
A Rule-Based Framework for Building
Superposition-Based Decision Procedures

Elena Tushkanova1,2, Alain Giorgetti1,2, Christophe Ringeissen1, and
Olga Kouchnarenko1,2

1 Inria, Villers-les-Nancy, F-54600, France
2 CNRS FEMTO-ST and University of Franche-Comté, Besançon, F-25030, France

Abstract. This paper deals with decision procedures specified as in-
ference systems. Among them we focus on superposition-based decision
procedures. The superposition calculus is a refutation-complete infer-
ence system at the core of all equational theorem provers. In general this
calculus provides a semi-decision procedure that halts on unsatisfiable
inputs but may diverge on satisfiable ones. Fortunately, it may also ter-
minate for some theories of interest in verification, and thus it becomes a
decision procedure. To reason on the superposition calculus, a schematic
superposition calculus has been studied, for instance to automatically
prove termination. This paper presents an implementation in Maude of
these two inference systems. Thanks to this implementation we auto-
matically derive termination of superposition for a couple of theories of
interest in verification.

1 Introduction

Satisfiability procedures modulo background theories such as classical data struc-
tures (e.g., lists, records, arrays, . . .) are at the core of many state-of-the-art
verification tools. Designing and implementing satisfiability procedures is a very
complex task, where one of the main difficulties consists in proving their sound-
ness.

To overcome this problem, the rewriting approach [2] allows us to build sat-
isfiability procedures in a flexible way, by using a superposition calculus [14]
(also called Paramodulation Calculus in [10]). In general, a fair and exhaustive
application of the rules of this calculus leads to a semi-decision procedure that
halts on unsatisfiable inputs (the empty clause is generated) but may diverge on
satisfiable ones. Therefore, the superposition calculus provides a decision proce-
dure for the theory of interest if one can show that it terminates on every input
made of the (finitely many) axioms and any set of ground literals. The needed
termination proof can be done by hand, by analysing the (finitely many) forms
of clauses generated by saturation, but the process is tedious and error-prone. To
simplify this process, a schematic superposition calculus has been developed [10]
to build the schematic form of the saturations. This schematic superposition
calculus is very useful to analyse the behavior of the superposition calculus on a

given input theory, as shown in [9] to prove automatically the termination and
the combinability of the related decision procedure.

This paper explains how to prototype the schematic superposition calculus
to provide a toolkit for further experiments. The main idea is to implement
the calculus so that the user can easily modify the code corresponding to an
executable specification. Implementing this schematic calculus in an off-the-shelf
equational theorem prover like the E prover [15] or SPASS [16] would be a
difficult and less interesting task, since the developer and the user would have
to understand a complex piece of code which is the result of years of engineering
and debugging. To make the task easier another quite natural solution would be
to use a logical framework since this calculus is defined by an inference system.
This is why we propose to prototype the schematic superposition calculus by
using a rule-based logical framework. Our goal is to get a rule-based program
which is as close as possible to the formal specification. To achieve this goal,
we propose to use Maude because Maude includes support for unification and
narrowing, which are key operations of the calculus of interest, and the Maude
meta-level provides a flexible way to control the application of rules and powerful
search mechanisms.

Our implementation of schematic superposition is very useful to get an auto-
matic validation of saturations described in previous papers. Hence, our experi-
mentations allow us to find a flaw in an example of [9].

The paper is structured as follows. After introducing preliminary notions
and presenting superposition calculi in Section 2, Section 3 explains how we
implement these calculi using the Maude system. Then Section 4 reports our
experimentations with our implementation to prove the termination of super-
position for theories corresponding to classical data structures such as lists and
records. Section 5 concludes and presents future work.

2 Background

2.1 First-Order Logic

We assume the usual first-order syntactic notions of signature, term, position,
and substitution, as defined, e.g., in [5]. We use the following notations: l, r, u, t
are terms, v, w, x, y, z are variables, all other lower case letters are constant or
function symbols. Given a function symbol f , a f -rooted term is a term whose
top-symbol is f . A compound term is a f -rooted term for a function symbol f of
arity different from 0. Given a term t and a position p, t|p denotes the subterm of
t at position p, and t[l]p denotes the term t in which l appears as the subterm at
position p. When the position p is clear from the context, we may simply write
t[l]. The depth of a term is defined inductively as follows: depth(t) = 0, if t is a
constant or a variable, and depth(f(t1, . . . , tn)) = 1+max{depth(ti) | 1 ≤ i ≤ n}.
A term is flat if its depth is 0 or 1. Application of a substitution σ to a term t
(resp. a formula ψ) is written σ(t) (resp. σ(ψ)).

A literal is either an equality l = r or a disequality l 6= r. A positive literal
is an equality and a negative literal is a disequality. We use the symbol ./ to

denote either = or 6=. The depth of a literal l ./ r is defined as follows: depth(l ./
r) = depth(l)+depth(r). A positive literal is flat if its depth is 0 or 1. A negative
literal is flat if its depth is 0.

A first-order formula is built in the usual way over the universal and existen-
tial quantifiers, Boolean connectives, and symbols in a given first-order signature.
We call a formula ground if it has no variables. A clause is a disjunction of liter-
als. A unit clause is a clause with only one disjunct, equivalently a literal. The
empty clause, denoted ⊥, is the clause with no disjunct, corresponding to an
unsatisfiable formula.

