
Applying a MBT Toolchain to Automotive Embedded Systems: Case Study Reports

Fabrice Ambert∗, Fabrice Bouquet∗†, Jonathan Lasalle∗, Bruno Legeard† and Fabien Peureux∗†
∗FEMTO-ST Institute / DISC department - UMR CNRS 6174

16, route de Gray, 25030 Besancon, France.
{fambert, fbouquet, jlasalle, fpeureux}@femto-st.fr

†Smartesting R&D Center
18, rue Alain Savary, 25000 Besancon, France.
{bouquet, legeard, peureux}@smartesting.com

Abstract—This paper illustrates the use of a Model-Based
Testing approach from SysML test model using four com-
plementary automotive case studies. The purpose of these
experimentations is to demonstrate the reliability and to show
the suitability of this tooled approach for the validation of
embedded mechatronic systems (systems mixing software and
hardware aspects). The experimented toolchain, based on
the Model-Based Testing principles, reuses well-known and
effective existing tools in order to obtain a end-to-end toolchain
from the modeling step to the execution of the concrete test
cases derived from the initial test model. This fully automated
toolchain and the four automotive case studies are introduced,
and experimentation feedback are discussed.

Keywords-Model-Based Testing; Automotive Embedded Sys-
tems; Case Study Report

I. INTRODUCTION

The growing complexity and intensive use of software em-
bedded systems, combined with constant quality and time-
to-market constraints, entail the implementation of high-
performance and effective system validation strategies. Since
functional testing is a strategic activity for software quality
assurance, it creates new challenges for engineering practices
in this domain. To address this activity, we propose to
apply Model-Based Testing approach (MBT) to complete the
manual test cases executed during the software integration,
which often rely on manual, repeated and tedious efforts.

In the last decade, Model-Based System Engineering
(MBSE) methodologies have emerged on the sharing and
standardisation of embedded software technologies [1].
These approaches put a strong emphasis on the use of
models at the different steps of the system specification to
increase the quality level of the software design process.
In this context, testing against original expectations can be
done using Model-Based Testing approach [2]. MBT is a
particular type of software testing techniques in which test
cases are automatically derived from a high-level model,
which describe the expected behaviour of the System Under
Test (SUT). MBT is an increasingly widely-used approach
that has gained much interest in recent years. It is today
getting closer and closer to an industrial reality: theoretical
concepts (and associated tools) to derive test cases from
specifications are indeed now mature enough to be applied in

many application areas [3]. However, MBT approaches have
still to provide a better degree of automation, especially to
translate the generated test cases into executable test scripts,
for shortening the testing time and increasing the global
time-to-market [4].

The global picture of MBT process is shown in the
figure 1. The first step of this approach consists to specify
a model that captures the functional behavior of the SUT.
From this specification, a tool automatically generates test
cases, which can be seen as an abstract execution trace of the
system. These test cases are abstract because they are defined
at the same abstraction level than the model representing the
SUT. Afterwards, a concretization step makes it possible
to produce, from the abstract test cases, test scripts that
can be directly executed either on a simulation platform
of the system, or directly on the concrete system to be
tested. The automation of such test generation process is a
strategic issue, since it can replace the (so current) manual
development of test cases, which is known as costly and
error-prone [5].

Figure 1. Model-Based Testing process.

In this paper, we illustrate the use of a MBT toolchain,
providing an automated and repeatable process, dedicated to
embedded and mechatronic system, including real-time and
continuous executions. We relates about the experimentation
results using concrete case studies in order to show the
effectiveness and the suitability of this tooled MBT solution.



This paper is organized as follows. Section 2 presents an
overview of the MBT toolchain, and defines each step of the
test generation and execution process. Section 3 introduces
four case-studies, conducted to evaluate the reliability of
our tooled approach. Section 4 synthesizes our experience
and gives feedback. Finally, Section 5 gives conclusions and
outlines future work.

