
Parallel Scalar Multiplication on Elliptic Curves
in Wireless Sensor Networks

Yanbo Shou1, Herve Guyennet1, and Mohamed Lehsaini2

1 University of Franche-Comte, France
{yshou, herve.guyennet}@femto-st.fr

2 University of Tlemcen, Algeria
m lehsaini@mail.univ-tlemcen.dz

Abstract. In event-driven sensor networks, when a critical event occurs,
sensors should transmit quickly and securely messages back to base sta-
tion. We choose Elliptic Curve Cryptography to secure the network since
it offers faster computation and good security using shorter keys than
RSA. In order to minimize the computation time, we propose to dis-
tribute the computation of scalar multiplications on elliptic curves by
involving neighbor nodes in this operation. The results of performance
tests show that parallel computing certainly consumes much more re-
sources, however it reduces considerably the computation time of scalar
multiplications. This method is applicable in event-driven applications
when execution time is the most critical factor.

Keywords: Wireless sensor networks, Elliptic curves, Scalar multiplication,
Parallel computing

1 Introduction

A wireless sensor node is a small electronic device which consists of sensing, data
processing and communicating components [1]. Such sensor nodes can be pro-
grammed to collect environmental data and to communicate with other nodes.
A sensor node is often equipped of a low-cost low-power microcontroller which is
not capable of doing complicated calculations. As the ability of a single node is
very limited, a wireless sensor network is usually constituted of a large number
of nodes which are interconnected to each other to form a large network. In most
of cases a sensor node has to cooperate with other nodes to achieve a common
goal.

Sensors are often deployed in hostile and inaccessible areas for human being.
Today, we can find a wide spectrum of sensor networks applications such as en-
vironmental monitoring [2], industrial sensing [3], home automation [4], medical
care [5] or military surveillance [6].

However sensors are vulnerable and subject of various attacks due to their
lack of resources and the unreliability of wireless connection, in [7] we can find the
presentation of almost all possible attacks in wireless sensor networks. In order



to secure wireless sensor networks, one of the most efficient solutions is to use
cryptographic mechanisms [7,8]. Symmetric cryptographic algorithms are usually
light weighted and can be efficiently implemented in hardware and software, but
as we use the same key for data encryption and decryption, the key management
becomes a challenging problem in wireless sensor networks, since the key can be
exposed if a node is compromised. An other choice is asymmetric cryptography
which is computationally more expensive but it’s easier to manage the keys, a
compromised node cannot provide clue to the private keys of non-compromised
nodes [8]. Of course the security of sensor networks can still be threatened by
physical attacks, but the protection against such attack is beyond the scope of
this paper.

In this paper we choose the Elliptic Curve Cryptography (ECC) which is
one of the most famous asymmetric cryptographic schemes. It has attracted
considerable attention recently because of its shorter key length requirement
comparing with the other widely used asymmetric cryptographic algorithm RSA.
An elliptic curve cryptosystem using a 160-bits key can provide the same security
level with a 1024-bit RSA key [9]. The security of elliptic curve cryptography
mainly relies on the difficulty of discrete logarithm problem. All the points on a
curve form a abelian group whose group law is the point addition which combines
2 points on the curve to get a third one. Based on the point addition, we may
then perform point multiplication, also called scalar multiplication, for example
Q = kP where Q and P are 2 points on the curve and k is a positive integer.
It’s extremely difficult to compute the value of k given P and Q if k is big
enough. Scalar multiplication is the most expensive operation on elliptic curves
and it exists various solutions in the literature to optimize its performance [10],
especially for embedded platforms which have very limited CPU power.

Parallelism is an other choice to improve the performance of scalar multipli-
cation. Instead of performing calculations on a single sensor node, we try to split
the computing task into smaller pieces which are then distributed to neighbor
nodes and carried out simultaneously. In this paper we propose to use parallel
computing to accelerate scalar multiplication which is the most complicated and
time-consuming operation on elliptic curves. To the best of our knowledge, we
are the first who have applied this technique in sensor networks. We find that
the parallelization of scalar multiplication is efficient in execution time. The par-
allel overhead is relatively low comparing with the computation time, since the
computing power of embedded microcontrollers are very weak.

We have also studied the memory usage et the energy consumption of parallel
computing in wireless sensor networks. As more sensor nodes are involved in
the computation, more resources will be consumed. However the objective of
our solution is to accelerate the computation on elliptic curves in cases where
execution time becomes the most critical factor.