We also consider the usual first-order notions of model, satisfiability, validity,
logical consequence. A first-order theory (over a finite signature) is a set of first-
order formulae with no free variables. When T is a finitely axiomatized theory,
Ax(T) denotes the set of axioms of T . We consider first-order theories with
equality, for which the equality symbol = is always interpreted as the equality
relation. A formula is satisfiable in a theory T if it is satisfiable in a model of T .
The satisfiability problem modulo a theory T amounts to establishing whether
any given finite conjunction of literals (or equivalently, any given finite set of
literals) is T -satisfiable or not. In this paper, we study decision procedures for
the satisfiability problem modulo T , where Ax(T) is a finite set of literals.

We consider inference systems using well-founded orderings on terms/literals
that are total on ground terms/literals. An ordering< on terms is a simplification
ordering [5] if it is stable (l < r implies lσ < rσ for every substitution σ),
monotonic (l < r implies t[l]p < t[r]p for every term t and position p), and
has the subterm property (i.e., it contains the subterm ordering: if l is a strict
subterm of r, then l < r). Simplification orderings are well-founded. A term t
is maximal in a multiset S of terms if there is no u ∈ S such that t < u,
equivalently t 6< u for every u ∈ S. Hence, if t 6≤ u, then t and u are different
terms and t is maximal in {t, u}. An ordering on terms is extended to literals by
using its multiset extension on literals viewed as multisets of terms. Any positive
literal l = r (resp. negative literal l 6= r) is viewed as the multiset {l, r} (resp.
{l, l, r, r}). Also, a term is maximal in a literal whenever it is maximal in the
corresponding multiset.

2.2 Paramodulation Calculus

In this paper we consider unit clauses, i.e. clauses composed of at most one
literal. We present the restriction UPC (for Unit Paramodulation Calculus) of
the inference system PC.

Our presentation of this calculus takes the best (to our sense) from the pre-
sentations in [2], [10] and [9]. The inference system UPC consists of the rules in
Figs. 1 and 2. Expansion rules (Fig. 1) aim at generating new (deduced) clauses.
For brevity left and right paramodulation rules are grouped into a single rule,
called Superposition, that uses an equality to perform a replacement of equal
by equal into a literal. Reflection rule generates the empty clause when the two
sides of a disequality are unifiable. Contraction rules (Fig. 2) aim at simplifying
the set of literals. Using Subsumption, a literal is removed when it is an instance

of another one. Simplification rewrites a literal into a simpler one by using an
equality that can be considered as a rewrite rule. Trivial equalities are removed
by Deletion. A fundamental feature of PC and UPC is the usage of a simplifi-
cation ordering < to control the application of Superposition and Simplification
rules by orienting equalities. Hence, the Superposition rule is applied by using
terms that are maximal in their literals with respect to <. This ordering is total
on ground terms. We use a lexicographic path ordering [5] such that terms of
positive depth are greater than constants.

Let us recall the usual definitions of redundancy, saturation, derivation and
fairness. A clause C is redundant with respect to a set S of clauses if either C ∈ S
or S can be obtained from S ∪ {C} by a sequence of applications of contraction
rules (cf. Fig. 2). An inference is redundant with respect to a set S of clauses if its
conclusion is redundant with respect to S. A set S of clauses is saturated if every
inference with a premise in S is redundant with respect to S. A derivation is a
sequence S0, S1, . . . , Si, . . . of sets of clauses where each Si+1 is obtained from
Si by applying an inference to add a clause (by expansion rules in Fig. 1) or to
delete a clause (by contraction rules in Fig. 2). For the Simplification rule, one
can remark that its application corresponds to two steps in the derivation: the
first step adds a new literal, whilst the second one deletes a literal. A derivation
is characterized by its limit, defined as the set of persistent clauses

⋃
j≥0

⋂
i>j Si,

that is, the union for each j ≥ 0 of the set of clauses occurring in all future steps
starting from Sj . A derivation S0, S1, ..., Si, ... is fair if for every inference with
premises in the limit, there is some j ≥ 0 such that the inference is redundant
with respect to Sj . The set of persistent literals obtained by a fair derivation is
called the saturation of the derivation.

Superposition
l[u′] ./ r u = t

σ(l[t] ./ r)

if i) σ(u) 6≤ σ(t), ii) σ(l[u′]) 6≤ σ(r), and iii) u′ is not a variable.

Reflection
u′ 6= u
⊥

Above, u and u′ are unifiable and σ is the most general unifier of u and u′.

Fig. 1. Expansion inference rules of UPC

Subsumption
S ∪ {L,L′}
S ∪ {L} if L′ = σ(L).

Simplification
S ∪ {C[l′], l = r}
S ∪ {C[σ(r)], l = r}

if i) l′ = σ(l), ii) σ(l) > σ(r), and iii) C[l′] > (σ(l) = σ(r)).

