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Abstract— Over the last decades, research on 

microelectromechanical systems (MEMS) has focused on 

the engineering process which has led to major advances. 

Future challenges will consist in adding embedded 

intelligence to MEMS systems to obtain distributed 

intelligent MEMS. One intrinsic characteristic of MEMS 

is their ability to be mass-produced. This, however, poses 

scalability problems because a significant number of 

MEMS can be placed in a small volume. Managing this 

scalability requires paradigm-shifts both in hardware and 

software parts. Furthermore, the need for actuated 

synchronization, programming, communication and 

mobility management raises new challenges in both 

control and programming. Finally, MEMS are prone to 

faulty behaviors as they are mechanical systems and they 

are issued from a batch fabrication process. A new 

programming paradigm which can meet these challenges 

is therefore needed. In this article, we present CO2Dim, 

which stands for Coordination and Computation in 

Distributed Intelligent MEMS. CO2DIM is a new 

programming environment which includes a language 

based on a joint development of programming and 

control capabilities, a simulator and real hardware. 

I. INTRODUCTION 

New technologies create new scientific fields and this is 

especially true in communication networks. Local area 

networks and then Internet have created many of them, and 

later on, wireless communications also raise new possibilities 

and therefore new challenges that have been tackled by new 

research domains. A new technology called Distributed 

Intelligent Microelectro-mechanical systems (DiMEMS) [1] 

is currently emerging. DiMEMS can be defined as an 

ensemble of MEMS units where each unit can sense, act, 

process data and communicate.  

This emergence is due to different factors. The main one is 

the progresses of MEMS technologies which is now a mature 

technology. A second factor, is the integration of MEMS and 

intelligence that is actually pushed further by research labs 

and companies [19].  

DiMEMS are challenging systems as they can integrate 

many units, hundred thousand or even millions seems 

realistic. Scalability impacts programming, communication 
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management and even the simulation system. Furthermore, 

due to this high number of units, fault tolerance has to be 

taken into account in each step of the process, from early 

detection of hardware failure to fault-tolerant algorithm and 

software. 

This article presents the COordination and COmputation in 

Distributed Intelligent MEMS (CO2Dim) project in detail and 

gives perspectives on how to deal with these systems. 

II. APPLICATIONS OF DIMEMS 

The very first application of distributed MEMS was about 

objects conveyance. This research has developed different 

types of MEMS actuator arrays, based on actuators either 

pneumatic [20, 8, 15], servoed roller wheels [17], magnetic 

[16] or thermobimoph and electrostatic [22]. More recently, 

sensors have also been integrated [18]. Within the Smart 

Surface project
1
 a single surface composed of MEMS sensors 

and actuators, intelligence and communication capabilities 

has been proposed to sort and to convey different kinds of 

objects. The follow-up of Smart Surface named Smart Blocks 

project aims to build a MEMS-based modular and self-

reconfigurable surface for fast conveying of fragile objects 

and medicinal products, composed of centimeter-size cubes 

where each of them comprises MEMS sensors and actuators, 

processing unit and communication capabilities. 

 

Programmable matter is the most ambitious idea using 

distributed intelligent MEMS. The objective is to design 

matter that can be programmed to change its shape. Several 

approaches exist, the Claytronics project [9] proposes to use 

millimeter-size silicon balls that can move around each other 

thanks to electrostatic actuation. The software environment is 

particularly advanced as it includes two programming 

languages and two different simulators [21]. 

 

Among these two major fields of applications, distributed 

MEMS are also used in lots of different applications like 

atomic force microscopes (AFM) arrays [11], boundary layer 

control either on aircraft (AeroMEMS I and II projects) or on 

cars (ANR CARAVAJE project), flying drone from Silmach 

company for example (see Figure 1), and smart dusts [12]. 

Furthermore, many distributed macro sensor/actuator array 

like acoustic impedance control [3], see Figure 1, could be 

applied using diMEMS systems.  
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Figure 1: Potential applications for diMEMS, on the left, 

the Silmach dragonfly air drone and, on the right, 

acoustic impedance control (M. Collet and al., FEMTO-

ST) 

 

As it can be seen in these examples, the potential of diMEMS 

is huge and we think it will give birth to even more new 

applications as well. The maturity of these projects is varying 

a lot. While the first car equipped with an array of MEMS 

pneumatic actuators has shown a drag coefficient benefit of 

more than 10%, Silmach dragonfly will need substantial 

efforts to become a reality. Impacts will therefore range from 

short to long term.  