II. DESCRIPTION OF THE TOOLCHAIN

In this section, we briefly describe the toolchain im-
plementing the MBT approach. This toolchain has been
initially developed during the French project VETESS (from
September 2008 to August 2010) and experimented during
the last three years. The resulting MBT toolchain is based on
the Smartesting MBT process, which has been adapted to ad-
dress the specific testing needs and requirements of the auto-
motive domain. To achieve this goal, this toolchain takes, as
input, test models specified using the SysML [6] language,
from which specific model coverage criteria have been
created to generate dedicated test cases for embedded system
validation. Concerning technical issues, we have developed a
toolchain providing a full automated MBT solution from the
test model to the execution of the generated test cases on the
targeted SUT. This toolchain have been achieved by using
the open-source and Eclipse-based modeling tool Topcased,
the test generation engine Smartesting Test DesignerTM ,
and the test manager and execution environment (dedicated
to embedded system Clemessy TestInView platform. To en-
sure a fully automated process, interactions between these
tools have been developed. Before introducing the overall
toolchain, each tool is now briefly described in the next
subsections. A more detailed presentation of this toolchain
is available in [7].

A. SysML modeling with Topcased

UML is widely used as a modelling support in industrial
context and is today the main specification language for
object modelling. Recently, to provide sufficient features to
make this language useful for systems engineers, SysML
profile has been created. Even if SysML is a recent modeling
language, it is on the rise in industrial domain to specifically
address system engineering issues, and several modeling tool
already support SysML models. In this way, we decide to
adopt Topcased, which means Toolkit in OPen-source for
Critical Application and SystEms Development. It indeed
provides a SysML editor based on the UML metamodel (and
therefore compliant with OMG UML standard and SysML
metamodel derived from the OMG SysML Profile).

More precisely, the test model is specified on the basis
of a subpart of SysML notation called SysML4MBT [8]. A
SysML4MBT model contains at least one Block Definition
Diagram to represent the static view of the system (with
blocks, associations, compositions, enumerations, properties,
operations, signals, flow ports...), at least one Internal Block

Diagram to formalize interconnections between blocks, and
at least one Statemachine diagram to specify the dynamic
view of the system. In addition, Object Constraint Lan-
guage (OCL) [9] expressions are associated with the SysML
block operations and state diagram transitions to provide
the expected level of formalization to precisely describe
the dynamical behaviours of the system. Indeed, OCL is
an unambiguous language that allows formally expressing
essential behavioural aspects of the SUT. That is why the
combination of OCL and object-oriented graphical model is
known as a good practice to model the exact service the
system has to do.

B. Test generation with Smartesting Test DesignerTM

Smartesting company has released a Eclipse-based tooled
MBT solution to generate and manage functional tests from
behavioural models specified from UML/SysML models.
Basically, automatic test generation algorithm carries out
a systematic coverage of all behaviours of the test model.
Moreover, to address the specificities of embedded systems,
tests also cover each couple of signal receive/sending: for
each sending event and each corresponding receive event,
the coverage of the succession of the sending event and the
receive event is guaranteed.

Each test corresponds to a sequence of operations (or
events) taking the form of a 3-part structure: a first subse-
quence places the system in a specific context (preamble) to
exercise the test goal, a second subsequence invokes the be-
haviour to be tested (test goal), and finally a last subsequence
allows returning to the initial state so that test cases can be
executed automatically in one single sequence. It should be
noted that this 3-part structure can be completed by one or
more observation function calls, which allow observing the
system state at any time during the test execution (to make
the verdict assignment more relevant). Indeed, the precise
meaning of SysML4MBT makes it possible to simulate the
execution of the model, to use it as an oracle by predicting
the expected output of the application under test.

The generated abstract test cases are finally exported into
XML proprietary files from which some ad-hoc API can be
provided to translate the generated test cases into specific
languages or specific environments.

C. Test execution with Clemessy TestInView

TestInView (TIV) is a test execution platform based on a
National Instruments hardware architecture (NI TestStand).
It is designed to generate and acquire simple or complex
electric signals and to import mathematical models (as
Matlab/Simulink) that simulate the behaviour of an item
of equipment that is absent from its future working envi-
ronment. This platform can be used to describe the test
sequences, to execute them to within the nearest millisecond
and to automatically assess the expected results.



D. Overview of the toolchain

The built toolchain is depicted in Figure 2. The associated
test process is defined as follows:

1) A SysML test model, specifying the SUT, is realized
using Topcased.

2) This SysML model is translated into a SysML4MBT
model, which is exported to Test DesignerTM .

3) Test DesignerTM automatically generates abstract test
cases from the model by applying coverage criteria,
and produces the expected behaviour of the SUT.

