



Abstract— Over the last decades, research on

microelectromechanical systems (MEMS) has focused on

the engineering process which has led to major advances.

Future challenges will consist in adding embedded

intelligence to MEMS systems to obtain distributed

intelligent MEMS. One intrinsic characteristic of MEMS

is their ability to be mass-produced. This, however, poses

scalability problems because a significant number of

MEMS can be placed in a small volume. Managing this

scalability requires paradigm-shifts both in hardware and

software parts. Furthermore, the need for actuated

synchronization, programming, communication and

mobility management raises new challenges in both

control and programming. Finally, MEMS are prone to

faulty behaviors as they are mechanical systems and they

are issued from a batch fabrication process. A new

programming paradigm which can meet these challenges

is therefore needed. In this article, we present CO2Dim,

which stands for Coordination and Computation in

Distributed Intelligent MEMS. CO2DIM is a new

programming environment which includes a language

based on a joint development of programming and

control capabilities, a simulator and real hardware.

I. INTRODUCTION

New technologies create new scientific fields and this is

especially true in communication networks. Local area

networks and then Internet have created many of them, and

later on, wireless communications also raise new possibilities

and therefore new challenges that have been tackled by new

research domains. A new technology called Distributed

Intelligent Microelectro-mechanical systems (DiMEMS) [1]

is currently emerging. DiMEMS can be defined as an

ensemble of MEMS units where each unit can sense, act,

process data and communicate.

This emergence is due to different factors. The main one is

the progresses of MEMS technologies which is now a mature

technology. A second factor, is the integration of MEMS and

intelligence that is actually pushed further by research labs

and companies [19].

DiMEMS are challenging systems as they can integrate

many units, hundred thousand or even millions seems

realistic. Scalability impacts programming, communication

1 UFC/FEMTO-ST, UMR CNRS 6174, France.

2 Hong-Kong Polytechnic University, China

3 IRISA, France.

4 Carnegie Mellon University, USA

management and even the simulation system. Furthermore,

due to this high number of units, fault tolerance has to be

taken into account in each step of the process, from early

detection of hardware failure to fault-tolerant algorithm and

software.

This article presents the COordination and COmputation in

Distributed Intelligent MEMS (CO2Dim) project in detail and

gives perspectives on how to deal with these systems.

II. APPLICATIONS OF DIMEMS

The very first application of distributed MEMS was about

objects conveyance. This research has developed different

types of MEMS actuator arrays, based on actuators either

pneumatic [20, 8, 15], servoed roller wheels [17], magnetic

[16] or thermobimoph and electrostatic [22]. More recently,

sensors have also been integrated [18]. Within the Smart

Surface project
1
 a single surface composed of MEMS sensors

and actuators, intelligence and communication capabilities

has been proposed to sort and to convey different kinds of

objects. The follow-up of Smart Surface named Smart Blocks

project aims to build a MEMS-based modular and self-

reconfigurable surface for fast conveying of fragile objects

and medicinal products, composed of centimeter-size cubes

where each of them comprises MEMS sensors and actuators,

processing unit and communication capabilities.

Programmable matter is the most ambitious idea using

distributed intelligent MEMS. The objective is to design

matter that can be programmed to change its shape. Several

approaches exist, the Claytronics project [9] proposes to use

millimeter-size silicon balls that can move around each other

thanks to electrostatic actuation. The software environment is

particularly advanced as it includes two programming

languages and two different simulators [21].

Among these two major fields of applications, distributed

MEMS are also used in lots of different applications like

atomic force microscopes (AFM) arrays [11], boundary layer

control either on aircraft (AeroMEMS I and II projects) or on

cars (ANR CARAVAJE project), flying drone from Silmach

company for example (see Figure 1), and smart dusts [12].

Furthermore, many distributed macro sensor/actuator array

like acoustic impedance control [3], see Figure 1, could be

applied using diMEMS systems.