Despite the economic crisis, the MEMS market has grown 

from $6.9 Billion in 2009 to $8 Billion in 2010 and the 

progression of the co compound annual growth rate is 

expected to increase up to 25% until 2015 [19].  

 

To maintain this progression new types of MEMS have to be 

developed, and, by including intelligence inside distributed 

MEMS, it’s exactly what we’re looking for. 

III. PRESENTATION 

The problems and requirement listed above raise 

challenging questions concerning actuators, sensors, 

processing, communication and modules design. 

 

The objective of CO2Dim is to propose a software 

environment for programming and controlling distributed 

intelligent MEMS. This objective raises challenges in the 

following fields: scalable distributed programming, fault 

detection, fault tolerance and distributed coordination. 

The next sections detail our proposition to solve this 

challenges so that the programming model can scale up to 

millions of units, faults can detected thanks to a k-set 

agreement in an asynchronous message passing environment, 

robust methods will deal with faulty units and 

communications and that the co-design between distributed 

computing and control will allow to manage millions of 

sensors/actuators. 

IV. PROGRAMMING MODEL 

Each unit of the DiMEMS system can be viewed as an 

autonomous system because it has a processing unit, 

communication, sensing and actuation capabilities. We will 

call such units ubiquitous interacting objects (UIOs). Every 

UIO has certain attributes and provide some functions 

(actuations and sensing) to other UIOs. UIOs interact with 

each other and build contextual relationships among 

themselves in order to discover services provided by other 

UIOs and to compose higher level services required by other 

UIOs or by human users. Coordinating interaction of 

innumerable UIOs in a decentralized manner in order to 

achieve some common objective is a challenge in the macro 

world which tantamount to the one faced by the DiMEMS in 

the micro world. 

A. Definition of a programming model 

1) Presentation 

The key challenges include (1) achieving a generic 

programmability of the integrated DiMEMS-UIO system, and 

(2) communication between multiple DiMEMS-UIO entities. 

 

The topology of DiMEMS can be either static or dynamic 

depending on the nature of the MEMS objects. While it is 

easy to handle static DiMEMS, managing mobile DiMEMS is 

really difficult because any fixed coordination system will fall 

short in the face of sheer dynamicity. Different distributed 

coordination algorithms are required to address the 

coordination challenges in the macro and micro worlds. So, 

the crucial issues we want to look into are (1) how to 

construct and dynamically maintain a group of collaborative 

DiMEMS-UIOs, in order to fulfil high-level tasks, (2) how to 

identify the functionalities and to develop an interface for 

interaction between UIO, (3) how to control large ensembles 

of actuators.  

 

The second challenge is about facilitating communication 

between multiple DiMEMS-UIOs. UIOs are often 

contextually connected and this can generate a context-based 

overlay above the physical DiMEMS-UIO communication 

network. Contextual interconnection can be due to two or 

more UIOs sharing the same location or belonging to the 

same owner. Any number of UIOs owned by the same person 

can then form links among themselves based on matching 

owner attribute. However, any pair of such UIOs may be 

physically connected through multiple intermediaries and 

depend on multihop communication. In this research we need 

to delve deep into the issue to find out the possible 

requirements to build such an overlay structure which can 

help DiMEMS-UIOs to interact easily and with minimum 

cost. 

 

Other issues that require investigation include: (1) whether it 

is possible to program the DiMEMS-UIO systems together 

using the same programming model and/or language, (2) 

whether any existing programming model can be used to 

program the unified system or new tools are to be developed, 

and (3) develop network protocols adapted to such systems. 

2) Implementation  

The challenge here is how the DiMEMS-UIOs can be 

programmed in order to achieve specific functionalities. 

Generally, there is a tradeoff between fast execution of 

algorithms and fast prototyping of the program [24]. So a 

major issue is how to easy programming of users, what 

provide to users as development environment. The goal is to 

enable users to efficiently program the DiMEMS-UIOs for 

fast and easy development of smart applications which 

require inter-UIO coordination, without sacrificing much of 

the execution speed. 



