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Abstract—This article studies different congestion control
methods applied to a centralized control system, consisting in
several sensors/actuators and one controller. Sensors/actuators
are linked to the controller through an IP network. Depending
on the data exchanged, the network can be congested. In such
case, the congestion control used by data exchange becomes
important. We evaluate four congestion control methods used by
three classical transport protocols, UDP, TCP and DCCP. This
evaluation uses ns2 network simulator. Results on a centralised
control system show that TCP and DCCP offer a good trade-
off on reliability vs. throughput, whereas UDP has best results
provided that the network is well configured.

Index Terms—congestion control, transport protocols, control
systems, real-time systems.

I. INTRODUCTION

Control systems are devices which manage the behaviour
of systems. Closed-loop control systems consist of sensor(s)
which gather data from the environment, actuator(s) which
act on the environment, and controller(s) which receive data
from sensor(s) and give commands to actuator(s). In our case,
we are interested in Distributed Intelligent MEMS (DiMEMS)
systems [1] which comprise all these elements but at a micro-
scale. The Smart Blocks1 and the Claytronics2 projects are
good examples of DiMEMS systems.

Control systems can be as simple as a sensor, an actuator
and a controller. They can be centralized, consisting of sev-
eral sensors and actuators but a single controller. They are
distributed if there are several controllers too.

A networked control system (NCS) is a control system
where the components are connected together through a net-
work, and which has real-time constraints. The network is
shared among the components either because it allows to
reduce system costs or because the interconnection is wireless.
NCSs have therefore a broad range of applications such as
mobile robotic systems, ground-based like in RoboCup or
unmanned aerial vehicle (UAV)[2].

Having real-time constraints means that information gener-
ated has deadlines to arrive, so the time when the information
arrives to destination is important. They can be divided in soft,
firm and hard [3]. In soft systems a deadline miss means that
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the information has a reduced usefulness, such as in sensor
networks. In firm systems a miss means its information is
useless, but infrequent misses are tolerable, such as in a live
video/audio conversation. In hard systems, deadline misses
generate system failure, such as in most robotic systems.

The network is shared among the components. Designing
the network capacity so that congestion never appears is
not always feasible, for example when data generated is not
known in advance or when network has no fixed bandwidth
such as the wireless networks subject to interference. So
congestion can occur if data transmitted exceeds in size
the network capacity. Congestion control is a mechanism to
regulate sending rate so that data is sent at the fastest rate
that still avoids congestion. This can be thought as network
resource optimisation. When congestion occurs in network,
data is lost. It is therefore important to analyse congestion
control impact on data transmission.

In NCS research, data transfer is generally treated with low-
level protocols, such as Ethernet and TDMA. Very few papers
deal with congestion control in IP-based systems, yet this
is a known challenge: “These challenges [for NCS] involve
the optimization of performance in the face of constraints
on communication bandwidth, congestion, and contention for
communication resources, delay, jitter [...]” and “When com-
munication channels in a data network are shared resources
among multiple user nodes, network congestion and contention
for bandwidth pose challenges for control implementations
in which there are hard real-time requirements” [4]. [5] for
example notices that different types of data exist in an NCS,
hence different protocols or different priorities for packets
can be used. In this context, [6] shows promising results for
packet prioritisation, results which are even more appropriate
to control systems since the network is under the control of
one organization.

The contribution of this article is to discuss the interest
of having congestion control in NCS. We analyze simulation
results of classical congestion controls used above IP-based
networks.

II. RELATED WORKS

A. Networked Control of Systems

Networked Control of Systems (NCS) lies at the intersection
of control and communication theories and it is therefore



relevant to compare this study to NCS ones. A NCS has four
main characteristics [7], [8] that have to be taken into ac-
count in order to control the whole system, bandwidth-limited
communication channels, sampling and delay, packet dropout
and system architecture. If the first three characteristics match
our concerns which is network transmission, the last one only
deals with the architecture of the system i.e. centralization
vs decentralization of the control. Nevertheless, studies and
modeling of quantization effect [9], [10], packet drop out [11]
or consensus problems [12] are important and must be taken
into account together with the congestion control.