Deletion
S ∪ {u = u}

S

Fig. 2. Contraction inference rules of UPC

2.3 Schematic Paramodulation Calculus

The Schematic Unit Paramodulation Calculus SUPC is an abstraction of UPC.
Indeed, any concrete saturation computed by UPC can be viewed as an instance
of an abstract saturation computed by SUPC, as shown by Theorem 2 in [9].
Hence, if SUPC halts on one given abstract input, then UPC halts for all the
corresponding concrete inputs. More generally, SUPC is an automated tool to
check properties of UPC such as termination, stable infiniteness and deduction
completeness [9]. This paper focuses on termination.
SUPC is almost identical to UPC, except that literals are constrained by

conjunctions of atomic constraints of the form const(x) where x is a variable.
For sake of brevity, const(x1, . . . , xn) denotes the conjunction const(x1) ∧ · · · ∧
const(xn). SUPC consists of the rules in Figs. 3 and 4.

With respect to [9], we have slightly adapted the subsumption rule so that
the instantiation is not only a renaming but also a substitution instantiating
constrained variables by constrained variables. This allows us to have a more
compact form of saturations even for simple cases, as shown in Sect. 4. For a
given theory T with signature Σ, SUPC is executed with the input Ax(T)∪GT0
where GT0 is defined by

GT0 = {⊥, x = y ‖ const(x, y), x 6= y ‖ const(x, y)}
∪
⋃
f∈Σ{f(x1, . . . , xn) = x0 ‖ const(x0, x1, . . . , xn)}

and schematizes any set of ground flat equalities and disequalities built over Σ,
along with the empty clause.

2.4 Maude Language

Maude [4] is a rule-based language well-suited to implement the above inference
systems. Maude’s basic programming statements are equations and rules. Its se-
mantics is based on rewriting logic where terms are reduced by applying rewrite
rules. Maude has many important features such as reflection, pattern-matching,

Superposition
l[u′] ./ r‖ϕ u = t‖ψ

σ(l[t] ./ r‖ϕ ∧ ψ)

if i) σ(u) 6≤ σ(t), ii) σ(l[u′]) 6≤ σ(r), and iii) u′ is not an
unconstrained variable.

Reflection
u′ 6= u‖ψ
⊥ if σ(ψ) is satisfiable.

Above, u and u′ are unifiable and σ is the most general unifier of u and u′.

Fig. 3. Constrained expansion inference rules of SUPC

Subsumption
S ∪ {L‖ψ,L′‖ψ′}

S ∪ {L‖ψ}

if either a) L ∈ Ax(T), ψ is empty and for some substitution
σ, L′ = σ(L); or b) L′ = σ(L) and ψ′ = σ(ψ), where σ
is a renaming or a mapping from constrained variables to
constrained variables.

Simplification
S ∪ {C[l′]‖ϕ, l = r}
S ∪ {C[σ(r)]‖ϕ, l = r}

if i) l = r ∈ Ax(T), ii) l′ = σ(l), iii) σ(l) > σ(r), and iv)
C[l′] > (σ(l) = σ(r)).

Tautology
S ∪ {u = u‖ϕ}

S

Deletion
S ∪ {L‖ϕ}

S
if ϕ is unsatisfiable.

Fig. 4. Contraction inference rules of SUPC

unification and narrowing. Reflection is a very desirable property of a computa-
tional system, because a reflective system can access its own meta-level and this
way can be much more powerful, flexible and adaptable than a nonreflective one.
Maude’s language design and implementation make systematic use of the fact
that rewriting logic is reflective. Narrowing [3] is a generalization of term rewrit-
ing that allows free variables in terms (as in logic programming) and replaces
pattern-matching by unification in order to (non-deterministically) instantiate
and reduce a term. The narrowing feature is provided in an extension of Maude
named Full Maude. It is clearly of great interest to implement the superposition
rules of our calculi.

3 Implementation

This section describes the main ideas and principles of our implementation of
UPC and SUPC in Maude.

3.1 Data Representation

Let us consider how we represent terms and literals. Maude symbols are reflected
in Maude as elements of the sort Qid (quoted identifier). Maude terms are re-
flected as elements of the sorts Constant, Variable and Term. We exploit the
Maude reflection feature by using the sort Term to define the new sort Literal
for literals, as follows:

fmod LITERAL is

pr META-TERM .

sort Literal .

op _equals_ : Term Term -> Literal [comm] .

op _!=_ : Term Term -> Literal [comm] .

endfm

The attribute [comm] declares that the infix binary symbols equals and
!= for equality and disequality are commutative. For sets of literals we define
the sort SetLit by instantiating the polymorphic sort Set{X} defined in the
parameterized module SET{X :: TRIV} of the prelude of Maude, as follows:

view Literal from TRIV to LITERAL is

sort Elt to Literal .

endv

fmod SETLIT is

pr LITERAL .

pr SET{Literal} * (sort Set{Literal} to SetLit) .

endfm

The first three lines declare that the sort Literal can be viewed as the sort of
elements provided by the theory TRIV. This Maude view is named Literal. It is
used in the module SETLIT to instantiate Set{X} as Set{Literal}. Finally, the
sort SetLit is a renaming of the sort Set{Literal}. Consequently, the sets in
this sort can be built by using the constant empty, and by using an associative,
commutative, and idempotent union operator, written , . A singleton set is
identified with its element (Literal is a subsort of Set{Literal}).