 

 

 

V. DISTRIBUTED COORDINATION 

 Distributed coordination means matching real-time 

constraints raised by coordinated actuation and 

programmation of distributed systems. In order to deal with 

real-time constraints performance awareness of the system 

has to be proposed. This is a real challenge which has been 

raised by J.P. Hespanha et al. who said in [10] that 

performance awareness is a future challenge to be tackled by 

control methods. In our opinion, performance awareness is a 

future challenge for both control methods and programming 

languages because the only way to dynamically solve time 

constraints raised by the controllers is to take into account the 

performance of the whole controlled system, including 

quantization, communication, computation and control.  

 

The contributions of CO2Dim within the field will be to 

propose the a programming and controlling language for 

large-scale systems. In order to do so, CO2Dim will be 

performance-aware in order to meet the real-time constraints 

of control. The novelty is to have an integrated approach 

between control and programming which is only possible 

because the performance will drive the whole system. 

A. Performance awareness 

Performance awareness objective is to evaluate the current 

state of the performance, to forecast the possible performance 

until the next step and to send this forecast to the control so 

that it can adapt its control law regarding the performances. 

The performance awareness module is the central point of this 

architecture. It will intercept the instructions coming from the 

program executing the program and it will update the current 

performance state. By looking ahead in the program, it can 

then be able to have an estimate of the performance of the 

next operations. As the execution platforms will be quite 

simple ones compared to modern processors and modern 

communication networks, we propose to extend a micro-

benchmarking method that we already used for modeling 

CPU in P2P distributed programs [7]. If the linearity of the 

execution is not met, we will apply a parametric block 

benchmarking method. It consists of benchmarking a larger 

portion of codes while reducing the number of iterations for 

loops with a static analysis of the source code [2].  

As the networking stack is limited to the minimum, 

communications could be modeled with a simple αβ+γ model 

together with a congestion model taken from [23]. 

Benchmarks on real available systems will also be used if 

more precision is needed. 

B. Implementing distributed coordination 

Distributed coordination takes care of the atomicity, 

synchronization, scalability and network congestion inside 

the system. 

The atomicity for timed operation has to be ensured. The 

system is dynamic and during the completion of a 

communication or of a task, the system should stay more or 

less identical, inside known limits. 

Units are distributed and have a local vision, comprising only 

their neighborhood. This means that convergence time for 

achieving a specific result could increase. To reduce it, a 

larger vision could be envisaged [4]. In this context, the 

synchronization among neighbors of units is a key feature. 

Indeed, for control systems of microscopic size, coordination 

and synchronization among units are essential. For example, 

moving an object to some destination requires coordination 

and synchronization of several actuators on the path to 

destination. 

The scalability deals with programming and controlling 

thousands or even millions of units. This is very different that 

programming a few parallel objects. Indeed, the interactions 

among objects are greater than usually by several orders of 

magnitude. This requires a major shift in distributed 

algorithm design. An additional issue is that there is no 

central point. For example, both the multi-threading and 

message passing programming paradigms [6] are generally 

 

 
Figure 3: Performance awareness module will interact with control law 

 
Figure 2: Representation of the 

targeted distributed system 



 

 

 

based on tasks which are created and dispatched on several 

units whose result comes back to some central point, so it is 

not well adapted in our distributed context. A possible 

solution to deal with scalability is to use a hierarchical 

programming, where units are grouped and a leader is chosen 

for each group. 

The scalability leads to a network congestion phenomenon. 

Nowadays, variants of TCP congestion control are widely 

used to take care of network resources. They are well adapted 

to Internet, which has several specific characteristics: the 

topology (networks of autonomous systems), the type of 

traffic generated, in time and space, no real-time guarantees 

and so on. Distributed intelligent MEMS need specific 

protocols to deal with these issues. DCCP [14] is in a good 

position, as it features a more real-time shape and has several 

congestion controls built-in. Some data could also be more 

important than other, in which case it should be prioritized, 

such as in [5]. 

VI. : FAULT-DETECTION AND FAULT-TOLERANCE 

A. Fault-detection of MEMS cells 

The objective is to develop approaches that are able firstly to 

detect faults, more precisely system misbehaviors, by 

observation in a large-scale distributed MEMS system. In 

fact, the faults can emanate from wrong design and/or 

assemblying, material ageing, corrosion, damages, etc. The 

unpredictable nature of faults occurrence in MEMS and the 

difficulty in ensuring their proper behavior come mainly from 

the limited information about the microscopic failure 

mechanisms which differ from the “commonly” known 

macroscopic mechanisms. To this end, it is necessary to 

maintain a kind of continuous observation of the overall 

behavior of the system in order to be able to detect failures or 

at least to highlight some system misbehaviors. Such 

observation must take into account not only the individual 

behavior of components but extends it to all components. To 

illustrate let’s consider the following example on convoying 

microscopic objects in a MEMS system. We suppose that an 

object must be “moved” from point (entrance) to point (exit) 

