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Abstract: In urbanized and indoor environments, outdoor positioning systems, such as Global
Navigation Satellite Systems (GNSSs), are often inaccurate and adaptations of such systems to
those contexts are expensive and hard to deploy. Nowadays, a lot of indoor positioning techniques
have been studied, but it it quite difficult to objectively evaluate and compare their accuracies in
the same environment.

Our Open Wireless Positioning System (OWLPS) allows a comparison of indoor positioning
algorithms and techniques with the same input data. Those techniques include propagation models,
signal strength map, building topology, description of access points. . . Few algorithms use a Viterbi-
like algorithm to take into account the pathway of the mobile terminal.

This paper presents a new hybrid algorithm combining a signal strength cartography and a
calibrated propagation model. Finally, we compare our solution with well known algorithms in
order to evaluate the results in a real context.

Key-words: Indoor positioning, Wi-Fi, IEEE 802.11, Positioning algorithm, Viterbi, Topology,
Signal strength cartography, Fingerprinting location, Multilateration, FBCM, FRBHM, Friis-based
building propagation model
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Positionnement Wi-Fi en intérieur : techniques de base, algorithmes
hybrides et plate-forme logicielle ouverte

Résumé : En environnement urbain, et à l’intérieur des bâtiments, les systèmes de positionnement
conçus pour fonctionner à l’extérieur, comme les systèmes satellitaires (GNSS, pour Global
Navigation Satellite System), sont souvent très imprécis, et l’adaptation de ces systèmes à
des environnements confinés est coûteuse et difficile à déployer. De nombreuses techniques de
géopositionnement en intérieur ont été étudiées, mais il est ardu de les évaluer et de comparer
objectivement leurs précisions dans le même environnement.

Notre plate-forme Open Wireless Positioning System (OWLPS), permet une comparaison
d’algorithmes et de techniques de positionnement en intérieur, à partir des mêmes données d’entrée.
Ces techniques peuvent utiliser des modèles de propagation, une cartographie des puissances du
signal, la topologie de la zone de déploiement, la description des points d’accès. . . Quelques
algorithmes tiennent compte des positions successives du terminal mobile grâce à un algorithme à
la Viterbi.

Cet article présente un nouvel algorithme hybride, qui combine une cartographie des puissances
du signal et un modèle de propagation calibré. Nous comparons également nos solutions et d’autres
algorithmes de positionnement issus de la littérature, et évaluons les résultats dans un contexte réel.

Mots-clés : Géopositionnement en intérieur, Géolocalisation, Wi-Fi, IEEE 802.11, Algorithme
de positionnement, Viterbi, Topologie, Cartographie des puissances du signal, Empreinte de
l’environnement radio, Multilatération, FBCM, FRBHM, Modèle de propagation en intérieur
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I. INTRODUCTION

The democratization of 802.11 networks, combined with
new mobile devices and services, emphasizes the interest of
service continuity. Thanks to the availability of positioning
services, the need for contextual knowledge is growing.

Delivering an accurate position in a heterogeneous environ-
ment is still a hard challenge. Moreover, experiments show
that propagation results vary according to the activity inside
the building. New generation positioning algorithms will be
able to adapt dynamically themselves to the outside condition.
Some steps need to be taken in order to progress towards
this new generation, such as heterogeneous and variation
detections.

After our state of the art, considering characteristics of
indoor and outdoor heterogeneous environment, we introduce
a set of new contributions from a topological model, a history
memorization algorithm derived from Viterbi and its imple-
mentation in positioning algorithms from the literature. We
then introduce our system OWLPS (Open WireLess Position-
ing System) with the description of basic components, posi-
tioning algorithms and hardware platform. We also propose
a new design platform (OWLPS-1.0) addressing the dynamic
changes in the environment and composing new algorithms
to reduce the calibration and cartography cost as well as to
minimize the distortion of signal strength dynamic variations
in modern buildings.

II. STATE OF THE ART

While outdoor positioning is widely treated and achieved
by GNSS, indoor positioning is currently under development.
Wi-Fi indoor positioning can be divided into two main cate-
gories. One category is based on wave propagation and relies
on computing distances between mobile devices and points
whose coordinates are known. The second family is based on
mapping by combination of signal strength measurements and
geographical coordinates, called a signal strength (SS) map.
Locating a mobile device with a SS map consists in matching
a measurement with some point of the SS map. Measurements
matching is either deterministic [1] or probabilistic [2].