1 http://www.smartsurface.cnrs.fr

J. Bourgeois
1,4

, J. Cao
2
, M. Raynal

3
, D. Dhoutaut

1
, B. Piranda

1
, E. Dedu

1
, A. Mostefaoui

1
, H. Mabed

1

Coordination and Computation in distributed intelligent MEMS

Figure 1: Potential applications for diMEMS, on the left,

the Silmach dragonfly air drone and, on the right,

acoustic impedance control (M. Collet and al., FEMTO-

ST)

As it can be seen in these examples, the potential of diMEMS

is huge and we think it will give birth to even more new

applications as well. The maturity of these projects is varying

a lot. While the first car equipped with an array of MEMS

pneumatic actuators has shown a drag coefficient benefit of

more than 10%, Silmach dragonfly will need substantial

efforts to become a reality. Impacts will therefore range from

short to long term.

Despite the economic crisis, the MEMS market has grown

from $6.9 Billion in 2009 to $8 Billion in 2010 and the

progression of the co compound annual growth rate is

expected to increase up to 25% until 2015 [19].

To maintain this progression new types of MEMS have to be

developed, and, by including intelligence inside distributed

MEMS, it’s exactly what we’re looking for.

III. PRESENTATION

The problems and requirement listed above raise

challenging questions concerning actuators, sensors,

processing, communication and modules design.

The objective of CO2Dim is to propose a software

environment for programming and controlling distributed

intelligent MEMS. This objective raises challenges in the

following fields: scalable distributed programming, fault

detection, fault tolerance and distributed coordination.

The next sections detail our proposition to solve this

challenges so that the programming model can scale up to

millions of units, faults can detected thanks to a k-set

agreement in an asynchronous message passing environment,

robust methods will deal with faulty units and

communications and that the co-design between distributed

computing and control will allow to manage millions of

sensors/actuators.

IV. PROGRAMMING MODEL

Each unit of the DiMEMS system can be viewed as an

autonomous system because it has a processing unit,

communication, sensing and actuation capabilities. We will

call such units ubiquitous interacting objects (UIOs). Every

UIO has certain attributes and provide some functions

(actuations and sensing) to other UIOs. UIOs interact with

each other and build contextual relationships among

themselves in order to discover services provided by other

UIOs and to compose higher level services required by other

UIOs or by human users. Coordinating interaction of

innumerable UIOs in a decentralized manner in order to

achieve some common objective is a challenge in the macro

world which tantamount to the one faced by the DiMEMS in

the micro world.

A. Definition of a programming model

1) Presentation

The key challenges include (1) achieving a generic

programmability of the integrated DiMEMS-UIO system, and

(2) communication between multiple DiMEMS-UIO entities.

The topology of DiMEMS can be either static or dynamic

depending on the nature of the MEMS objects. While it is

easy to handle static DiMEMS, managing mobile DiMEMS is

really difficult because any fixed coordination system will fall

short in the face of sheer dynamicity. Different distributed

coordination algorithms are required to address the

coordination challenges in the macro and micro worlds. So,

the crucial issues we want to look into are (1) how to

construct and dynamically maintain a group of collaborative

DiMEMS-UIOs, in order to fulfil high-level tasks, (2) how to

identify the functionalities and to develop an interface for

interaction between UIO, (3) how to control large ensembles

of actuators.

The second challenge is about facilitating communication

between multiple DiMEMS-UIOs. UIOs are often

contextually connected and this can generate a context-based

overlay above the physical DiMEMS-UIO communication

network. Contextual interconnection can be due to two or

more UIOs sharing the same location or belonging to the

same owner. Any number of UIOs owned by the same person

can then form links among themselves based on matching

owner attribute. However, any pair of such UIOs may be

physically connected through multiple intermediaries and

depend on multihop communication. In this research we need

to delve deep into the issue to find out the possible

requirements to build such an overlay structure which can

help DiMEMS-UIOs to interact easily and with minimum

cost.