A schematic literal is the empty clause, an axiom, or a constrained literal.
The sort AConstr of atomic constraints is defined by the operator

op const : Term -> AConstr .

and the sort Constr of constraints is a renaming of the sort Set{AConstr} of sets
of atomic constraints. Then, the sort SLiteral of schematic literals is declared
by

fmod SLITERAL is

sort SLiteral .

op emptyClause : -> SLiteral .

op ax : Literal -> SLiteral .

op _ || _ : Literal Constr -> SLiteral .

endfm

where the infix operator || constructs a constrained literal from a literal and a
constraint. Similarly, for sets of schematic literals a sort SetSLit is defined in a
module SETSLIT.

3.2 Inference Rules

This section presents the encoding of SUPC, the encoding of UPC being sim-
ilar. Let us emphasize two main ideas of this encoding: 1) inference rules are
translated into rewrite rules, and 2) rule application is controlled thanks to spe-
cially designed states. More precisely, the encoding description starts with the
translation of some contraction rules into rewrite rules (the simplification rule is
omitted). Afterwards, it continues with the expansion rules, whose fair applica-
tion strategy is encoded by using a notion of state together with rules to specify
the transitions between states.

Contraction rules The following Maude conditional rewrite rule encodes the
first case of Subsumption inference rule in SUPC:

crl [subsum1] : (ax(L1), (L2 || Phi2)) => ax(L1)

if LiteralMatch(L1, L2) =/= noMatch .

The function call LiteralMatch(L1, L2) checks if the second literal L2 is
matched by the first one (L1), by calling the Maude function metaMatch.

The following two Maude conditional rewrite rules encode the second case of
Subsumption inference rule, decomposed into two cases:

crl [subsum2] : L1 || Phi1, L2 || Phi2 => L1 || Phi1

if isRename(L1 || Phi1, L2 || Phi2) .

crl [subsum3] : L1 || Phi1, L2 || Phi2 => L1 || Phi1

if filter(L1 || Phi1, L2 || Phi2) .

The function isRename checks if one constrained literal is the renaming of
another one by checking the existence of a substitution mapping the first literal
into the second one, and the constraint of the first literal into the constraint
of the second one. Moreover, this substitution should replace variables by vari-
ables and the correspondence between the replaced variables and the replacing
ones should be one to one. The function call filter(L1 || Phi1, L2 || Phi2)

checks if the constrained literal L1 || Phi1 is more general than the constrained
literal L2 || Phi2 by determining the existence of a substitution mapping the

first literal into the second one, and the constraint of the first literal into the
constraint of the second one.

The Simplification inference rule rewrites a literal into a simpler one by
using an axiom as a rewrite rule. This is performed by the Maude function
metaFrewrite that rewrites the metarepresentation of a term with the rules
defined in the metarepresentation of a module. In our implementation, a function
addRl adds an axiom to the metarepresentation of a module INITIAL-MODULE

where all the functional symbols are defined.

op addRl : Term Term -> Module .

eq addRl(L, R) = addRules(

(rl (L) => (R) [none] .), upModule(’INITIAL-MODULE, false)) .

This function uses the Full Maude function addRules that takes a set of rules and
a module as parameters. The axiom ax(L equals R) is added by the function
call addRl(L,R).

The inference rule Tautology is simply encoded by the rewrite rule

rl [tautology] : U equals U || Phi => empty .

The inference rule Deletion is encoded by the conditional rewrite rule

crl [del] : L || Phi => empty if isSatisfiable(Phi) == false .

where the function isSatisfiable checks if a given constraint holds, i.e. none
of the terms it constraints is compound.

Expansion rules The order of rule applications has to be controlled. In par-
ticular, contraction rules should be given a higher priority than expansion ones.
An expected solution could be to control rule applications with the strategy lan-
guage described in [11, 8], but unfortunately it appeared not to be compatible
with the Full Maude version 2.5b required for narrowing (see details below).

To circumvent this technical problem we propose to control rules with states.
We consider three distinct states, for the sets of literals derived by SUPC. These
states and the sort of states are defined as follows:

mod STATE is

pr SETSLIT .

sort State .

op state : SetSLit -> State .

op _selectOneLitFromGenSet_ : SetSLit SetSLit -> State .

op _redundancy_ : SetSLit SLiteral -> State .

endm

The input state of the expansion rules of SUPC is expected to be of the form
state(S) where S is a set of schematic literals.

The Reflection rule checks whether a given set of schematic literals contains
a constrained disequality whose two sides are unifiable by a substitution that
also satisfies the constraint. In this case the empty clause is added to the set of
literals. The Reflection rule is encoded by the following conditional rewrite rule:

crl [reflection] :

state((S, U’ != U || Phi)) =>

state((S, U’ != U || Phi, emptyClause))

if isSatisf(U’ != U || Phi) .

where the function isSatisf performs the above mentioned checking.
The Superposition rule

l[u′] ./ r‖ϕ u = t‖ψ
σ(l[t] ./ r‖ϕ ∧ ψ)

produces a new literal of the form σ(l[t] ./ r‖ϕ ∧ ψ) from any set containing
two schematic literals (axioms or constrained literals) of the form l[u′] ./ r‖ϕ
and u = t‖ψ, if the side conditions given in Fig. 3 are satisfied with the most
general unifier σ of u and u′. This notion of superposition is close to the notion
of narrowing. The idea is to use the second literal u = t as a rewriting rule u→ t,
to narrow the left-hand side l[u′] of the first literal. If the narrowing succeeds it
produces a term σ(l[t]) where σ is a most general unifier of u and u′. It remains
to apply σ to the right-hand side r of the first literal and to the conjunction of
the two constraints ϕ and ψ.