A. Propagation models

In propagation-based approaches, the main problem is to
compute distances between transmitters and receivers based on
signal strength measurements. Distance computation requires
radio wave propagation modeling to express distance accord-
ing to signal strength value. We identified two main choices.
One is based on polynomial regression. The other one is based
on the Friis formula.

Polynomial regression tries to match several signal strength
measurements linked to transmitter-receiver distance with a
polynomial expression. In SNAP-WPS [3], the authors con-
clude that third degree polynomial regression works best.

The other approach is based on the Friis formula [4].
The Friis formula gives signal strength according to wave

parameters and distance between transmitter and receiver:

PR

PT
= GRGT

(
λ

4πd

)2

where:
• PR and PT are power received and power transmitted,
• GR and GT and receiver and transmitter antenna gains,
• λ is signal wavelength,
• d is the distance between transmitter and receiver.
Although the Friis formula applies on free space propaga-

tion (i.e. in earth atmosphere), several contributions intend to
adapt it to indoor propagation modeling. All are based on a
change of the square power applied to distance. The new value
is called the “Friis index”. As indoor environments absorb
more signal strength through obstacles, using a Friis index
greater than 2.0 allows for greater absorption.

After studying wave propagation in various buildings, Inter-
link Networks propose a Friis index equal to 3.5 [5]. However,
it is suited only for some buildings, as we observed when using
the same formula. So, we proposed a Friis-Based Calibrated
Model (FBCM) [6] which requires calibration data, such
as polynomial regression, to compute Friis indices. FBCM
considers access points (AP) individually, so each AP has its
own Friis index.

Knowing distances towards surrounding APs, a mobile
device can compute its location through multilateration. Mul-
tilateration should take into account the unavoidable bias
in distance calculation. Xinrong Li [7] proposes to merge
distance estimation and location computation by relying on
least square estimation, similar to GPS method. Simulation
shows good results and same method is tested empirically in
[8]. Empirical test shows 3.97 meters mean error and 1.18
meters standard deviation.

B. Signal strength maps

Signal strength map systems are based on mapping by
combination of geographical coordinates and signal strength
values. Geographical coordinates contain at least basic coordi-
nates, for example cartesian (x, y, z) coordinates, and may be
extended with other useful data, such as terminal orientation
[1].

Two main steps are identified in signal strength map-based
systems: an offline training step builds a signal strength map.
Then, the online positioning step relies on the signal strength
map previously built. For both steps, two approaches exist.
The offline step is performed either by measurements or by
simulation. The online step consists in matching a signal
strength measurement to the signal strength map content.
Matching can be either deterministic or probabilistic.

Building a signal strength map by measurements implies
moving physically to every location in the map and perform a
measurement [1]. Whereas this method is simple to understand
and use, and gives real measurements, it requires a lot of
time. On the other hand, building the signal strength map by
simulation requires a lot of work to build a propagation model
[9] used to compute the signal strength map. One would think
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that simulating signal propagation to build a signal strength
map will rely on propagation-based positioning systems tech-
niques. However, there is a key difference between both
systems: a propagation-based positioning system doesn’t know
the mobile’s location, therefore it cannot take into account
the obstacles between the mobile and the transmitters. On the
opposite, the signal strength map associates signal strength
values to known geographical coordinates. It is able to take
into account the obstacles with models like that of Motley-
Keenan [10].

When a signal strength map is available, mobile position-
ing is achieved by matching the map content with a signal
strength measurement provided by the mobile or the wireless
network architecture. Such matching is either deterministic or
probabilistic.

Deterministic matching uses a simple signal strength map
in which each location has a list of access points within range
and an average value of signal strength for each AP. Matching
might be either on one point [11] or on several points, whose
coordinates are averaged [12].

Probabilistic matching requires more data in the signal
strength map. Signal strength values must be described by a
probability distribution. Then, matching is achieved by prob-
abilistic methods based on Gaussian models like the CMTA
[13] or the kernel method [2]. Other systems model signal
strength distribution by histograms [14].