Other issues that require investigation include: (1) whether it

is possible to program the DiMEMS-UIO systems together

using the same programming model and/or language, (2)

whether any existing programming model can be used to

program the unified system or new tools are to be developed,

and (3) develop network protocols adapted to such systems.

2) Implementation

The challenge here is how the DiMEMS-UIOs can be

programmed in order to achieve specific functionalities.

Generally, there is a tradeoff between fast execution of

algorithms and fast prototyping of the program [24]. So a

major issue is how to easy programming of users, what

provide to users as development environment. The goal is to

enable users to efficiently program the DiMEMS-UIOs for

fast and easy development of smart applications which

require inter-UIO coordination, without sacrificing much of

the execution speed.

V. DISTRIBUTED COORDINATION

 Distributed coordination means matching real-time

constraints raised by coordinated actuation and

programmation of distributed systems. In order to deal with

real-time constraints performance awareness of the system

has to be proposed. This is a real challenge which has been

raised by J.P. Hespanha et al. who said in [10] that

performance awareness is a future challenge to be tackled by

control methods. In our opinion, performance awareness is a

future challenge for both control methods and programming

languages because the only way to dynamically solve time

constraints raised by the controllers is to take into account the

performance of the whole controlled system, including

quantization, communication, computation and control.

The contributions of CO2Dim within the field will be to

propose the a programming and controlling language for

large-scale systems. In order to do so, CO2Dim will be

performance-aware in order to meet the real-time constraints

of control. The novelty is to have an integrated approach

between control and programming which is only possible

because the performance will drive the whole system.

A. Performance awareness

Performance awareness objective is to evaluate the current

state of the performance, to forecast the possible performance

until the next step and to send this forecast to the control so

that it can adapt its control law regarding the performances.

The performance awareness module is the central point of this

architecture. It will intercept the instructions coming from the

program executing the program and it will update the current

performance state. By looking ahead in the program, it can

then be able to have an estimate of the performance of the

next operations. As the execution platforms will be quite

simple ones compared to modern processors and modern

communication networks, we propose to extend a micro-

benchmarking method that we already used for modeling

CPU in P2P distributed programs [7]. If the linearity of the

execution is not met, we will apply a parametric block

benchmarking method. It consists of benchmarking a larger

portion of codes while reducing the number of iterations for

loops with a static analysis of the source code [2].

As the networking stack is limited to the minimum,

communications could be modeled with a simple αβ+γ model

together with a congestion model taken from [23].

Benchmarks on real available systems will also be used if

more precision is needed.

B. Implementing distributed coordination

Distributed coordination takes care of the atomicity,

synchronization, scalability and network congestion inside

the system.

The atomicity for timed operation has to be ensured. The

system is dynamic and during the completion of a

communication or of a task, the system should stay more or

less identical, inside known limits.

Units are distributed and have a local vision, comprising only

their neighborhood. This means that convergence time for

achieving a specific result could increase. To reduce it, a

larger vision could be envisaged [4]. In this context, the

synchronization among neighbors of units is a key feature.

Indeed, for control systems of microscopic size, coordination

and synchronization among units are essential. For example,

moving an object to some destination requires coordination

and synchronization of several actuators on the path to

destination.

The scalability deals with programming and controlling

thousands or even millions of units. This is very different that

programming a few parallel objects. Indeed, the interactions

among objects are greater than usually by several orders of

magnitude. This requires a major shift in distributed

algorithm design. An additional issue is that there is no

central point. For example, both the multi-threading and

message passing programming paradigms [6] are generally

Figure 3: Performance awareness module will interact with control law

Figure 2: Representation of the

targeted distributed system

based on tasks which are created and dispatched on several

units whose result comes back to some central point, so it is

not well adapted in our distributed context. A possible

solution to deal with scalability is to use a hierarchical

programming, where units are grouped and a leader is chosen

for each group.