B. Decentralized and distributed control

The topic of decentralized and distributed control of systems
has been active for many years [13]. Decentralized control
limits its study to special systems like spatially invariant
ones [14] or nested, chained or symmetric systems [15],
whereas distributed control makes less assumptions about the
system [16]. Linear matrix inequalities (LMI) can be used
either for decentralized [17] or for distributed systems [18].
LMI has proven to be efficient when dealing with linear
systems whose physical topology is represented by an arbitrary
graph [19] but these results have not been extended to the non-
linear systems. It has also to be noticed that these methods
propose only to control large distributed system but do not help
to program it. If some problems require algorithmic solutions,
these methods won’t be used.

III. BACKGROUND

A. Congestion control

The IP protocol, used also by Internet, does no attempt to
optimise network usage when sending data, because it does not
take into account availability of network resources. Network
optimisation use has been leaved on/to the upper transport
protocol. The classical transport protocols on Internet are
TCP [20] and UDP [21], and recently DCCP was standardised
too [22]. The way resource usage is taken into account is
through a congestion control. Among the transport protocols
presented, UDP has no congestion control with no data re-
liability, TCP has a window-based congestion control with
100% data reliability through retransmission (all data arrives to
destination), and DCCP allows to choose a congestion control
among currently two standardised controls: TCP-like [23],
similar to TCP, and TFRC [24], an equation-based control,
with no data reliability either.

When UDP receives a packet to be sent to network, it sends
it immediately, no matter the network state. This intuitively
leads to the highest sending rate, with the drawback that
packets can be lost if the network is congested.

When TCP or DCCP receives a packet to be sent to network,
it checks whether network is able to transport it. If yes, it
is sent immediately, otherwise it is stored in a temporary
buffer until network conditions allow to send it. The role of
congestion control is to take care of the timings when packets
are sent to the network.

TCP congestion control works as follows. At the beginning
of a transmission, sender uses a slow start phase, where data
sending rate increases exponentially. When data rate exceeds
network bandwidth, packets are lost and sender enters to
congestion avoidance phase, a network-friendly phase where
data sending rate increases linearly; this is the phase used
most of the time for long enough transmissions. Upon a lost
packet detection, sender sends it immediately, known as fast
retransmit phase, and enters a temporary fast recovery phase
where it sends data at a smaller rate until it recovers from
the loss, at which time it reduces by two the data rate and
goes back to the congestion avoidance phase. This congestion
control is used by DCCP/TCP-like too.

On the contrary, TFRC uses a sending rate equation whose
parameters are filled with transmission parameters, most no-
table with the number of lost packets. Each RTT (Round
Trip Time, the time for a packet go and back), the equation
parameters are updated and data sending rate changes. This
leads to a smoother changing in sending data rate, which is a
useful property for some applications.

B. Simulators

Control and network research communities usually use
simulators to validate algorithms. Two such simulators are
TrueTime and ns2, respectively.

TrueTime is based on Matlab/Simulink and targets real-time
and embedded systems. The simulation model is based on
three blocs:

• TrueTime kernel, for logical controls and data processing;
• TrueTime network, for packet exchange in a local net-

work such as Ethernet, CAN, TDMA and FDMA;
• a controller.

A fourth optional block can be used, TrueTime battery. This
simulator focuses on low-level simulations. Instead, we are
interested in high-level protocol simulations, where congestion
control is implemented.

Network simulator version 2 (ns2) is usually used in the
network research community. It provides low-level and high-
level protocols. Several transport protocols are supported, and
for some time we even maintained the DCCP implementation,
used in the current article, in the simulator3. The accuracy
of results for low-level protocols is low, but for high-level
protocols, as in our case, it is high.

Given the support for various congestion controls, we
choose ns2 for our simulations.

IV. CONGESTION CONTROL ANALYSIS

A. Network topology used

The network used for carrying out tests is presented in
Fig. 1. Three agents are connected through a router to a
controller. Agents are both sensors and actuators. The sensor
sampling period is 50ms; they gather information about the
environment and send to the controller sensor data through
the form of a packet of 1kB (1024 bytes) of application data

3http://eugen.dedu.free.fr/ns2
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Figure 1. Network used for simulations.

each 50ms. Note that this gives slightly different packet sizes,
since UDP, TCP and DCCP headers have different sizes. The
first sensor starts sending at t=0, the second at t=100ms and
the third at t=200ms. Upon reception of a sensor data (sensor
packet), the controller answers by sending it an order through
the form of a packet of 200 bytes. The topology is set so that
there is a small congestion on router-controller link, whose
bandwidth is a bit smaller than total sent data. The reason for
this choice is that if a network is not congested, a congestion
control brings of course no benefit, whereas we are interested
to know if congestion control is useful.