4) The generated test cases and expected outputs are
then exported into TestInView platform. During this
step, a manually-designed mapping table concretizes
the abstract generated test cases into concrete scripts.

5) Finally, Clemessy TestInView platform allows to au-
tomate the execution of the test cases on a simulated
system or on a physical test bench. It also manages
the verdict assignment by automatically comparing the
execution results with the expected ones.

Figure 2. Overview of the MBT toolchain

The next section introduces the case studies demonstrating
how this MBT toolchain has been successfully applied to
address the validation of automotive embedded systems.

III. CASE STUDIES

We now present four case-studies that has been used to
experiment the MBT toolchain presented in the previous
section. The goal of these work was to demonstrate that
such tooled MBT approach from SysML notation is suitable
within automotive embedded system context. The two first
case-studies (front lightings and sit control system) can be
seen as preliminary toy examples: they have been conducted
to only experiment the modeling and the test generation
process of toolchain. The two next case-studies (front wiper
and steering column) have been used to validate the entire
toolchain from the modeling to the execution of the genera-
ted test cases (using either simulation framework or physical
test bench). The functional scope of each case study is given.
Some metrics about the model structure are introduced and
summarized in Table I page 6. These data and the effort to
conduct these case studies will be discussed in Section 4.

A. Front Lightings

The first case study concerns the study of a front lighting
system of a car. This system allows to light on and light
off headlights and highlights. Unlike traditional lightings
systems, the control stick is here replaced by a tactile panel
(also called control panel). This panel is composed of a
dynamic screen (variable display) and a tactile surface. At
the initial state, the panel and the lights are turned off.
When the ignition is turned on, all lights stay turned off
and the control panel is started. Two functionalities are then
reachable: light on headlights or flash lights. Two different
area are thereof displayed on the screen. If we choose to
light on headlights, other functionalities are reachable: light
on highlights, light off headlights or flash lights. If the user
lights on highlights, headlights are automatically light off.
From this new state, it is always possible to flash lights.

This case study proposes a system with quite simple
communications (cf. Figure 3) but offers a quite complex
statemachine by the number of possible fireable transitions.

Figure 3. Internal Block Diagram of the front lightings case study

This model has generated 41 test targets that are covered
by 11 abstract test cases. For this case study, we had not
the opportunity to execute tests on a test bench, so it has
thus only permitted the adjustment of our approach about
the modeling and test generation parts.

B. Sit control

The second case study was carried out on part of the
management of the electronic control of a car driver sit (The
specification of this case study comes from [10]). As for
the previous case study, nor test bench, nor simulator were
available to execute generated tests. So, this case study has
been useful to validate the two first parts of the toolchain:
modeling and test generation.

As shown in Figure 4, this system is composed of six
motors (LA, FH, RH, SD, B and HR) that allow to change
features of the sit. Each motor has a maximum amplitude.
All motors can turn in two different ways (PLUS and
MINUS). There are divided in two groups: one containing
LA, FH and RH motors, the other containing SD, B and HR
motors. In a given time, only one motor can be running in a
given group. Priority are associated to each motor: if a more
priority motor is turned on during a less priority motor is
running, this second one is momentarily turned off in order
to run to the first one.



Figure 4. Sit control system

This example describes a continuous system: variations of
the sit features are synchronized by a clock. The amplitude
of motors is thus represented as an amount of clock tops.
The block definition diagram of this model is composed
of one block for the buttons that activate motors (called
command), one block for each motor and one block for
the clock management. The statemachine of the command
block is depicted in Figure 5.

Figure 5. Statemachine of the command block of the sit control model

The global model contains 42 signals sendings and 48
signal receives. The test generation strategy generates 130
test targets, which are covered by 78 abstract test cases.

C. Front Wiper

The third case study specifies a wiper system of a car.
Modeled functionalities are drying up with different speeds
(low, high and intermittently) and a windows cleaning
with drying up. In this system, a lot of mecatronic parts
are considered: the serial link, the CAN bus, the EEP-
ROM memory. . . then, the model contains more transitions
than previously (91 transitions shared by 12 statemachine
diagrams) and communications are much more complex.
Thereby, 189 abstract test cases have been generated to cover
the 233 targets derived from the SysML test model.

These generated test cases have been concretized and
exported to the TestInView platform. As shown in Figure 6,
tests have been executed on a simulation model (designed
using Matlab). The result of the execution of the tests on
the simulator has been automatically compared with the
expected result predicted by the SysML test model.