and that we have a set of available modules (Figure 4). Each 

module can have an individual action on the object i.e., 

changing object’s position and speed according to a given 

law. From the system behavior observation, we can see that 

some objects (red arrows) are not convoyed to the right exit 

as illustrated into Figure 4, while black arrows are the suitable 

objects trajectories. This system misbehavior could suggest 

many failure reasons (sensor failure, air pulse failure, air rate 

failure, etc.) and even more combination of them e.g., wrong 

sensor detection and right air pulsing.  

In other words, the research challenge we are facing is how to 

detect the possible origin(s) or the possible combinations of 

the factors leading to this misbehavior? The problem is even 

more complicated in fully distributed system when each 

module has only a partial/local view of the system 

misbehavior.  

 

Another important issue, particularly prominent in MEMS 

systems, is the localization of modules responsible of this 

misbehavior. In fact, failure localization in MEMS system is 

as important as its detection because, as we are dealing with 

microscopic mechanisms, the maintenance task is very costly 

and tedious. Being able to identify and localize the origins of 

failures will certainly make the maintenance much easier and 

effective.  

 

Within this project, we plan to investigate a decentralized 

asynchronous message-passing approach that is a natural 

candidate in large-scale distributed micro-controlled system, 

as it is the case in MEMS systems. In fact, by reason of 

microscopic environment of the latters, it is very hard to 

ensure synchronicity at a reasonable cost in terms of 

communications and failure detection decision time. 

Furthermore, asynchronous approaches are much more robust 

that the centralized ones and more importantly they ensure 

scalability which is an important requirement in MEMS 

system. 

 

Briefly, we highlight below the different steps of our 

approach: 

 Each module can get locally two kind of information: 

(a) information derived from the control function 

implemented on each module (which results from a 

training process) and (b) information provided by 

the sensing devise. From these two data, each 

module could constructs firstly a local view and 

decides if there is misbehavior or not i.e., if the 

sensed data does not match, to a certain extent that 

has to be investigated more in details later on, the 

expected values from the control function (yellow 

blocs in the figure above).  

 If a positive decision has been taken by a module, the 

latter communicates it to its immediate neighbors in 

order to “enlarge” its local view.  

 Upon receiving notifications from its neighbors and 

using its local information, a module can then 

“refine” its local decision and decides to propagate 

this information to its neighborhood. 

In such an approach, a central question remains: how to 

decide “globally” of the failure detection and its localization. 

This is the main research subject of the sub-task below.  

 
Figure 4: Illustration of the misbehavior problem 



 

 

 

B. k-simultaneous consensus in an asynchronous message 

passing system 

Once the system misbehavior has been highlighted locally by 

some modules, the second important step is to “decide” 

globally of the failure occurrence and to localize it. In other 

terms, the modules that have detected the failure locally must 

“converge” to a global consensus on the detection and 

localization of the failure.  

At first sight, we plan to investigate simultaneous consensus 

approaches in distributed systems that better fulfill our 

research problem requirements. In fact, in such approaches, 

each unit participates at the same time in k independent 

consensus instances until it decides in any one of them. 

However, in message-passing systems, as it is typically the 

case in MEMS systems, the k-simultaneous consensus 

problem remains an open research issue. The objective of this 

subtask is therefore to weaken the consensus problem in a k-

set agreement problem where up to k different values can be 

decided. k-set agreement problem can be solved despite 

asynchrony and unit failures when k > t (where t is the 

maximum number of units that can be faulty), but it has been 

shown that it has no solution when t >= k. 

 

As we have seen in part 1, MEMS batch production process 

is prone to failures and its likely possible that t could be 

greater than k. This case has then to be studied. Equivalence 

of the k-consensus problem to a k-set agreement problem 

already exist in the case of t<N/2 (with N the number of 

units). But, currently no solutions exist for t>=N/2, we 

therefore propose here to study the equivalence between the 

k-set-agreement problem and the binary k-simultaneous 

problem if more than half of the units crashes. 

 

The novelty of our approach is to lead units to a 

decentralized asynchronous consensus on the detection of 

failures and at the same time their localization in an 

asynchronous message passing system. 