The scalability leads to a network congestion phenomenon.

Nowadays, variants of TCP congestion control are widely

used to take care of network resources. They are well adapted

to Internet, which has several specific characteristics: the

topology (networks of autonomous systems), the type of

traffic generated, in time and space, no real-time guarantees

and so on. Distributed intelligent MEMS need specific

protocols to deal with these issues. DCCP [14] is in a good

position, as it features a more real-time shape and has several

congestion controls built-in. Some data could also be more

important than other, in which case it should be prioritized,

such as in [5].

VI. : FAULT-DETECTION AND FAULT-TOLERANCE

A. Fault-detection of MEMS cells

The objective is to develop approaches that are able firstly to

detect faults, more precisely system misbehaviors, by

observation in a large-scale distributed MEMS system. In

fact, the faults can emanate from wrong design and/or

assemblying, material ageing, corrosion, damages, etc. The

unpredictable nature of faults occurrence in MEMS and the

difficulty in ensuring their proper behavior come mainly from

the limited information about the microscopic failure

mechanisms which differ from the “commonly” known

macroscopic mechanisms. To this end, it is necessary to

maintain a kind of continuous observation of the overall

behavior of the system in order to be able to detect failures or

at least to highlight some system misbehaviors. Such

observation must take into account not only the individual

behavior of components but extends it to all components. To

illustrate let’s consider the following example on convoying

microscopic objects in a MEMS system. We suppose that an

object must be “moved” from point (entrance) to point (exit)

and that we have a set of available modules (Figure 4). Each

module can have an individual action on the object i.e.,

changing object’s position and speed according to a given

law. From the system behavior observation, we can see that

some objects (red arrows) are not convoyed to the right exit

as illustrated into Figure 4, while black arrows are the suitable

objects trajectories. This system misbehavior could suggest

many failure reasons (sensor failure, air pulse failure, air rate

failure, etc.) and even more combination of them e.g., wrong

sensor detection and right air pulsing.

In other words, the research challenge we are facing is how to

detect the possible origin(s) or the possible combinations of

the factors leading to this misbehavior? The problem is even

more complicated in fully distributed system when each

module has only a partial/local view of the system

misbehavior.

Another important issue, particularly prominent in MEMS

systems, is the localization of modules responsible of this

misbehavior. In fact, failure localization in MEMS system is

as important as its detection because, as we are dealing with

microscopic mechanisms, the maintenance task is very costly

and tedious. Being able to identify and localize the origins of

failures will certainly make the maintenance much easier and

effective.

Within this project, we plan to investigate a decentralized

asynchronous message-passing approach that is a natural

candidate in large-scale distributed micro-controlled system,

as it is the case in MEMS systems. In fact, by reason of

microscopic environment of the latters, it is very hard to

ensure synchronicity at a reasonable cost in terms of

communications and failure detection decision time.

Furthermore, asynchronous approaches are much more robust

that the centralized ones and more importantly they ensure

scalability which is an important requirement in MEMS

system.

Briefly, we highlight below the different steps of our

approach:

 Each module can get locally two kind of information:

(a) information derived from the control function

implemented on each module (which results from a

training process) and (b) information provided by

the sensing devise. From these two data, each

module could constructs firstly a local view and

decides if there is misbehavior or not i.e., if the

sensed data does not match, to a certain extent that

has to be investigated more in details later on, the

expected values from the control function (yellow

blocs in the figure above).

 If a positive decision has been taken by a module, the

latter communicates it to its immediate neighbors in

order to “enlarge” its local view.

 Upon receiving notifications from its neighbors and

using its local information, a module can then

“refine” its local decision and decides to propagate

this information to its neighborhood.

In such an approach, a central question remains: how to

decide “globally” of the failure detection and its localization.

This is the main research subject of the sub-task below.