The router uses a DropTail queue management, which
means that an incoming packet is rejected if and only if the
buffer is full. The buffer size is set to 50 packets, the default
value on the simulator.

Each simulation is run for 360 seconds. The total number
of packets generated by each sensor is 20 packets/sec * 360
sec = 7200 packets (in reality, between 7195 and 7199, since
some sensors start a bit later).

Note that sending and receiving are done on different
“cables”, so they do not share the 256kb/s link. As controller
answers are small, they do not provoke congestion, hence we
are not interested by controller answers.

The figure accompanying each method shows the delays of
each packet generated by each sensor, with the time on x-axis.
A 0 delay means the packet is lost.

B. Results

The layer which takes care of network congestion and is
responsible for packet delays is transport layer. We tested
three transport protocols, the classical TCP and UDP, and a
relatively new standardised protocol, DCCP. The latter can
choose its congestion control, and we tested the two currently
standardised: TCP-like and TFRC.

Some applications in control systems are interested by delay
(time for the sensor data to arrive to controller), others by
losses. On some applications values are cumulative, i.e. the
value of one parameter at one time removes the need to know
the value of the parameter before (e.g. the current temperature
of a system or the current position of an object), which means
that losses are tolerated. On others, such as videoconferencing,
the delay is an important parameter, while the reliability is
important for audio and not so important for video. Therefore,
we have to analyse both delays and losses in simulations.

1) For UDP protocol: Fig. 2 shows that the shapes of the
delays of the three sensor data packets are very different:
starting from second 2, one sensor has a constant delay of
1.5s, another one a varying delay from 0s to 1.5s, and a third
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Figure 2. Results for UDP protocol for the first 5 seconds.

one has 0 delay, meaning that all its packets are lost. What
happens is a timing issue: each time a packet from the latter
sensor arrives at the router, its buffer is full and the packet gets
rejected. Such synchronisation is a known characteristic of a
DropTail queuing discipline, as set at the router, exacerbated
by the fact that UDP does not use a congestion control.

10996 packets are lost, and all of them are lost by the
network. No packet is retransmitted, according to UDP specifi-
cation [21]. In the figure, packets start to be lost at time 1.95s.
This agrees with theoretical results: During that time, about
1.95 s * 20 packets/s * 3 sensors = 120 packets have been
sent, and 1.95 s * 32 = 64 packets have been forwarded by
the router. This gives a difference of 56 packets, approximately
equal to the buffer size on the router, set to 50 packets, as
written above.

The highest delay is 1.61s, while the average delay for
received packets is 1.35s. The highest delay appears for a
packet which arrives at the router while its buffer is full less
one packet size, hence it takes the greatest time to be processed
by the router. This explanation on the highest delay stands for
the whole this section, for all the protocols below.

2) For TCP protocol: Fig. 3 presents the results. The figure
shows that the shapes of delays are similar, which is not
surprising given that TCP uses a fair congestion control. This
saw teeth-like curve is also classical for throughput of TCP
protocol. At the beginning of the transmission, TCP increases
very fast the data rate, and as a result the router buffer fills
up and delay increases. Afterwards, TCP enters a loop where
it increases slowly the data rate until a loss is detected, and
reduces it by two when it arrives [20], which leads to similar
changing in packet delay.

63 packets are lost by network, and according to TCP
specification they have all been retransmitted and eventually
received. 10382 packets are lost on the sensor itself, without
entering the network. The explanation is that the built-in con-
gestion control of TCP delays packets until network resources
are available, and as a consequence TCP buffer fills up and
eventually simply discards packets coming from the sensor.

The highest delay is 1.68s and the average is 1.38s.
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Figure 3. Results for TCP protocol for the whole simulation.
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Figure 4. Results for DCCP/TCP-like protocol for the first 50 seconds.

3) For DCCP/TCP-like protocol: Fig. 4 presents the results.
As for TCP, it shows that the shapes of the transfer time of the
three sensor data packets are similar. This is not a surprising
result, since TCP-like congestion control uses the same law
for sending rate as TCP.

339 packets are lost by the network, which is a bit greater
than for TCP. None of them has been retransmitted, since
DCCP does not retransmit them (even if the exact number
of each lost packets is known by the sender). 7021 packets
are lost on the sensor for the same reason as for TCP.

The highest delay is 1.53s and the average is 1.09s.
4) For DCCP/TFRC protocol: Fig. 5 presents the results.