VII. SIMULATION PLATFORM 

The goal of this subtask will be to define the requirements 

and then the means to simulate diMEMS in a generic, 

adaptable way. 

A. Defining the requirements for a generic simulator 

We will have first to specify the processing and memory 

capabilities, along with the communications, sensing and 

actuation capabilities of the simulated diMEMS. The 

following constraints will serve as strong guidelines for this 

work. 

○ Processing and memory capabilities are to be 

rather small, considering the context of low 

individual cost of diMEMS. 

○ Communications capabilities should be direct 

contact, low bandwidth and error prone 

interfaces. Wireless is also an option, but in a 

given application not all elements may have it. 

○ Sensing abilities should allow simple 

measurement to be taken at one or possibly 

multiple points of each independent element 

(such as boolean contact sensing or temperature 

sensing) 

○ Actuation capabilities should include a way to 

change its visual aspect (color or LEDs control) 

or the ability to interact with the physical world 

by moving itself or adjacent objects. 

 

Absolute or relative positioning API are of great importance, 

but will depend on choices made concerning the physical 

capabilities of our diMEMS. 

 

From a networking designer point of view, choices will be 

made whether to support very generic protocols stacks or not. 

Using stacks such as tcp/ip, utp/ip or dccp/ip would indeed 

offer an almost unlimited application support, at the price of a 

relatively large overhead considering the large number of 

simulated diMEMS. Building more specific, task-optimized 

protocols, is also a possibility which will have to be carefully 

evaluated. 

 

Last but not least in this subtask is the specification of the 

families of error our diMEMS simulator should be able to 

handle. At a minimum our work should take into account: 

○ Communications / networking errors 

○ Sensor readings errors 

○ Actuation errors 

○ Complete failure of some diMEMS in the 

ensemble. 

Being able to cope with memory / storage errors and 

computation errors may also be investigated. 

B. Building tools and simulating the communications. 

Generic simulators already exist but most tend to focus on 

robotic simulation with bigger and more complex simulated 

elements [robot3D]. Those simulators rely on very detailed 

physics but lack in scalability. 

On the other hand, DPRSIM [DPRSIM] was designed for 

claytronic diMEMS and is able to simulate in a distributed 

way very large numbers of simple elements (up to millions of 

them). But this is done at the cost of lack of precision in the 

simulation and communication models (with a strong artificial 

per tic synchronization) and the lack of simulation 

determinism (due to the use of operating system's scheduler to 

handle parallel execution). 

 

The way communications will be simulated is of critical 

importance as the behavior of the network has a strong 

influence on the way errors will be perceived at other layers. 

Many powerful networks simulators exist. They are largely 

used in the community for their extended functionalities along 

with the de facto scientific comparisons standard status of 

some of them. But they obviously lack the physical simulation 

we require along with the sensing and actuating capabilities. 

 

A too simple modeling of the processing and communication 

capabilities hurts the reliability of the simulation, but at the 

same time allows the scaling up. So we intend to build a 

simulation core that can be configured for both use. It would 

provide simple and very fast internal communication 



 

 

 

capabilities, along with the ability to be interfaced with 

dedicated and recognized external simulators such as NS2 or 

NS3. 

 

Using very detailed network simulations nonetheless brings 

the strong drawback of the scalability. Going over a few tens 

of thousands elements should not be practical. We would 

miss one of our important goals which is to evaluate very 

large ensembles. 

 

We thus intend to use a three steps approach for the network 

part of the simulations : 

Firstly by simulating at relatively small scale with a high 

precision level 

Secondly validating lighter and much faster models by 

comparing them to the precise and complex ones on small to 

medium scale scenarii. 

Thirdly simulating at full scale with the faster models. 

 

We consider important to retain a deterministic behavior in 

our simulator, so we intend to use a dedicated scheduling 

mechanism. A deterministic behavior means a simulation run 

should produce completely predictable results. Multiple 

simulations runs using the same random number's seed should 

produce identical results. Final results should be computed 

statistics from a sufficient number of runs using different 

seeds. 

 

Simulating physics is also very important but has the same 

shortcomings as the precise network simulation. Detailed 

physic is very demanding in computational resources. We 

thus intend to implement an optional fall back to simpler or 

even no physic at all mode. Small and detailed simulations 

would help to validate simpler models used for large scale 

scenarii. Capabilities in this field should also include the 

possibility to interface with real sensors / actuators, to build 

hybrid scenarios between real world and simulation. 