Figure 4: Illustration of the misbehavior problem

B. k-simultaneous consensus in an asynchronous message

passing system

Once the system misbehavior has been highlighted locally by

some modules, the second important step is to “decide”

globally of the failure occurrence and to localize it. In other

terms, the modules that have detected the failure locally must

“converge” to a global consensus on the detection and

localization of the failure.

At first sight, we plan to investigate simultaneous consensus

approaches in distributed systems that better fulfill our

research problem requirements. In fact, in such approaches,

each unit participates at the same time in k independent

consensus instances until it decides in any one of them.

However, in message-passing systems, as it is typically the

case in MEMS systems, the k-simultaneous consensus

problem remains an open research issue. The objective of this

subtask is therefore to weaken the consensus problem in a k-

set agreement problem where up to k different values can be

decided. k-set agreement problem can be solved despite

asynchrony and unit failures when k > t (where t is the

maximum number of units that can be faulty), but it has been

shown that it has no solution when t >= k.

As we have seen in part 1, MEMS batch production process

is prone to failures and its likely possible that t could be

greater than k. This case has then to be studied. Equivalence

of the k-consensus problem to a k-set agreement problem

already exist in the case of t<N/2 (with N the number of

units). But, currently no solutions exist for t>=N/2, we

therefore propose here to study the equivalence between the

k-set-agreement problem and the binary k-simultaneous

problem if more than half of the units crashes.

The novelty of our approach is to lead units to a

decentralized asynchronous consensus on the detection of

failures and at the same time their localization in an

asynchronous message passing system.

VII. SIMULATION PLATFORM

The goal of this subtask will be to define the requirements

and then the means to simulate diMEMS in a generic,

adaptable way.

A. Defining the requirements for a generic simulator

We will have first to specify the processing and memory

capabilities, along with the communications, sensing and

actuation capabilities of the simulated diMEMS. The

following constraints will serve as strong guidelines for this

work.

○ Processing and memory capabilities are to be

rather small, considering the context of low

individual cost of diMEMS.

○ Communications capabilities should be direct

contact, low bandwidth and error prone

interfaces. Wireless is also an option, but in a

given application not all elements may have it.

○ Sensing abilities should allow simple

measurement to be taken at one or possibly

multiple points of each independent element

(such as boolean contact sensing or temperature

sensing)

○ Actuation capabilities should include a way to

change its visual aspect (color or LEDs control)

or the ability to interact with the physical world

by moving itself or adjacent objects.

Absolute or relative positioning API are of great importance,

but will depend on choices made concerning the physical

capabilities of our diMEMS.

From a networking designer point of view, choices will be

made whether to support very generic protocols stacks or not.

Using stacks such as tcp/ip, utp/ip or dccp/ip would indeed

offer an almost unlimited application support, at the price of a

relatively large overhead considering the large number of

simulated diMEMS. Building more specific, task-optimized

protocols, is also a possibility which will have to be carefully

evaluated.

Last but not least in this subtask is the specification of the

families of error our diMEMS simulator should be able to

handle. At a minimum our work should take into account:

○ Communications / networking errors

○ Sensor readings errors

○ Actuation errors

○ Complete failure of some diMEMS in the

ensemble.

Being able to cope with memory / storage errors and

computation errors may also be investigated.

B. Building tools and simulating the communications.

Generic simulators already exist but most tend to focus on

robotic simulation with bigger and more complex simulated

elements [robot3D]. Those simulators rely on very detailed

physics but lack in scalability.

On the other hand, DPRSIM [DPRSIM] was designed for

claytronic diMEMS and is able to simulate in a distributed

way very large numbers of simple elements (up to millions of

them). But this is done at the cost of lack of precision in the

simulation and communication models (with a strong artificial

per tic synchronization) and the lack of simulation

determinism (due to the use of operating system's scheduler to

handle parallel execution).

The way communications will be simulated is of critical

importance as the behavior of the network has a strong

influence on the way errors will be perceived at other layers.