Figure 6. TIV simulation GUI of the front wiper system

D. Steering Column

The steering column case study aims to examine the
behaviours of the steering column of a car. A major issue of
this last case study concerns the strong continuous feature
of this system (its state is always evolving), which cannot
be trivially abstracted. Indeed, variation of the steering
column depends on complex mathematical formula and that
cannot be modelled using a SysML4MBT model, which
only describes discrete actions. Because of these limitations,
our approach consists in modelling the environment of the
SUT in a discrete manner, and in deferring the management
of continuous time issues at the concretization step. Thus,
for this case study, statemachine diagrams are not used to
represent behaviors of the SUT, but to represent behaviors
of its environment. So, the road plots are modeled, and the
expected values of the SUT are computed in a latter step us-
ing simulation (see Figure 7). In this way, the testing process
consists to compare the values obtained using simulation
against the values observed in the concrete system.

Figure 7. Tests execution for continuous systems

The SysML model represents road characteristics with
blocks, which are linked to the steering column that defines
the SUT as a black box. Figure 8 depicts one of the
61 generated test cases. Perpendicular lines separate the
different steps of the road. A flat road is represented by gray
line, a downhill part by light gray line, an ascending part by
black lines, and finally the various banking by arrows.



Figure 8. Graphical test generated for the steering column case study

Since the generated test cases do not allow to calculate
the expected values (road plots do not give the status of
the steering column), it is then necessary to execute the
generated tests on a simulated Matlab version (Figure 9)
to compare the results with the execution on the physical
test bench (Figure 10). This comparison has been automated
using the TIV framework. The execution of such scenario
on this test bench is available at the end of the video in [11].

Figure 9. Simulator GUI of the steering case study

Figure 10. Physical test bench of the steering case study

IV. EXPERIMENTATION SYNTHESIS AND FEEDBACK

The four case studies, presenting a growing complexity
in terms of model expressiveness and behavioral aspects
(see Table I), have shown that Model-Based Testing from
SysML can be successfully applied to several aspects of
automotive embedded system domain. This tooled approach
can indeed have great benefits to automate the generation
of test cases, by ensuring a given model coverage and by
generating a very large number of test cases from a simple
model. Moreover, for any change in the model, it offers
the capacity to re-generate and re-execute the test cases
automatically. As illustrated in Table I, the test generation
times were indeed always trivial in comparison with the time
spent to write the model. Indeed, the complexity of the test
models being reasonable, test generation tools, such as Test
DesignerTM , are now mature enough to be efficient in terms
of generation time and model coverage rate. However, with
more complex and larger system, a risk of combinatorial
explosion during test case generation could be found.

About modeling, it should be noted that our MBT process
(that relies on a discrete representation of the SUT) can be
nevertheless relevant even if the SUT refers to continuous
issues (eg. steering column example) that cannot easily be
abstracted (such as sit control example). In this specific
context, the test model can be used to describe the dynamic
of the SUT environment, meaning how the SUT can be
stimulated by its environment (and not how it evolves against
these stimuli). The expected behaviours of the SUT are
computed latter during the concretization step of the process,
which then appears more complex than a simple mapping
between abstract and concrete data.

Whatever the configuration may be, these experimen-
tations have shown that more than 50% of the time is
consummed to manually design and manage the mapping
table, which gives the relation between the concepts of
the abstract test cases and the concrete sequences to be
executed on the real system. The difficulty of this task
often came from the real-time features of the concrete
system, and the need to synchronize all the operation calls of
the test cases. The mapping between abstract and concrete
notions has been clearly identified as the key point to make
the automation of the concretization step manageable and
reliable in an industrial context. This issue is not due to our
technologies: previous works using other MBT tools have
already underlined this rough step [12].

Finally, on the basis of this fully automated toolchain, new
experimentations are necessary to determine more precisely
the scalability of our MBT approach, and to study in a deeper
way the relevance of the generated test cases (our study was
mainly focused on feasibility). Real-life experimentations
with more complex and larger test models should indeed
be conducted to ensure the efficiency and the relevance of
the coverage criteria algorithms.