 

Analysing and understanding what is happening is a very 

important and sometimes underestimated part of any 

simulation work. To help analyzing simulated code behavior, 

we intend to provide a comprehensive 3D view along with 

full logging capabilities. It will be able to show actuations 

effects, changes in the topology and communications between 

elements. Configurable real-time view should be a very useful 

tool both for design and debugging purposes, and should also 

help with the disseminations of our results. 

An example has been developed in a preliminary version of 

our simulator. It simulates the conveying of small objects 

using pneumatic actuators driven by a network of diMems. 

Movements of these objects are detected by sensors to which 

embedded simulated softwares reacts. In this case, the 

physical simulation computes the acceleration of the objects 

under the effect of the pneumatic actuators (air jets) and their 

speed variations taking into account many physical 

parameters such a s mass, friction, damping … 

 

Two operating modes are implemented: a real time mode 

showing the real running speed and a maximum speed mode 

allowing to quickly check the program termination. A replay 

capability should also be added to the simulator as a part of 

the helping tools suite. 

 

To provide a maximum portability, the simulator was 

developed in C + + using the OpenGL graphics library which 

is available on any systems. 

C. Handling scalability 

Validating our approach of diMEMS would not be complete 

without large scale simulations. Numbers in the hundreds of 

thousands and over are not attainable by actual 

experimentations and have to be simulated. But even 

traditional simulation would have problem with such 

numbers. 

 

This means working on the parallelization of our software. 

Along with the three steps approach for the network 

simulation mentioned earlier, all of our software will have to 

be adapted to provide a usable simulation and validation 

environment. 

 

Two main shortcomings should limit the final scalability and 

prevents us to simulate as many elements as a very scale 

focused simulator such as DPRSIM, but we consider them as 

reasonable drawbacks for the corresponding advantages. 

The first comes from keeping the determinism of the 

simulation, making it harder tho parallelize the simulation 

core. The second one comes from the complex physical, 

sensing and actuation part of the simulation. 

For the later, as we previously explained and as it was done 

for DPRSIM, we nonetheless intend to allow the optional 

deactivation or simplification of the physics, greatly 

improving the speed. 

VIII. DEMONSTRATORS 

A. Acquiring and adapting multiple hardware platforms. 

To demonstrate our approach and also validate our 

simulations, a physical demonstrator will be build. To 

minimize the risk with still experimental hardware, we intend 

to use two different hardware platforms. 

The first one would be taken from the SmartBlocks project
2
. 

Those blocks will have the ability to move by using 

neighboring blocks as support points. They will have sensors 

 
2 http://smartblocks.univ-fcomte.fr 

 
Figure 5: A screen snapshot of the first version of the 

simulator. 

 



 

 

 

and communication interfaces on the sides, along with sensors 

and actuators on the top. 

The second one will be the Blinky Blocks [13] developed at 

Carnegie Mellon University. Those blocks do not move by 

themselves but can be manually rearranged as they are 

maintained by strong magnets. They have the capability to 

communicate with their direct neighbors, to emit light of 

various colors and to detect small impacts and fingers 

interactions through embedded accelerometers. 

B. Implementation of those hardware platforms into the 

generic simulator 

The specificities of each hardware platforms will be 

implemented in out generic simulator. As previously hinted, 

hardware and software implementations will be 

complementary, the hardware demonstrating the reality of our 

work, the simulations allowing to evaluate it at much larger 

(and cheaper) scales.  

C. Hardware-in-the-loop for development and debugging 

purposes. 

Our experience shows that going back and forth between 

simulations and experimentations is of great utility to the 

development process. We intend also to minimize the risk on 

the hardware part of the project by enabling an “emulation” 

mode. In this mode the real sensors and actuators will not be 

required and the simulator will be used to provide the 

required information to the code in the real physical blocks. 

IX. CONCLUSION 

This paper has presented a new approach for dealing with 

distributed intelligent MEMS which handles many challenges 

from theoretical studies like studying the equivalence between 

the k-set-agreement problem and the binary k-simultaneous 

problem if more than half of the units crashes, to more 

practical problem of building efficient simulation systems. 

The originality of the approach is also to bridge the gap 

between simulation and real testbeds in distributed intelligent 

MEMS. 

The efficiency of our approach still needs to be 

demonstrated,  
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