Many powerful networks simulators exist. They are largely

used in the community for their extended functionalities along

with the de facto scientific comparisons standard status of

some of them. But they obviously lack the physical simulation

we require along with the sensing and actuating capabilities.

A too simple modeling of the processing and communication

capabilities hurts the reliability of the simulation, but at the

same time allows the scaling up. So we intend to build a

simulation core that can be configured for both use. It would

provide simple and very fast internal communication

capabilities, along with the ability to be interfaced with

dedicated and recognized external simulators such as NS2 or

NS3.

Using very detailed network simulations nonetheless brings

the strong drawback of the scalability. Going over a few tens

of thousands elements should not be practical. We would

miss one of our important goals which is to evaluate very

large ensembles.

We thus intend to use a three steps approach for the network

part of the simulations :

Firstly by simulating at relatively small scale with a high

precision level

Secondly validating lighter and much faster models by

comparing them to the precise and complex ones on small to

medium scale scenarii.

Thirdly simulating at full scale with the faster models.

We consider important to retain a deterministic behavior in

our simulator, so we intend to use a dedicated scheduling

mechanism. A deterministic behavior means a simulation run

should produce completely predictable results. Multiple

simulations runs using the same random number's seed should

produce identical results. Final results should be computed

statistics from a sufficient number of runs using different

seeds.

Simulating physics is also very important but has the same

shortcomings as the precise network simulation. Detailed

physic is very demanding in computational resources. We

thus intend to implement an optional fall back to simpler or

even no physic at all mode. Small and detailed simulations

would help to validate simpler models used for large scale

scenarii. Capabilities in this field should also include the

possibility to interface with real sensors / actuators, to build

hybrid scenarios between real world and simulation.

Analysing and understanding what is happening is a very

important and sometimes underestimated part of any

simulation work. To help analyzing simulated code behavior,

we intend to provide a comprehensive 3D view along with

full logging capabilities. It will be able to show actuations

effects, changes in the topology and communications between

elements. Configurable real-time view should be a very useful

tool both for design and debugging purposes, and should also

help with the disseminations of our results.

An example has been developed in a preliminary version of

our simulator. It simulates the conveying of small objects

using pneumatic actuators driven by a network of diMems.

Movements of these objects are detected by sensors to which

embedded simulated softwares reacts. In this case, the

physical simulation computes the acceleration of the objects

under the effect of the pneumatic actuators (air jets) and their

speed variations taking into account many physical

parameters such a s mass, friction, damping …

Two operating modes are implemented: a real time mode

showing the real running speed and a maximum speed mode

allowing to quickly check the program termination. A replay

capability should also be added to the simulator as a part of

the helping tools suite.

To provide a maximum portability, the simulator was

developed in C + + using the OpenGL graphics library which

is available on any systems.

C. Handling scalability

Validating our approach of diMEMS would not be complete

without large scale simulations. Numbers in the hundreds of

thousands and over are not attainable by actual

experimentations and have to be simulated. But even

traditional simulation would have problem with such

numbers.

This means working on the parallelization of our software.

Along with the three steps approach for the network

simulation mentioned earlier, all of our software will have to

be adapted to provide a usable simulation and validation

environment.

Two main shortcomings should limit the final scalability and

prevents us to simulate as many elements as a very scale

focused simulator such as DPRSIM, but we consider them as

reasonable drawbacks for the corresponding advantages.

The first comes from keeping the determinism of the

simulation, making it harder tho parallelize the simulation

core. The second one comes from the complex physical,

sensing and actuation part of the simulation.

For the later, as we previously explained and as it was done

for DPRSIM, we nonetheless intend to allow the optional

deactivation or simplification of the physics, greatly

improving the speed.