The rest of the paper is organized as follows. Section 2 gives a presentation of
basic concepts of elliptic curves, and in section 3 we present the related work of
parallelization of scalar multiplication. Section 4 describes our parallel comput-



ing scheme for scalar multiplication in wireless sensor networks, and the results
of performance test are given in section 5. Section 6 concludes the paper.

2 Basic Concepts of Elliptic Curve

Elliptic curve cryptography were proposed independently by Miller [11] and
Koblitz [12] in the 80’s. It has attracted researchers’ attention in recent years
due to its shorter key length requirement comparing with RSA, especially in the
domain of embedded systems where devices have limited computing power.

In cryptography we work with the elliptic curves which are defined over a
finite field Fq where q = pm and p is a prime number called the characteristic of
F . If m = 1, then F is called a prime field, if q = 2m, then F is a binary field.

In this paper we only work with the first case where m = 1 and p 6= 2 or 3,
only for reason of easier explanation. Then a curve can be represented using the
simplified Weierstrass equation (see formula 1).

y2 = x3 + ax + b (1)

where the discriminant 4 of the curve

−16(4a3 + 27b2) 6= 0

All points on the curve, including the point at infinity, form an abelian group
whose group law is the point addition. Suppose that P1(x1, y1) and P2(x2, y2)
are 2 points on the curve and P3(x3, y3) is the sum of P1 + P2 which can be
calculated using the formula 2.{

x3 = s2 − x1 − x2

y3 = s(x1 − x3)− y1
(2)

where

s =

{
(y2 − y1)/(x2 − x1) if P1 6= P2, addition
(3x2

1 + a)/2y1 if P1 = P2, doubling
(3)

Geometrically P3 is the reflection about x-axis of the intersection point of
the curve with the line through P1 and P2.

We may also perform scalar multiplication Q = kP which can be considered
as a sequence of consecutive additions.

Q and P are 2 points on the curve and k is a positive integer. The point
multiplication can be performed more efficiently than repeating point addition.
The most basic method is using the Double and Add algorithm (see algorithm 1).

Suppose that integer k is represented in binary form k =
∑l−1

i=0 ki2
i where l

is the length of k. We keep reading ki from the least significant bit to the most
significant one. Every time when we read a bit, point P is doubled, and if ki is
a nonzero bit, Q = Q + P . The performance of the algorithm 1 mainly depends
on the length of k and number of nonzero bits in its binary representation, the
average number of operations needed is l point doublings and l

2 point additions.



Algorithm 1: Double and Add algorithm for point multiplication

Data: k = (kl−1, . . . , k1, k0)2, P ∈ E
Result: Q = kP
Q←∞;
for i from 0 to l − 1 do

if ki = 1 then
Q← Q + P ;

end
P ← 2P ;

end
return Q ;

The performance of point multiplication can be significantly improved by
choosing appropriate representation of k, coordinate system and size of finite
field.

If P = (x, y) is a point on an elliptic curve defined over a prime field Fp in
which −P = (x,−y), We can see that the subtraction of points on an elliptic
curve is as efficient as addition [13], since P1 − P2 = P1 + (−P2).

The first optimization possible is to use Non-Adjacent Form (NAF) method
which uses a signed digit representation of k (see formula 4), and the average
number of nonzero bits is reduced from l

2 to l
3 where l is the length of k.

k =

l−1∑
i=0

ki2
i where ki ∈ {0,±1} (4)

We read every digit ki, if ki = 1, then Q = Q + P , but if ki = −1, Q =
Q− P = Q + (−P ). If the length of k is l, the average number of operations is
reduced to l point doubling and l

3 point addition (subtraction).

In formula 3 we see that both point addition and doubling need a field inver-
sion which is more computationally expensive than field multiplication. An other
optimization is to avoid the computation of field inversion by using projective
coordinates.

In Jacobian coordinates, a projective point (X,Y, Z), Z 6= 0 is equivalent
to affine point (X/Z2, Y/Z3), and an elliptic curve is represented by the new
equation

Y 2 = X3 + aXZ4 + bZ6 (5)

We can then obtain the formula for point doubling in Jacobian coordinates
by substituting x by X

Z2 and y by Y
Z3 in formula 2,X3 = (3X2

1 + aZ4
1 )2 − 8X1Y

2
1

Y3 = (3X2
1 + aZ4

1 )(4X1Y
2
1 −X3)− 8Y 4

1

Z3 = 2Y1Z1

(6)



and the formula for point addition in Jacobian coordinates can be derived in
the same manner.