Like TCP, TFRC is a fair congestion control, so the shapes of
the transfer time of the three sensor data packets are similar.

174 packets are lost by the network, which is a bit greater
than for TCP. None of them has been retransmitted, since as
written above DCCP does not retransmit them. 9873 packets
are lost on the sensor for the same reason as for TCP.

The highest delay is 1.63s, and the average is 1.41s.

C. Discussion

Table I presents a numerical overview of the simulation
results (the delay columns show results for all the sensors).
Several conclusions can be inferred.
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Figure 5. Results for DCCP/TFRC protocol for the whole simulation.

Using UDP means that some sensors can be almost com-
pletely muted by synchronisation issues, as given by the first
sensor. Also, UDP has by far the most losses on the network,
while the protocols with congestion controls avoid it and lose
almost all their packets on the sensor itself. DCCP/TCP-like
has the highest number of packets received, with the three
others a bit behind it.

The highest delay is more or less comparable, since it is
obtained when the router buffer is filled, and this case appears
for all the protocols. Note that packets can wait on sensor
buffer too, but this buffer is drained much faster since the
link is much greater than the bottleneck link (1 Mb/s vs. 256
kb/s). On the other hand, the average delay is very favorable
to DCCP/TCP-like (1.09 secs).

These results are not surprising, as explained in the follow-
ing.

First, if a network is not congested, a congestion control
brings of course no benefit. So in the following we are
interested what happens when data size is greater than network
capacity.

Internet is a network where flows appear and disappear
generally irregularly, because user behaviour for creating flows
is unpredictable and sometimes interactive. In contrast, control
systems use sensors which usually send data regularly. Such
regularity sometimes appears in Internet too, for example for
constant video transmission such as television broadcasting.
For such cases, where data is sent at a regular pace, the sending
rate smoothing done by congestion control is of no help. It
should also be noted that when there are several destinations
with various bandwidths, congestion control can avoid useless
packet losses, situation known as network collapse, an example
of which is given in [25]. This is however not the case in a
centralized control system which is the focus of the current
article.

The delay is affected too by the congestion control. A
congestion control usually delays packet sending on sender,
waiting for network availability or for acknowledgement re-
ception (also known as TCP pacing), which increases delay on
sender. On the other hand, a congestion control keeps router
buffers smaller, hence reducing packet delay on routers.



Protocol Sensor Packets Delay
generated lost on sensor lost on network received highest average

UDP 1 7199 0 7163 36 1.61 1.35
2 7197 0 3432 3765
3 7195 0 0 7195

TCP 1 7199 4425 0 (26 retr) 2774 1.68 1.38
2 7197 4380 0 (26 retr) 2817
3 7195 1577 0 (11 retr) 5618

DCCP/TCP-like 1 7199 2276 115 4808 1.53 1.09
2 7197 2510 108 4579
3 7195 2235 124 4836

DCCP/TFRC 1 7199 3496 60 3643 1.63 1.41
2 7197 3184 54 3959
3 7195 3193 60 3942

Table I
NUMERICAL RESULTS FOR THE FOUR CONGESTION CONTROLS, SAMPLING IS 50MS AND SIMULATION RUNS FOR 360 SECS.

UDP too has a limitation, because in conjunction with
the simple DropTail queuing mechanism it leads to global
synchronisation, preventing some sensors to send their data.

Given the discussion above, it turns out that more analysis
is needed to infer what is the best congestion control. What
is certain is that, in order to avoid synchronisation issues,
UDP must be used together with a more sophisticated queuing
mechanism, such as RED [26], [27], which rejects packets
randomly before the queue is full.

V. CONCLUSIONS

This article presented a comparison among several conges-
tion controls used by currently-used transport protocols for a
centralized control system, based on simulation.

Results show that UDP in conjunction with a simple queue
management mechanism has some crucial issues, but a more
sophisticated mechanism should solve them. Aside that, given
that the network is slightly congestion, no protocol or con-
gestion control is definitely better than the others in terms
of number of packets received. This is because in a control
system data is generated at regular intervals, and the smoothing
effect of congestion control has no effect. On the other hand,
in terms of delay, DCCP/TCP-like gives best results. What
parameter is more important depends on the control system.

Future works will use a different queue mechanism for
the router, and most importantly will use congestion control
to adapt sensor sending rate to network conditions, such
as reducing sampling rate, which allows to have a control
over data losses. We will also focus on distributed control
systems, consisting of several controllers connected through a
potentially complex network.
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