One property of indoor radio wave propagation is its incon-
sistency. This implies that two signal strength measurements
very close in signal strength space can describe two geograph-
ical points very far and the opposite. Bahl et al. [9] propose
to enhance positioning by considering the past locations to
eliminate ambiguous locations. They rely on a Viterbi-like [15]
algorithm.

C. Analysis

Evaluated in the same testbed, propagation-based models
have poor accuracy, about 8 meters to 15 meters average
positioning error. Such accuracy is unable to provide context-
aware services based on users location. On the opposite, signal
strength map systems offer an accurate positioning but require
a lot of work during their setup. Best systems manage to reach
about 4 meters mean error but they still assume equal distance
errors for all APs in one positioning computation.

These properties are extended to dynamicity: calibrated
propagation-based systems and signal strength map-based
systems require to perform again the offline step if the en-
vironment changes (typically, one AP location is changed).
However, there is far less work load for calibrated models
than for signal strength map-based ones.

Considering the shortcomings of both approaches, we pro-
pose to merge both of them in a hybrid model in order to get
their benefits without their drawbacks.

III. INPUT DATA

To build a hybrid, topology-aware, indoor positioning sys-
tem, several base data are required:

• A minimal SS map, with at least one point in each room.
It allows a first, coarse, positioning of mobile device.

• A propagation model, for example FBCM. This model is
calibrated and used locally, after coarse positioning based
on SS map.

• A topology model, either discrete or continuous. Such
a model aims at refining the positioning process with
device tracking. It eliminates ambiguous locations based
on past movements. A Viterbi-like algorithm performs the
elimination of all candidate points but one. It requires
storing several candidate locations for each positioning
iteration.

Of course, we also need a radio signal. We chose to measure
on the infrastructure side: the mobile send a positioning
request, and the infrastructure elements measure the signal
strength. In the sequel, we use “measurements” to designate
a list of SS corresponding to a positioning request sent by a
mobile and captured by the infrastructure.

IV. BASE ALGORITHMS

Several base algorithms exist, from which complex tech-
niques are developed.

A. Friis-Based Calibrated Model

The Friis-Based Calibrated Model (FBCM) is a
multilateration-based positioning algorithm that was presented
in earlier publications [6], [16], [17]. It consists in calibrating
a propagation model with a priori measurements. Calibration
determines which weight to give to transmitter-receiver
distance in a Friis-like formula. It aims at computing
accurately distances between mobile devices and access
points.

B. Multilateration algorithm

The multilateration algorithm used by the current implemen-
tation of FBCM is a simple “brute-force-based” approximation
method to find the closest point to the distance circles (or
spheres, in a 3D space) of the APs. It is called “MinMax”.
The idea behind this method is to assume that a point that
is close to all the distance circles is close to the probable
intersection of the circles − if they had only one intersection
point.

Pseudo-code for the 2D version is detailed in Fig. 1. The
algorithm parses the sub-plan delimited by the points min and
max, with a given step. The list of APs and the estimated
distances between each AP and the mobile are given by
the parameters ap_list and distance_list. At each step, the
distance between the current point and the perimeter of the
distance circle of each AP is computed; the biggest distance
(that is, the farthest circle) is memorized. The final position
will be the point with the least memorized distance.

C. Extracting k nearest points from the SS map

Several of our algorithms need to search for k nearest points
in a SS map, given a measurement. In the algorithms presented
in the next section, we call k_nss() the corresponding function,
which takes as parameters a SS map and an integer k.
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Input: Array of APs: ap_list
Input: Array of Floats: distance_list
Input: Point: min
Input: Point: max
Input: Float: step

1: Integer: nb_ap← ap_list.size()
2: Float: d_min← +∞
3: Float: xm← x← minx
4: Float: ym← y ← miny
5: while x ≤ maxx do
6: y ← miny
7: while y ≤ maxy do
8: Float: d_max← 0
9: for i← 0 to nb_ap do

10: if distance(x, y, ap_list[i], distance_list[i]) ≥
d_max then

11: d_max ← distance(x, y, ap_list[i],
distance_list[i])

12: end if
13: end for
14: if d_max ≤ d_min then
15: d_min← d_max
16: xm← x
17: ym← y
18: end if
19: y ← y + step
20: end while
21: x← x+ step
22: end while
23: return xm, ym

Fig. 1. Trilateration algorithm (MinMax), selects the nearest point to the
distance circles

V. CONTRIBUTIONS

From these base algorithms, we derive refinement tech-
niques that combine a SS cartography, as in [1], and mul-
tilateration using FBCM. We called these techniques FBCM
and Reference-Based Hybrid Model (FRBHM).