There are obviously more multiplications using Jacobian coordinates, but
during a point multiplication we only need to perform field inversion once to
convert the final result back to affine coordinates. The comparison of operations
counts for both coordinate systems are given in table 1[13].

Table 1. Operation counts for point doubling and addition. A=Affine, J=Jacobian,
M=Multiplication, S=Squaring, I=Inversion.

Doubling Addition

2A→ A 1I,2M,2S A + A→ A 1I, 2M, 1S

2J → J 4M, 4S J + J → J 12M, 4S

We may also improve the performance of point multiplication by choosing
specific finite field. For example the modular reduction in prime field can be very
fast if we use recommended NIST primes, like p192 = 2192 − 264 − 1[14].

3 Parallelization of Scalar Multiplication

As previously presented, parallel computing can be used to accelerate compu-
tation and balancing workload. A task is divided into smaller ones which are
then carried out simultaneously by different processors. The parallel comput-
ing of scalar multiplication is a hot research topic in cryptography and various
solutions have been proposed in literature, but a lot of them are hardware im-
plementations using multi-core [15] or FPGA [16] architecture.

The paper [17] presents a fast exponentiation method using precomputed
table. For example we want to calculate gn where g is a element of Z/pZ and n
is a positive integer of length l. We can represent n in base h as follows

n =

l−1∑
i=O

aixi, 0 ≤ ai ≤ h− 1 and 0 ≤ i < l (7)

We precompute and store gx0 , gx1 , . . . , gxl−1 in a table, and then gn can be
computed easily using formula 8.

gn =

h−1∏
d=1

cdd, cd =
∏

i:ai=d

gxi (8)

The computation of gn is consisted of three main steps:

1. Determine the representation of n =
∑l−1

i=O aixi in base h.
2. Compute cd =

∏
i:ai=d g

xi .

3. Compute gn =
∏h−1

d=1 c
d
d.



This method is based on the precomputation, and it can also be applied to
point multiplication by precomputing points 21P, 22P . . . 2l−1P .

Most time is spent in the second and third steps, and both of them can be
parallelized. For example, if we have h − 1 processors, then we can parallelize
the second step and each processor calculates its cd separately. In step 3, each
processor can calculate a cdd for one d.

An other method based on point precomputation is proposed in [18]. Suppose
that we want to calculate Q = kP where Q and P are 2 points represented in
Jacobian coordinates and k is a positive integer of 160 bits.

We prepare a precomputed table which consists of 62 points.

A[s] =
∑4

j=0 as,j2
32jG

B[s] =
∑4

j=0 as,j2
16+32jG

(9)

where 1 ≤ s ≤ 31 and as,0, . . . , as,4 is a binary representation of s =∑4
j=0 as,j2

j . Then the algorithm to compute kP is as follows:

Algorithm 2: Elliptic curve exponentiation based on precomputation

Data: k =
∑l−1

i=0
ki2

i, P
Result: kP
for 0 ≤ j ≤ 15 do

uj =
∑4

i=0
k32i+j2

i;

vj =
∑4

i=0
k32i+16+j2

i;

end
A[0] =∞;
B[0] =∞;
T =∞;
for i from 15 to 0 do

T ← 2T ;
T ← T + A[ui] + B[vi];

end
return T ;

As this method is also based on precomputation, once the precomputed table
is prepared, the exponentiation loop can be performed separately by different
processors.

In [19] an other method is proposed for performing parallel scalar multipli-
cation Q = kP with 2 processors using a shared memory.

The first processor initially reads P and then keeps scanning ki and com-
puting point doubling. It writes 2iP into the buffer whenever a non-zero ki is
detected. The second processor reads 2iP from the buffer and performs addi-
tions. The computation is terminated when there is no more 2iP in the buffer.

An other method for performing parallel computing of fast exponentiation is
presented in [20]. Suppose that we want to calculate gR where R is a positive



integer of length n. We divide R into h blocks Ri of length a = dnhe, then each
Ri is still divided into v smaller blocks Ri,j of length b = dav e (formula 10).