Lightings Sit control Wiper Steering

Sys
M

L
mod

el
Blocks 4 9 15 9

Connectors / sends / receives 8/14/10 24/42/48 26/58/65 10/25/20
Statemachines 3 8 12 6

States per statemachine [2,5,5] [8,1,3,3, [1,1,1,1,1,2, [2,4,3,6,3,4]
3,3,3,3] 17,10,2,2,2,2]

Transitions per statemachine [2,8,8] [18,1,8,8, [2,3,2,4,1,3, [3,8,4,5,9,8]
8,8,8,8] 52,16,2,2,2,2]

Test results Targets 41 130 233 106
Tests 11 78 189 61

Effo
rt

Modeling 99% 97% 40% 30%
Test generation 1% 3% 4% 2%
Concretization 50% 61%
Test execution 6% 7%

Table I
SYNTHESIS OF EXPERIMENTATION RESULTS

V. CONCLUSION AND FUTURE WORK

This paper reports about the results with applying to
automotive system a MBT toolchain prototype that auto-
mates the generation of executable test scripts from SysML
test models. This prototype is based on existing tools that
have been adapted and customized to achieve testing pro-
cess automation: this prototype indeed offers an integrated
approach and continuous process. Several case-studies has
been successfully experimented and have demonstrated that
this toolchain is suitable and can gain benefits within auto-
motive embedded system validation.

However, the manual design and customization of the
translation of the abstract test cases into concrete ones
clearly appeared to be a pain. To provide a better degree
of automation of this step, we plan to manage real-time
issues at the earliest stage of the process, directly in the
SysML model. To address this issue, we want to investigate
the use of the UML MARTE profile [13]: this feature will
make it possible to model and manage real-time constraints
in the test model. In this way, the generated test cases will
naturally consider the real-time requirements of the SUT,
and will thus simplify the customization of the mapping
table. Moreover, this extension will allow to define new test
generation strategies, focusing on real-time issues.

REFERENCES

[1] J. Estefan, “Model-Based Systems Engineering (MBSE)
Methodologies,” MBSE Initiative and INCOSE Group, Sur-
vey INCOSE-TD-2007-003-01.B, June 2008.

[2] M. Utting and B. Legeard, Practical Model-Based Testing -
A tools approach, Morgan and Kaufmann, Eds. Elsevier
Science, 2006, iSBN 0 12 372501 1.

[3] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy
of model-based testing approaches,” Software Testing,
Verification and Reliability, 2011. [Online]. Available:
http://dx.doi.org/10.1002/stvr.456

[4] A. Dias-Neto and G. Travassos, “A Picture from the Model-
Based Testing Area: Concepts, Techniques, and Challenges,”
Advances in Computers, vol. 80, pp. 45–120, July 2010, iSSN:
0065-2458.

[5] H. Zhu and F. Belli, “Advancing test automation technology to
meet the challenges of model-based software testing,” Journal
of Information and Software Technology, vol. 51, no. 11, pp.
1485–1486, 2009.

[6] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide
to SysML: The Systems Modeling Language. Morgan
Kaufmann, 2009, iSBN 9780123743794.

[7] J. Lasalle, F. Peureux, and F. Fondement, “Development of
an automated MBT toolchain from UML/SysML models,”
ISSE, Special issue of the Int. NASA Journal on Innovations
in Systems and Software Engineering, vol. 7, no. 4, pp. 247–
256, September 2011.

[8] J. Lasalle, F. Bouquet, B. Legeard, and F. Peureux, “SysML to
UML model transformation for test generation purpose,” 3rd

Int. Workshop on UML and Formal Methods (UML&FM’10),
November 2010.

[9] J. Warmer and A. Kleppe, The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1996, iSBN
0 201 37940 6.

[10] M.-A. Peraldi-Frati, C. André, and J.-P. Rigault, “UML et
le paradigme synchrone : Application la conception de
contrleurs embarqus,” RTS’2002, pp. 71–89, March 2002.

[11] “VETESS web site,” http://lifc.univ-fcomte.fr/vetess/, 2012.

[12] E. Dustin, T. Garrett, and B. Gauf, Implementing Automated
Software Testing: How to Save Time and Lower Costs While
Raising Quality. Addison Wesley Professional, 2009, iSBN
0 32 158051 6.

[13] O. M. Group, “UML Profile for MARTE, draft revised
submission,” OMG, OMG document number realtime/07-03-
03L4.1, April 2007.