Furthermore, we can take into account the building topol-
ogy. Describing precisely the room layout allows us to estimate
the real distance between two points, instead of using a
simple euclidean distance. Two variants of the FRBHM use
the topology, combined with a Viterbi-like algorithm that
uses the past positions of the mobile to compute the current
position. Our implementation of this Viterbi-like algorithm is
an optimization called Fast Viterbi-Like (FVL). When it takes
into account past positions of the mobile, it is called Fast
Viterbi-Like Improved (FVLI).

In the next sections, we present the three FRBHM variants.
These algorithms are called when a localization request is
received by the system.

Input: Array of SS data: measurement
1: Integer: nb_ap← measurement.size()
2: Array of nb_ap Floats: idx_list
3: Point: p← k_nss(measurement, 1)
4: for i← 1 to nb_ap do
5: idx_list[i]← friis_idx(p, measurement[i])
6: end for
7: return FBCM(idx_list, measurement)

Fig. 2. Basic FRBHM algorithm
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Fig. 3. Viterbi-like algortihm principle

A. Basic FRBHM

The Basic FRBHM is a simple fusion between the SS
cartography technique and the propagation model with multi-
lateration. It proceeds in two steps:

1) It selects, in the SS map, the closest point.
2) It calibrates the FBCM with this point’s data, and applies

it to current measurements to compute the position.

The algorithm is presented in Fig. 2. nb_ap is the number
of access points for which SS data is present. The k_nss()
function returns the nearest reference point in SS to the mea-
surement (the parameter 1 indicates that only one reference
point is requested). This nearest reference point is called p.
The Friis index at p of each access point is computed by the
friis_idx() function and stored into idx_list. The final position
is computed by multilateration using FBCM.

B. Viterbi-like algorithms

Viterbi-like algorithm’s principle is to avoid ambiguous
locations and jumping between distant locations. Two parame-
ters are used: n as history depth and k as history size. History
depth defines how many positioning requests results are used.
History size defines how many locations a positioning request
result is composed. A positioning request result is further
defined as a “history set”.

Given these parameters, the Viterbi-like algorithm will elect,
in the last history set, the point allowing for the shortest path
from the first to the last history set. This path goes through
exactly one location of each history set according to their
order.

The Viterbi-like algorithm has a high complexity: kn. We
aim at improving this algorithm to reduce its complexity. To
do so, we need to maintain two history sets: the last one and
penultimate one. We also maintain a distance vector D = {di}
of size k (same size as the history sets). Each element di in
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Input: Integer: n, k
Input: Array of k Floats: v1, v2, D

1: Array of k Floats: new_D
2: for i← 1 to k do
3: new_Di = min(Dj + v1jv2i), j ∈ [1, k]
4: end for
5: return new_D

Fig. 4. Viterbi-like algorithm

it contains the cumulative min. distance from the first history
set to element i of the penultimate history set.

On each iteration, i.e. new positioning request result, the
distance vector is updated and both history sets are rotated:
the penultimate one is set to last one’s content and the last
one is updated to receive the positioning request result. When
the last history set equals the nth history set, the shortest path
is selected in the distance vector and the matching point from
the last history set is returned as the true mobile location. Fig.
4 shows the algorithm that updates cumulative distances.

C. Discrete FRBHM

The Discrete FRBHM is a bit more evolved than the Basic
variant. Its main interest is to take into account the past
positions of the mobile, and the building topology, thanks to
the FVLI algorithm. When a localization request is received,
it is processed as follows:

1) The algorithm searches the reference point database for
the k nearest points to the measurement.

2) The FVLI algorithm selects a point from these k points,
using the previous k-point groups.

3) FBCM is calibrated with data from the selected point,
and applied to compute the position.