R = Rh−1 . . . R1R0 =
∑h−1

i=0 Ri2
ia

Ri = Ri,v−1 . . . Ri,1Ri,0 =
∑v−1

j=0 Ri,j2
jb (10)

Let g0 = g and define gi = g2
a

i−1 = g2
ia

for 0 < i < h. Using formula 10, we
can express gR as

gR =

h−1∏
i=0

gRi
i =

v−1∏
j=0

h−1∏
i=0

(g2
jb

i )Ri,j (11)

If the binary representation of Ri is Ri = ei,a−1ei,a−2 . . . ei,0 and Ri,j =
ei,jb+b−1ei,jb+b−2 . . . ei,jb+1ei,jb, then the formulas 11 can be rewritten as follows

gR =

b−1∏
k=0

(

v−1∏
j=0

h−1∏
i=0

g
2jbei,jb+k

i )2
k

(12)

If we precompute and store the following values for all 1 ≤ i < 2h and
0 ≤ j < v.

G[0][i] = g
eh−1

h−1 g
eh−2

h−2 . . . ge00
G[j][i] = (G[j − 1][i])2

b

= (G[0][i])2
jb (13)

The formula 12 can be still rewritten as

gR =

b−1∏
k=0

(

v−1∏
j=0

G[j][Ij,k])2
k

(14)

where Ij,k = eh−1,bj+k . . . e1,bj+ke0,bj+k(0 ≤ j < b). Then the computation
of gR can be parallelized using precomputed G[j][i].

We can see that all those parallelization schemes are based on the point
precomputation and scalar decomposition. The configuration of elliptic curves,
like field type, curve form and coordinate system, doesn’t have any impact on
the result of calculation. Thus the optimization methods presented in section 2
can be used with the parallelization schemes to improve their performance.

4 Parallel Scalar Multiplication in Wireless Sensor
Networks

In this section we present our method of parallel computing for accelerating
scalar multiplication on elliptic curves in wireless sensor networks. A sensor net-
work is composed of a great number of low-cost and low-power sensor nodes
which are always deployed in hostile territories and then work in unattended



mode. These sensors don’t have enough power to perform complicated calcula-
tions, but in some disaster monitoring applications, sensors might have only a
few seconds to send message back to base station before being destructed.

Our method is designed for event-driven applications in which sensors re-
main idle during most of the time to preserve energy, but when a sensor detects
a critical event, the message should be sent back to base station as fast as pos-
sible, even at the expense of consuming more energy. We suppose that in a
cluster-based sensor network, sensors use a symmetric cryptographic primitive,
like Trivium [21,22], to secure internal cluster communications. For inter-cluster
communication, we use the elliptic curve cryptography since it provides increased
security and digital signature.

Our method is mainly based on the idea of [20] since it offers a efficient scalar
decomposition and it doesn’t require shared memory [19]. The goal is to reduce
the execution time by asking neighbour nodes to perform computations together.
We suppose that the elliptic curve is preloaded before node deployment, and the
generator point G doesn’t change during the entire lifetime of the network. When
a node wants to perform a multiplication Q = kG, the node looks for available
neighbours in the same cluster and asks them to participate in computation.
The node which leads the computation is the master node and the other ones
are called slave nodes.

At first the master node splits the integer k into n blocks Bi of b = d lne bits
according to the number of available neighbours.

Bi =

ib+b−1∑
j=ib

aj2
j (15)

As the generator point G is chosen a priori and it doesn’t change, the pre-
computation of points Gi = 2ibG is then possible, and calculation of kG

Q = kG =

l−1∑
i=0

ai2
iG (16)

can be divided into n independent parts

Q0 = B0G

Q1 = B12bG

. . .

Qn−1 = Bn−12b(n−1)G (17)

Then Q = Q0 +Q1 + . . .+Qn−1 and each Qi can be computed independently
using the basic Double and Add algorithm.

Before task distribution, the master node copies one of the n blocks into its
local memory, for example the block B0, and then places the remaining blocks
Bi where 0 < i < n into a task distribution message, and task assignment
informations are also sent with Bi.