VIII. DEMONSTRATORS

A. Acquiring and adapting multiple hardware platforms.

To demonstrate our approach and also validate our

simulations, a physical demonstrator will be build. To

minimize the risk with still experimental hardware, we intend

to use two different hardware platforms.

The first one would be taken from the SmartBlocks project
2
.

Those blocks will have the ability to move by using

neighboring blocks as support points. They will have sensors

2 http://smartblocks.univ-fcomte.fr

Figure 5: A screen snapshot of the first version of the

simulator.

and communication interfaces on the sides, along with sensors

and actuators on the top.

The second one will be the Blinky Blocks [13] developed at

Carnegie Mellon University. Those blocks do not move by

themselves but can be manually rearranged as they are

maintained by strong magnets. They have the capability to

communicate with their direct neighbors, to emit light of

various colors and to detect small impacts and fingers

interactions through embedded accelerometers.

B. Implementation of those hardware platforms into the

generic simulator

The specificities of each hardware platforms will be

implemented in out generic simulator. As previously hinted,

hardware and software implementations will be

complementary, the hardware demonstrating the reality of our

work, the simulations allowing to evaluate it at much larger

(and cheaper) scales.

C. Hardware-in-the-loop for development and debugging

purposes.

Our experience shows that going back and forth between

simulations and experimentations is of great utility to the

development process. We intend also to minimize the risk on

the hardware part of the project by enabling an “emulation”

mode. In this mode the real sensors and actuators will not be

required and the simulator will be used to provide the

required information to the code in the real physical blocks.

IX. CONCLUSION

This paper has presented a new approach for dealing with

distributed intelligent MEMS which handles many challenges

from theoretical studies like studying the equivalence between

the k-set-agreement problem and the binary k-simultaneous

problem if more than half of the units crashes, to more

practical problem of building efficient simulation systems.

The originality of the approach is also to bridge the gap

between simulation and real testbeds in distributed intelligent

MEMS.

The efficiency of our approach still needs to be

demonstrated,

REFERENCES

[1] Julien Bourgeois and Seth Goldstein. Distributed

intelligent mems: Progresses and perspectives. In Ljupco

Kocarev, editor, ICT Innovations 2011, volume 150 of

Advances in Intelligent and Soft Computing, pages 15–25.

Springer Berlin / Heidelberg, 2012.

[2] Bogdan Cornea and Julien Bourgeois. A framework for

efficient performance prediction of distributed applications in

heterogeneous systems. The Journal of Supercomputing,

pages 1–26. 10.1007/s11227-012-0823-5.

[3] Petr David, Manuel Collet, and Jean-Marc Cote.

Experimental implementation of acoustic impedance control

by 2d network of distributed smart cells. In IEEE CPS, editor,

Proc. of the 1st Workshop on hardware and software

implementation and control of distributed MEMS

(dMEMS2010), 2010.

[4] Eugen Dedu. Design of a Simulation Model of Multi-

Agent Systems, and its Parallel Algorithmic and

Implementation on Shared-Memory MIMD Computers:

ParSSAP Model. PhD thesis, University of Versailles Saint

Quentin, France, March 2002.

[5] Eugen Dedu and Emmanuel Lochin. A study on the

benefit of TCP packet prioritisation. In Euromicro

International Conference on Parallel, Distributed, and

Network-Based Processing (PDP), 17, pages 161–166,

Weimar, Germany, February 2009. IEEE.

[6] Eugen Dedu, Stéphane Vialle, and Claude Timsit.

Comparison of OpenMP and classical multi-threading

parallelization for regular and irregular algorithms. In

Proceedings of Software Engineering Applied to Networking

& Parallel/Distributed Computing (SNPD), pages 53–60,

Reims, France, May 2000.

[7] J.-B. Ernst-Desmulier, J. Bourgeois, and F. Spies.

P2PPerf: a framework for simulating and optimizing peer-to-

peer distributed computing applications. Concurrency and

Computation: Practice and Experience, 20(6):693–712,

2008.