To narrow we use a function metaENarrowShowAll already implemented in
Full Maude version 2.5. In this version the narrowing was restricted to non-
variable positions, along its standard definition. But the Superposition rule of
SUPC requires the unusual feature: narrowing should also be applied at the posi-
tions of the variables schematizing constants. Therefore we have asked Santiago
Escobar, the developer of narrowing in Full Maude, to implement this feature.
As an answer to this request, he has introduced a flag alsoAtVarPosition to
the narrowing function for disabling the standard restriction.

A second difficulty is that the metaENarrowShowAll function called on the
term l(u′) and the rule u → t generates all the possible narrowings at all the
positions, whereas one application of the Superposition rule produces only one
literal. To solve this problem two additional states S selectOneLitFromGenSet

S′ and S redundancy L have been introduced, where S is a given set of schematic
literals, S′ is the set of schematic literals produced by the narrowing function
applied to two schematic literals from S, and L is one schematic literal. Then
Superposition is encoded by four Maude rewriting rules named sup, select,
no-sup and pick. The sup rule is defined by

rl [sup] : state((S, L1, L2)) =>

(S, L1, L2) selectOneLitFromGenSet applySup(L1, L2) .

where the function applySup generates from L1 and L2 a set of new schematic
literals by calling the narrowing function and checking the ordering conditions of
the Superposition rule. The ordering conditions invoke a function implementing
the orderings detailed in Section 3.4. When the set of new schematic literals is
empty, the rule

rl [no-sup] : S selectOneLitFromGenSet empty => state(S) .

returns the input set in a state ready for another expansion. Otherwise, the rule

rl [select] : S selectOneLitFromGenSet (L, S’) =>

if checkConstr(L) then S redundancy L

else S selectOneLitFromGenSet S’ fi .

considers one by one the schematic literals in the new set until the set is empty or
a schematic literal L with a satisfiable constraint is found. Satisfiability is checked
by invoking the function checkConstr. If the constraint of L is satisfiable then
a state S redundancy L is constructed. It is an input state for the rule

rl [pick] : S redundancy L =>

if L isRedundant S == false

then state((S, L))

else state(S)

fi .

which checks if a generated schematic literal L is redundant with respect to a
given set S of schematic literals. The redundancy is checked by the function
isRedundant that uses the Maude function metaSearch. This function tries to
reach the set S from the union (S, L) of S and {L} by applying contraction
rules. If the new schematic literal is not redundant then it is added to the state,
otherwise, the state is unchanged.

3.3 Saturation

A forward search for generated sets of schematic literals is performed by a func-
tion searchState defined by

op searchState : State Nat -> State .

eq searchState(S’, N) = downTerm(getTerm(metaSearch(

upModule(’SP, false), upTerm(S’), ’state[’S:SetSLit],

nil, ’*, unbounded, N)), error1) .

where SP is a module where all the expansion rules are defined. The function
call searchState(S,N) tries to reach the Nth state from an initial state S by
applying the expansion rules. It uses a breadth-first exploration of the reachable
state space, which is a fundamental graph traversal strategy implemented by the
Maude metaSearch function with the ’* parameter. When the Maude function
downTerm fails in moving down the meta-represented term given as its first ar-
gument, it returns its second argument, namely error1, which is declared as a
constant of sort State (op error1 : -> [State] .).

Then the principle of saturation is implemented by the function saturate

defined by

op saturate : State -> State .

eq saturate(St) =

if searchState(St, 1) == error1 then St else

if searchState(St, 1) =/= St then saturate(searchState(St, 1))

else St fi fi .

which implements a fixpoint algorithm in order to get the state of a saturated set
of schematic literals. If the initial state is already saturated, then the function
returns it unchanged.

A saturated set of schematic literals could alternatively be computed from an
initial state by the Maude metaSearch function with a ’! parameter (searching
for a state that cannot be further rewritten), but the function searchState

computing intermediary states is also interesting for debugging purposes. Note
that the Maude metaSearch function is already used with the parameter ’! to
apply contraction rules.

3.4 Orderings

A fundamental feature of our superposition calculi is the usage of a simplification
ordering which is total on ground terms. This section presents all the orderings
used in the side conditions of the inference rules and describes their implementa-
tion. In our calculi, we assume that compound terms are greater than constants.
To satisfy this assumption, it is sufficient to use an LPO ordering with a prece-
dence on function symbols such that non-constant function symbols are greater
than constants.