For example, k is a positive integer of 160 bits and 4 nodes participate in
computation of kG. Thus n = 4, b = 40 and all nodes have Gi for 0 ≤ i ≤ 3
precomputed and stored in theirs memories, like in figure 1. The master splits k
into 4 blocks of 40 bits. It keeps the block B0 in its local memory and places the
remaining 3 blocks into a task distribution message. Then it attaches task assign-
ment informations to the message, encrypts it using the cluster’s cryptographic
primitive and broadcasts it to slave nodes.

G[0] G[1] G[2] G[3]

G 240G 280G 2120G

Fig. 1. Array containing precomputed points

An example of task assignment is given in figure 2. IDi are the IDs of slave
nodes. When the slave nodes receive the message, they decrypt it and calculate
respectively B1G[1], B2G[2] and B3G[3].

0 1 2 3 4 5

B1 B2 B3 ID1 ID2 ID3

Fig. 2. Structure of the task distribution message

The entire procedure is driven by a simple protocol (see diagram 3). When
a critical event takes place, like forest fire, volcanic eruption or earthquake.
There’s a chance that several nodes detect this event at almost the same time.
All nodes which detect the event should turn on the radio and get ready for
parallel computing. The protocol is described by the following steps :

1. A node detects a critical event and it turns on its radio. Then it waits for
call of parallel computing from other nodes for a random period.

2. If it doesn’t receive any call, then it becomes the Master node, and it broad-
casts a call for parallel computing.

3. If it receives a call from an other node, then it becomes a Slave node and it
should reply to show its availability.

4. After received all replies from slave nodes, the master node broadcasts the
task distribution message and then waits for results.

5. Slaves receive the task distribution message and perform theirs computa-
tions.

6. Slaves send theirs results back to their master and get back to initial state.

7. The master node combines the received results to get the final result and
sends it back to base station.



Fig. 3. Protocol of proposed parallel computing scheme

As this method is based on precomputation too, the maximum number of
points to precompute and store depends on the requirement of the application
and the memory size of sensor nodes. More points are precomputed, more nodes
can participate in parallel computing, but more energy will be consumed.

5 Experimental Studies

To test the performance of our method, we have implemented it in nesC on
Crossbow’s Telosb motes [23] which are then deployed randomly in a zone of
10m × 10m. We ask them to keep repeating scalar multiplications Q = kG on
a preloaded elliptic curve defined over NIST192 prime field [14] for both affine
and Jacobian coordinates, G is the generator point of the curve and the scalar
k is an integer of 160 bits using NAF representation.

The execution times in milliseconds with and without parallel computing are
given in table 2. It’s hard to compare the absolute values of the results to other
implementations due to the variety of techniques and test scenarios. Here we
only interest in the performance gain produced by parallel computing.

Table 2. Execution time (ms) and gain of proposed parallel computing scheme

Nb of nodes Affine Gain Jacobian Gain

1 2307.27 – 1003.55 –

2 1189.96 48.43% 549.71 45.22%

3 861.48 62.66% 424.60 57.69%

4 665.68 71.15% 342.51 65.87%

5 583.29 74.72% 309.93 69.12%

6 581.32 74.80% 311.87 68.92%

We can see that the gain increases when more nodes participate in the calcu-
lation. Figure 4 shows that the execution time decreases gradually with increase
in the number of nodes. Suppose that the execution time using p nodes is Tp,



200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

1 2 3 4 5 6

E
x
ec

u
ti

o
n

ti
m

e
(m

s)

Number of nodes

Affine
Jacobian

Fig. 4. Execution times using the proposed parallel computing scheme

we evaluate the performance of our method by calculating its speedup Sp = T1

Tp

and the results are given in table 3 and represented graphically in figure 5.

Table 3. Speedup of the proposed parallel computing scheme

Nb of nodes 1 2 3 4 5 6

Affine 1.00 1.94 2.68 3.47 3.96 3.97

Jacobian 1.00 1.83 2.36 2.93 3.24 3.22

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

S
p

ee
d
u
p

Number of nodes

Affine
Jacobian

Fig. 5. Speedup Sp = T1
Tp

of the proposed parallel computing scheme

There is a considerable drop in speedup when we use more than 5 nodes,
since the network needs more time to schedule radio communications and the
master node requires more time to combine the received points and get the final
result. The parallel overhead is shown in table 4 and in figure 6. We can see



that when we use more than 5 nodes, there is a significant increase in overhead.
Thus according to the result of our experiment, the number of nodes should be
limited to less than 5.