[8] Hiroyuki Fujita. Group work of microactuators. In

International Advanced Robot Program Workshop on

Micromachine Technologies and Systems, pages 24–31,

Tokyo, Japan, October 1993.

[9] Seth Copen Goldstein and Todd C. Mowry. Claytronics:

A scalable basis for future robots. In RoboSphere 2004,

Moffett Field, CA, November 2004.

[10] J.P. Hespanha, P. Naghshtabrizi, and Yonggang Xu. A

survey of recent results in networked control systems.

Proceedings of the IEEE, 95(1):138 –162, jan. 2007.

[11] Hui Hui, Michel Lenczner, Emmanuel Pillet, and Scott

Cogan. A two-scale model for one-dimensional arrays of

cantilevers and its verification. Mechatronics, (0):–, 2011.

[12] R. H. Katz J. M. Kahn and K. S. J. Pister. Mobile

networking for smart dust. In ACM/IEEE Intl. Conf. on

Mobile Computing and Networking (MobiCom 99), 1999.

[13] Brian T. Kirby, Michael Ashley-Rollman, and

Seth Copen Goldstein. Blinky blocks: a physical ensemble

programming platform. In Proceedings of the 2011 annual

conference extended abstracts on Human factors in

computing systems, CHI EA ’11, pages 1111–1116. ACM,

2011.

[14] Eddie Kohler, Mark Handley, and Sally Floyd.

Datagram Congestion Control Protocol (DCCP). IETF

standard, March 2006. RFC 4340.

[15] S. Konishi, Y. Mizoguchi, M. Harada, and K. Ohno.

Experimental investigation of a distributed conveyance

system using air flow. In Micromechatronics and Human

Science, 1998. MHS ’98. Proceedings of the 1998

International Symposium on, pages 195 –200, nov 1998.

[16] C. Liu, T. Tsao, P. Will, Y.C. Tai, and W.H. Liu. A

micromachined permalloy magnetic actuator array for micro

robotics assembly systems. In The 8th International

Conference on Solid-State Sensors and Actuators, 1995.

[17] J. E. Luntz and W. Messner. A distributed control

system for flexible materials handling. IEEE Control Systems,

17(1), February 1997.

[18] M. Mita M. Ataka and H. Fujita. Stack-integrated micro

actuator/sensor array for 2d planar micro manipulator.

submitted to IEEE/ASME Transactions on Mechatronics, *:*,

2012.

[19] E. Mounier. MEMS markets and applications 2011-

2017, an overview. In dMEMS’12, 2nd workshop on design,

control and software implementation for distributed MEMS,

Besançon, France, 2012. IEEE Computer Society Press.

[20] K.S.J. Pister, R. Fearing, and R. Howe. A planar air

levitated electrostatic actuator system. In IEEE Workshop on

Micro Electro Mechanical Systems, pages 61–71, 1990.

[21] Benjamin D. Rister, Jason Campbell, Padmanabhan

Pillai, and Todd C. Mowry. Integrated debugging of large

modular robot ensembles. In ICRA, pages 2227–2234, 2007.

[22] J.W. Suh, S.F. Glander, R.B. Darling, C.W. Storment,

and G.T.A. Kovacs. Combined organic thermal and

electrostatic omnidirectional ciliary microactuator array for

object positioning and inspection. In Solid State Sensor and

Actuator Workshop, 1996.

[23] Pedro Velho and Arnaud Legrand. Accuracy study and

improvement of network simulation in the simgrid

framework. In Proceedings of the 2nd International

Conference on Simulation Tools and Techniques for

Communications, Networks and Systems, SimuTools,

page 13, 2009.

[24] Stéphane Vialle and Eugen Dedu. Long parallel

algorithm design vs. quick parallel implementation. In

Proceedings of European Workshop on OpenMP (EWOMP),

pages 145–150, Edinburgh, Scotland, UK, September 2000.

