part of the simulations has been run thanks to the computing
facilities of the Mésocentre de Calcul de Franche-Comté in Besançon, France.

References

1. Foto N. Afrati, Evripidis Bampis, Aleksei V. Fishkin, Klaus Jansen, and Claire
Kenyon. Scheduling to minimize the average completion time of dedicated tasks.
In Proceedings of the 20th Conference on Foundations of Software Technology and
Theoretical Computer Science, FST TCS 2000, pages 454–464, London, UK, 2000.

2. Abdel Krim Amoura, Evripidis Bampis, Claire Kenyon, and Yannis Manoussakis.
Scheduling independent multiprocessor tasks. Algorithmica, 32(2):247–261, 2002.

3. E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. Information Theory,
IEEE Transactions on, 52(2):489–509, February 2006.

4. Emmanuel J. Candes, Michael B. Wakin, and Stephen P. Boyd. Enhancing Sparsity
by Reweighted L1 Minimization. Journal of Fourier Analysis and Applications,
14(5):877–905, December 2008.

5. H. Casanova, A. Legrand, and M. Quinson. Simgrid: A generic framework for
large-scale distributed experiments. In UKSIM ’08, pages 126–131, 2008.

6. Rick Chartrand and Wotao Yin. Iteratively reweighted algorithms for compres-
sive sensing. In 33rd International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2008.

7. David L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–
1306, 2006.

8. Pierre-François Dutot, Lionel Eyraud, Grégory Mounié, and Denis Trystram. Bi-
criteria algorithm for scheduling jobs on cluster platforms. In Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorithms and architectures,
SPAA ’04, pages 125–132, New York, NY, USA, 2004.

9. Pierre-François Dutot and Denis Trystram. Scheduling on hierarchical clusters
using malleable tasks. In SPAA’01, pages 199–208, 2001.

10. Pierre-François Dutot, Alfredo Goldman, Fabio Kon, and Marco Netto. Schedul-
ing moldable BSP tasks. In 11th JSSPP, volume 3834 of LNCS, pages 157–172,
Cambridge, MA, USA, 2005.

11. Dror G. Feitelson. Job scheduling in multiprogrammed parallel systems. Research
Report RC 19790 (87657), IBM T. J. Watson Research Center, 1997.

12. Dror G. Feitelson and Ahuva W. Mualem. On the definition of “on-line” in job
scheduling problems. Technical report, SIGACT News, 2000.

13. Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990.

14. Tom Goldstein and Stanley Osher. The split bregman method for l1-regularized
problems. SIAM J. Img. Sci., 2:323–343, April 2009.

15. Ronald Lewis Graham and al. Optimization and approximation in deterministic
sequencing and scheduling: a survey. Ann. Discrete Math., pages 287–326, 1979.

16. Uri Lublin and Dror G. Feitelson. The workload on parallel supercomputers: Mod-
eling the characteristics of rigid jobs. Journal of Parallel and Distributed Comput-
ing, 63:2003, 2001.

17. Jean-Marc Nicod, Laurent Philippe, Veronika Rehn-Sonigo, and Lamiel Toch. Us-
ing virtualization and job folding for batch scheduling. In ISPDC’2011, 10th Int.
Symposium on Parallel and Distributed Computing, pages 39–41, Cluj-Napoca, Ro-
mania, July 2011. IEEE Computer Society Press.

18. John Turek, Joel L. Wolf, and Philip S. Yu. Approximate algorithms scheduling
parallelizable tasks. In Proceedings of the fourth annual ACM symposium on Par-
allel algorithms and architectures, SPAA ’92, pages 323–332, New York, NY, USA,
1992. ACM.

19. Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33:103–111, August 1990.

20. Deshi Ye and Guochuan Zhang. On-line scheduling of parallel jobs in a list. J. of
Scheduling, 10:407–413, December 2007.