Definition 1. Given a precedence >F on function symbols, the lexicographic
path ordering (LPO) >lpo [5] is defined as follows:

LPO1
(s1, . . . , sn) >lexlpo (t1, . . . , tm) f(s1, . . . , sn) >lpo t1, . . . , tm

f(s1, . . . , sn) >lpo f(t1, . . . , tm)

LPO2
f >F g f(s1, . . . , sn) >lpo t1, . . . , tm

f(s1, . . . , sn) >lpo g(t1, . . . , tm)

LPO3
uk >lpo t

f(u1, . . . , uk, . . . , up) >lpo t

LPO4
f(u1, . . . , uk, . . . , up) >lpo uk

where f and g are two functional symbols, n ≥ 0 and m ≥ 0 are two non-
negative integers, p ≥ 1 is a positive integer, and s1, . . . , sn, t1, . . . , tm, u1,
. . . , up, t are terms. We write s >lpo t1, . . . , tm when s >lpo tk for any positive
integer k ∈ [1,m]. The ordering >lexlpo denotes the lexicographic extension of >lpo.
The lexicographic extension can be specified as an inference system that can be
directly encoded in Maude.

The LPO ordering is implemented as a Boolean function gtLPO() such that
gtLPO(s, SC, t) = true if and only if s >lpo t. One can remark the additional
parameter SC. It collects the constrained variables that are viewed as constants
in the precedence ordering: constrained variables are smaller than non-constant
function symbols.

Let us briefly present the four main rules implementing gtLPO(s, SC, t).

1. When n ≥ 1 and m ≥ 1, the rule LPO1 is encoded by

ceq gtLPO(F[NeSL], SC, F[NeTL]) = true

if gtLexLPO(NeSL, SC, NeTL) == true

and termGtList(F[NeSL], SC, NeTL) == true .

where NeSL and NeTL are non-empty lists of terms. Here the head symbols
of s and t are equal. Then the list of subterms NeSL of s = F[NeSL] should be
greater than the list of subterms NeTL of t and the term s should be greater
than all the elements in the list of subterms of t.

2. When n ≥ 1 and m ≥ 1, the rule LPO2 is encoded by

ceq gtLPO(F[NeSL], SC, G[NeTL]) = true

if (gtSymb(F, SC, G) == true) and

termGtList(F[NeSL], SC, NeTL) == true .

Here the heads of s and t are not equal. Then the head of s should be greater
than the head of t and s should be greater than all the direct subterms of t.

3. The rule LPO3 is encoded by

ceq gtLPO(F[UL1, Uk, UL2], SC, t) = true

if gtLPO(Uk, SC, t) == true .

whose condition checks whether a direct subterm of s = F[UL1, Uk, UL2] is
greater than t.

4. The rule

eq gtLPO(F[UL1, Uk, UL2], SC, Uk) = true .

encodes LPO4, when a direct subterm of s = F[UL1, Uk, UL2] is equal to t.

The ordering >lpo on terms is extended to literals thanks to the multiset
extension of >lpo. An equality l = r is represented as a multiset {l, r} while a
disequality l 6= r is represented as a multiset {l, l, r, r}. As for the lexicographic
extension, the multiset extension can be specified as an inference system that
can be directly encoded in Maude.

4 Experimentations

We have done some experiments to compare the (schematic) saturations com-
puted by our tool with corresponding results we can find in the literature. For
the theory of lists without extensionality, our tool generates the same saturation
as the one given in [10]. More surprisingly, for the theory of lists with exten-
sionality, our implementation reveals that the description given in [9] for the
saturation is incomplete. We also consider the case of records of length 3 for
which superposition is known to terminate on ground literals [1].

4.1 Theories of Lists

We experiment with two theories of lists à la Shostak, either without or with
extensionality.

Let ΣList = {cons, car, cdr} be the signature of the theory of lists. The set
GList0 consists of the empty clause ⊥ and the following schemas of ground flat
literals over the signature ΣList:

x = y ‖ const(x, y) (1)

x 6= y ‖ const(x, y) (2)

car(x) = y ‖ const(x, y) (3)

cdr(x) = y ‖ const(x, y) (4)

cons(x, y) = z ‖ const(x, y, z) (5)

where x, y and z are constrained variables.

Theory of lists without extensionality The theory of lists without exten-
sionality is axiomatized by the following two axioms:

car(cons(X,Y)) = X (6)

cdr(cons(X,Y)) = Y (7)

where X and Y are universally quantified variables.

Lemma 1. The set GList0 ∪ {(6), (7)} is saturated by SUPC.

This result is given in [10]. The interested reader can find our proof in Ap-
pendix A.

From an encoding of GList0 ∪ {(6), (7)} our tool generates no new schematic
literal. Notice that on this example the abstraction by schematization is exact, in
the following sense: the saturated set computed by SUPC is the schematization
of any saturated set computed by UPC.

Theory of lists with extensionality This theory is axiomatized by the two
axioms (6) and (7), plus the axiom (called the extensionality axiom)

cons(car(X), cdr(X)) = X (8)

where X is a universally quantified variable.

Lemma 2. The saturation of GList0 ∪ {(6), (7), (8)} by SUPC consists of GList0 ,
(6), (7), (8) and the following constrained literals:

cons(x, cdr(y)) = z ‖ const(x, y, z) (9)

cons(car(x), y) = z ‖ const(x, y, z) (10)

car(x) = car(y) ‖ const(x, y) (11)

cdr(x) = cdr(y) ‖ const(x, y) (12)

cons(car(x), cdr(y)) = z ‖ const(x, y, z) (13)

Proof. The set of axioms {(6), (7), (8)} is saturated. The set GList0 is also satu-
rated. It remains to show the same property for the union of both.