Table 4. Overhead (ms) of the proposed parallel computing scheme

Nb of nodes 1 2 3 4 5 6

Average overhead 0.00 36.33 92.39 88.86 121.84 196.78

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6

A
v
er

a
g
e

ov
er

h
ea

d
(m

s)

Number of nodes

Fig. 6. Parallel overhead (ms) of the proposed method

Suppose that the elliptic curve is defined in a field of 192 bits [14], so a point
in affine coordinate (x, y) can be represented by 2 integers of 192 bits, then it
can also be converted to Jacobian coordinates (x, y) → (x, y, 1). The memory
size needed to store precomputed points are given in table 5.

Table 5. Memory needed (Byte) to store precomputed points

Nb of nodes 1 2 3 4 5 6

Memory needed 0 48 96 144 192 240

Telosb mote has 48KB of Flash memory [23] and Micaz has 128KB [24],
which is obviously sufficient to store those precomputed points.

As previously presented, during the parallel computing more nodes are in-
volved in the computation, so more energy is consumed since they need to com-
municate between them. In order to estimate the energy consumption of our
method, we have run simulations with Avrora [25]. It gives only theoretical sim-
ulated results, but they’re precise enough to compare the energy consumption
according to the number of nodes participating in the computation (see table 6).



Table 6. Energy consumption (Joule) of proposed method. TEC: Total energy con-
sumption.

Nb of nodes 1 2 3 4 5 6

TEC 0.889 2.125 3.156 4.192 5.225 6.256

In figure 7, we can see that when computation is done on a single node, it
consumes very little energy. However when parallel computing is used, as slave
nodes have to receive tasks from the master node and return the results back to
it, they consume much more energy.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7E
n
er

g
y

co
n
su

m
p
ti

o
n

(J
o
u
le

)

Number of nodes

Fig. 7. Total energy consumption (Joule)

When we parallelize the calculation between 6 nodes, our method provides
a gain of around 70.0% in execution time. We have also tried to encrypt and
decrypt the task distribution message using the symmetric cryptographic prim-
itive Trivium, the result shows that the calculation can be done in less than 1
millisecond, thus its impact on the result of the performance test can be safely
neglected.

However as previously presented, in sensor networks sensor nodes work in
unattended manner and communicate with each other using wireless connection
which might be unstable due to radio interferences and low battery level. In
such cases the master node should be able to detect the faults. For example we
may divide the computation into 2 tasks which are then carried out by 3 nodes.
The master node compare the results returned by 2 slaves, if they’re different, it
means that 1 of the 2 results is wrong. We may also apply trust and reputation
assessment techniques in our system [26]. If a node always returns erroneous
results, it will be excluded from the parallel computing. There are still other
strategies, but the presentation of fault tolerance techniques is not the objective
of this paper.



6 Conclusion

In this paper we use parallel computing technologies to accelerate the scalar
multiplication on elliptic curves. We have tested our method using up to 6 Telosb
motes, and the results show that we obtain a gain of about 70.0% in execution
time. However we propose that the number of nodes should be limited to less
than 5 due to parallel overhead. As the method is based on precomputation,
nodes need to store precomputed points locally.

The only drawback is the energy consumption since nodes have to commu-
nicate with each other for task distribution and result retrieval. Thus parallel
computing should not be used as the default computation mode in wireless sen-
sor networks, it can only be used in cases where execution time is the most
critical factor, like in disaster monitoring and military applications.

In our future work, we will try to reduce the energy consumption by minimiz-
ing radio transmissions. As nodes communicate with each other using unreliable
wireless communication, fault tolerance will also be taken into account.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer networks 38(4) (2002) 393–422

2. Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., Welsh,
M.: Deploying a wireless sensor network on an active volcano. Internet Computing,
IEEE 10(2) (2006) 18–25

3. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.:
Wireless sensor networks for structural health monitoring. In: Proceedings of the
4th international conference on Embedded networked sensor systems, ACM (2006)
427–428

4. Baker, C., Armijo, K., Belka, S., Benhabib, M., Bhargava, V., Burkhart, N.,
Der Minassians, A., Dervisoglu, G., Gutnik, L., Haick, M., et al.: Wireless sensor
networks for home health care. In: Advanced Information Networking and Appli-
cations Workshops, 2007, AINAW’07. 21st International Conference on. Volume 2.,
IEEE (2007) 832–837