Superposition between (6) and (5) and between (7) and (5) respectively yields
renamings of (3) and (4), which are immediately removed by the subsumption
rule. Superposition between (8) and (3) yields the new constrained literal

cons(x, cdr(y)) = y ‖ const(x, y). (14)

Then, Superposition between (14) and (1) gives the constrained literal (9), which
subsumes (14). Similarly, Superposition between (8) and (4) yields the new con-
strained literal

cons(car(x), y) = x ‖ const(x, y) (15)

and Superposition between (15) and (1) gives the constrained literal (10), which
subsumes (15). Superposition between (6) and (10) and between (7) and (9) re-
spectively gives the constrained literals (11) and (12). Superposition between (8)
and (11) gives the new constrained literal

cons(car(x), cdr(y)) = y ‖ const(x, y) (16)

and Superposition between (16) and (12) gives the constrained literal (13),
which subsumes (16). Superposition between any axiom and (1) yields con-
strained literals that are immediately removed by the subsumption rule. Any
other application of Superposition rule between an axiom and a constrained lit-
eral yields a constrained literal that is already in the set GList0 ∪ {(6), (7), (8)} ∪
{(9), (10), (11), (12), (13)}. Since no other rule can be applied to this set of
schematic literals, we conclude that it is saturated. ut

The example given in [9] is not complete. In that paper, it is said that the
saturation by SUPC of GList0 ∪ {(6), (7), (8)}, consists of the constrained liter-
als (9) and (10), while it also contains (11), (12) and (13). From an encoding
of GList0 ∪ {(6), (7), (8)} our tool generates these five new constrained literals.
On this example we can see that the abstraction by schematization is a over-
approximation: the abstract saturation computed by SUPC is larger than any
concrete saturation computed by UPC.

4.2 Theory of Records

A record can be considered as a special form of array where the number of
elements is fixed. Contrary to the theory of arrays, the theory of records can
be specified by unit clauses. The termination of superposition for the theories
of records with and without extensionality is shown in [1]. We consider here
the theory of records of length 3 without extensionality given by the signature
ΣRec =

⋃3
i=1{rstorei, rselecti} and axiomatized by the following set of axioms

Ax(Rec):
rselecti(rstorei(X,Y)) = Y for all i ∈ {1, 2, 3}

and

rselecti(rstorej(X,Y)) = rselecti(X,Y) for all i, j ∈ {1, 2, 3}, i 6= j,

where X and Y are universally quantified variables. Let GRec0 be defined as in
Section 2.3.

Lemma 3. The saturation of GRec0 ∪Ax(Rec) by SUPC consists of GRec0 , Ax(Rec)
and the constrained literals

rselecti(x) = rselecti(y) ‖ const(x, y)

for i = 1, 2, 3.

A proof of this lemma can be found in Appendix B. From an encoding of GRec0 ∪
Ax(Rec) our tool generates the schematic saturation given in Lemma 3 which
corresponds to the form of saturations described in [1].

5 Conclusion

This paper reported on a prototyping environment for designing and verifying
decision procedures. This environment, based on the theoretical studies in [10, 9],
is the first implementation including both superposition and schematic superpo-
sition calculi. It has been implemented from scratch on the firm basis provided
by Maude. Some automated deduction tools are already implemented in Maude,
for instance a Church-Rosser checker [6], a coherence checker [7], etc. Our tool
is a new contribution to this collection of tools. This environment will help test-
ing new saturation strategies and experimenting new extensions of the original
(schematic) superposition calculus. A short term future work is to consider non-
unit clauses. Since schematic superposition is interesting beyond the property of
termination, we also want to extend the implementation so that we can check
deduction completeness and stably infiniteness [9] which are key properties for
the combination of decision procedures. We are also interested in developing
new schematic calculi for superposition modulo fragments of arithmetic such as
Integer Offsets [13] and Abelian Groups [12]. The reported implementation is a
firm basis for all these future developments.

Acknowledgments. We are deeply grateful to Santiago Escobar for his help
on the use of narrowing in Maude and to Alberto Verdejo for his answers about
the strategy language for Maude.

References

[1] Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)

[2] Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Inf. Comput. 183(2), 140 – 164 (2003)

[3] Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., L. Talcott, C.: Unification and narrowing in Maude 2.4. In: Rewriting Tech-
niques and Applications, 20th International Conference, RTA 2009, Braśılia,
Brazil, Proceedings. pp. 380–390 (2009)

[4] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., F. Que-
sada, J.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science (2001)

[5] Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, Formal Models and Sematics, vol. B, pp.
243–320. MIT Press (1990)

[6] Durán, F., Meseguer, J.: A Church-Rosser checker tool for conditional order-sorted
equational Maude specifications. In: Rewriting Logic and Its Applications - 8th
International Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010,
Paphos, Cyprus, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 6381, pp. 69–85. Springer (2010)

[7] Durán, F., Meseguer, J.: A Maude coherence checker tool for conditional order-
sorted rewrite theories. In: Rewriting Logic and Its Applications - 8th Interna-
tional Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010, Paphos,
Cyprus, Revised Selected Papers. Lecture Notes in Computer Science, vol. 6381,
pp. 86–103. Springer (2010)