5. Welsh, M., Moulton, S., Fulford-Jones, T., Malan, D.: Codeblue: An ad hoc sensor
network infrastructure for emergency medical care. In: International Workshop on
Wearable and Implantable Body Sensor Networks, April, London, UK. (2004)

6. Gosnell, T., Hall, J., Jam, C., Knapp, D., Koenig, Z., Luke, S., Pohl, B., Schach von
Wittenau, A., Wolford, J.: Gamma-ray identification of nuclear weapon materials.
Technical report, Lawrence Livermore National Lab., Livermore, CA (US) (1997)

7. Walters, J., Liang, Z., Shi, W., Chaudhary, V.: Wireless sensor network security:
A survey. Security in distributed, grid, mobile, and pervasive computing 1 (2007)
367

8. Zhou, Y., Fang, Y., Zhang, Y.: Securing wireless sensor networks: a survey. Com-
munications Surveys & Tutorials, IEEE 10(3) (2008) 6–28

9. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.: Comparing elliptic curve
cryptography and rsa on 8-bit cpus. In: Cryptographic hardware and embedded
systems–CHES 2004: 6th international workshop, Cambridge, MA, USA, August
11-13, 2004: proceedings. Volume 6., Springer-Verlag New York Inc (2004) 119



10. Gordon, D.: A survey of fast exponentiation methods. Journal of algorithms 27(1)
(1998) 129–146

11. Miller, V.: Use of elliptic curves in cryptography. In: Advances in Cryptology -
CRYPTO’85 Proceedings, Springer (1986) 417–426

12. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of computation 48(177)
(1987) 203–209

13. Hankerson, D., Vanstone, S., Menezes, A.: Guide to elliptic curve cryptography.
Springer-Verlag New York Inc (2004)

14. Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of the
nist elliptic curves over prime fields. Topics in Cryptology - CT-RSA 2001 (2001)
250–265

15. Panda, B., Khilar, P.: Fpga based implementation of parallel ecc processor. In:
Proceedings of the 2011 International Conference on Communication, Computing
& Security, ACM (2011) 453–456

16. Purnaprajna, M., Puttmann, C., Porrmann, M.: Power aware reconfigurable mul-
tiprocessor for elliptic curve cryptography. In: Design, Automation and Test in
Europe, 2008. DATE’08, IEEE (2008) 1462–1467

17. Brickell, E.F., Gordon, D.M., Mccurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation: Algorithms and lower bounds. Technical report, in Proc. of
EUROCRYPT’92 (1995)

18. Miyaji, A., Ono, T., Cohen, H.: Efficient elliptic curve exponentiation. In: In-
formation and communications security: first international conference, ICIS [ie
ICICS]’97, Beijing, China, November 11-14, 1997: proceedings. Volume 1334.,
Springer Verlag (1997) 282

19. Ansari, B., Wu, H.: Parallel scalar multiplication for elliptic curve cryptosystems.
In: Communications, Circuits and Systems, 2005. Proceedings. 2005 International
Conference on. Volume 1., IEEE (2005) 71–73

20. Lim, C., Lee, P.: More flexible exponentiation with precomputation. In: Advances
in Cryptology - CRYPTO’94, Springer (1994) 95–107

21. De Canniere, C., Preneel, B.: Trivium specifications. estream. ECRYPT Stream
Cipher Project, Report 30 (2005) 2005

22. Raddum, H.: Cryptanalytic results on trivium. eSTREAM, ECRYPT Stream
Cipher Project, Report 39 (2006) 2006

23. MEMSIC: Telosb mote platform datasheet. http://www.memsic.com/products/

wireless-sensor-networks/wireless-modules.html (11 2011)
24. MEMSIC: Mica2/micaz mote platform datasheet. http://www.memsic.com/

products/wireless-sensor-networks/wireless-modules.html (6 2011)
25. Titzer, B., Lee, D., Palsberg, J.: Avrora: Scalable sensor network simulation with

precise timing. In: Information Processing in Sensor Networks, 2005. IPSN 2005.
Fourth International Symposium on, IEEE (2005) 477–482

26. Chen, H., Wu, H., Zhou, X., Gao, C.: Reputation-based trust in wireless sensor net-
works. In: Multimedia and Ubiquitous Engineering, 2007. MUE’07. International
Conference on, IEEE (2007) 603–607