[8] Eker, S., Mart́ı-Oliet, N., Meseguer, J.and Verdejo, A.: Deduction, strategies, and
rewriting. Electr. Notes Theor. Comput. Sci. 174(11), 3–25 (2007)

[9] Lynch, C., Ranise, S., Ringeissen, C., Tran, D.K.: Automatic decidability and
combinability. Inf. Comput. 209(7), 1026–1047 (2011)

[10] Lynch, C., Morawska, B.: Automatic decidability. In: Proc. of 17th IEEE Sympo-
sium on Logic in Computer Science, (LICS’02), Copenhagen, Denmark. pp. 7–16.
IEEE Computer Society Press (2002)

[11] Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: Towards a strategy language for Maude.
Electr. Notes Theor. Comput. Sci. 117, 417–441 (2005)

[12] Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable extensions of Abelian
groups. In: Schmidt, R. (ed.) Proc. of 22nd International Conference on Auto-
mated Deduction, (CADE’09). LNAI, vol. 5663, pp. 51–66. Springer, Montreal
(Canada) (2009)

[13] Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundamenta Informaticae
105(1-2), 163–187 (2010)

[14] Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443.
Elsevier and MIT Press (2001)

[15] Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)
[16] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:

SPASS Version 3.5. In: Schmidt, R. (ed.) Proc. of 22nd International Conference
on Automated Deduction, (CADE’09). LNAI, vol. 5663, pp. 140–145. Springer,
Montreal (Canada) (2009)

A Schematic Saturation of Lists

Lemma 1. Let

GList0 = {⊥} ∪

x = y ‖ const(x, y) (1)
x 6= y ‖ const(x, y) (2)
car(x) = y ‖ const(x, y) (3)
cdr(x) = y ‖ const(x, y) (4)
cons(x, y) = z ‖ const(x, y, z) (5)

and let

Ax(List) =

{
car(cons(X,Y)) = X (6)
cdr(cons(X,Y)) = Y (7)

The set GList0 ∪Ax(List) is saturated by SUPC.

Proof. The set of axioms {(6), (7)} is saturated. The set GList0 is also saturated.
It remains to show the same property for the union of both.

Superposition between (6) and (5) yields a renaming of (3), which is imme-
diately removed by the subsumption rule. Similarly, Superposition between (7)
and (5) yields a renaming of (4), which is removed by the subsumption rule
as well. Superposition between any axiom and (1) yields a schematic literals
that are immediately removed by the subsumption rule. Since no other rule can
be applied between an axiom and a schematic literal, we conclude that the set
GList0 ∪ {(6), (7)} is saturated. ut

B Schematic Saturation of Records

Lemma 3. Let GRec0 be the set that consists of the empty clause ⊥ and the
constrained literals

x = y ‖ const(x, y) (17)

x 6= y ‖ const(x, y) (18)

rstore1(x, y) = z ‖ const(x, y, z) (19)

rstore2(x, y) = z ‖ const(x, y, z) (20)

rstore3(x, y) = z ‖ const(x, y, z) (21)

rselect1(x) = y ‖ const(x, y) (22)

rselect2(x) = y ‖ const(x, y) (23)

rselect3(x) = y ‖ const(x, y) (24)

Let Ax(Rec) be the set of axioms

rselect1(rstore1(X,Y)) = Y (25)

rselect2(rstore2(X,Y)) = Y (26)

rselect3(rstore3(X,Y)) = Y (27)

rselect1(rstore2(X,Y)) = rselect1(X) (28)

rselect1(rstore3(X,Y)) = rselect1(X) (29)

rselect2(rstore1(X,Y)) = rselect2(X) (30)

rselect2(rstore3(X,Y)) = rselect2(X) (31)

rselect3(rstore1(X,Y)) = rselect3(X) (32)

rselect3(rstore2(X,Y)) = rselect3(X) (33)

The saturation of GRec0 ∪Ax(Rec) by SUPC consists of GRec0 , Ax(Rec) and the
following constrained literals:

rselect1(x) = rselect1(y) ‖ const(x, y) (34)

rselect2(x) = rselect2(y) ‖ const(x, y) (35)

rselect3(x) = rselect3(y) ‖ const(x, y) (36)

Proof. The set of axioms Ax(Rec) is saturated. The set of schematic literals
GRec0 is also saturated. It remains to show the same property for the union of
both.

Superposition between (25) and (19) yields a renaming of (22), which is
immediately removed by the subsumption rule. It is similar for the indices 2
and 3, between (26) and (20) and between (27) and (21).

Superposition between (28) and (20) yields the constrained literal (34). Af-
terwards, Superposition between (29) and (21) yields a renaming of (34), which
is immediately removed by the subsumption rule. It is similar for the indices 2
and 3, between (30) and (19) and between (32) and (19).

Superposition between any axiom and (17) yields schematic literals that are
immediately removed by the subsumption rule. Since no other rule can be applied
between an axiom and a schematic literal, we conclude that the set GRec0 ∪
Ax(Rec) ∪ {(34), (35), (36)} is saturated for SUPC. ut