The algorithm is presented in Fig. 5. It operates in a way
similar to the Basic FRBHM’s. The k_nss() function now takes
k as second parameter, and therefore selects the k nearest
reference points in SS. The queue() function adds those k
points to the Viterbi history. The FVLI algorithm is then run
on the n series of k points from the Viterbi history, and selects
a point p. This point p is used exactly as in the Basic FRBHM:
Friis indexes are computed and FBCM is called to obtain the
final solution.

D. Continuous FRBHM

In the Discrete FRBHM, we first select a bunch of points
from the cartography; therefore, these points belong to a
discrete space (the set of reference points) − at this step
we cannot have random points. We start using continuous
coordinates only at the last step, when the FBCM is called.
This can be problematic because with few reference points
(which is normally the case with FRBHM), the first selected
point is selected by k_nss() during several iterations, and
therefore selected by FVLI until it disappears from the k-point
set. If k is so big that all reference points are selected at each
iteration, the solution will never change.

Input: Array of SS data: measurement
Input: Array of k × n Points: fvli_history

1: Integer: nb_ap← measurement.size()
2: Array of nb_ap Floats: idx_list
3: Array of k Points: k_pts_list ← k_nss(measurement,
k)

4: queue(fvli_history, k_pts_list)
5: Point: p← FVLI(fvli_history)
6: for i← 1 to nb_ap do
7: idx_list[i]← friis_idx(p, measurement[i])
8: end for
9: return FBCM(idx_list, measurement)

Fig. 5. Discrete FRBHM algorithm

Input: Array of SS data: measurement
Input: Array of k × n Points: fvli_history

1: Integer: nb_ap← measurement.size()
2: Array of nb_ap Floats: idx_list
3: Array of k Points: k_pts_list ← k_nss(measurement,
k)

4: k_pts_list← k_nss(measurement, k)
5: for i← 1 to k do
6: for j ← 1 to nb_ap do
7: idx_list[j] ← friis_idx(k_pts_list[i],

measurement[j])
8: end for
9: k_pts_list[i]← FBCM(idx_list, measurement)

10: end for
11: queue(fvli_history, k_pts_list)
12: return FVLI(fvli_history)

Fig. 6. Continuous FRBHM algorithm

The aim of the Continuous FRBHM is to work earlier with
continuous coordinates, so that the variability of the distances
in the Viterbi history is maximized, allowing FVLI to eliminate
earlier wrong points.

It operates in three steps:

1) As the Discrete variant, it selects the k nearest reference
points to the measurement.

2) For each selected point, Friis indexes are computed and
FBCM is called to compute new coordinates.

3) FVLI selects a point amongst all the points computed
by FBCM.

The algorithm is presented in Fig. 6. The difference with
the Discrete FRBHM is that the two last steps are inverted,
so that the FBCM is first executed on each of the k nearest
reference points, and FVLI selects one of them last.

VI. OWLPS

All these base and new algorithms are implemented in the
Open Wireless Positioning System (OWLPS). It is an experi-
mental system, in which we can implement new positioning
techniques, then deploy the system in a building and conduct
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SS map (k-NSS)

MinMax
(multilateration)

Basic
FRBHM
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FRBHM

Discrete
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FVLI

FVL

Topological
data

Calibration
data

Base
algorithms

Complex
algorithms

FBCM

Interlink
Networks

RADAR

RADAR
w/Viterbi

Fig. 8. Algorithms implemented in OWLPS Positioning. Boxes in gray
represent algorithms from the literature. Dashed boxes represent data.

experiments. The software architecture makes easy to compare
results of several techniques with the same input data.

A previous article [18] presents the system architecture and
experiments we conducted that compare our algorithms to
some others from the literature. Fig. 7 synthetically presents
the system hardware and software architecture. Each hardware
element of the system runs a software module: mobile termi-
nals run the owlps-client module, access points run owlps-
listener, the aggregation server runs owlps-aggregator and the
positioning server run owlps-positioning. Note that the two
server modules can be installed on the same computer, or even
on one of the APs if powerful enough. On a large installation,
several aggregation servers could coexist. Mobile terminals
can be any kind of Wi-Fi enabled devices: laptop, PDA, cell
phone, handheld game console, etc. APs need to have a IEEE
802.11 interface supporting radiotap headers; we tested our
system with mini-PCs equipped with Intel BG2200 cards, and
with Foneras 2.0g (small APs equipped with an Atheros chip).

All software modules run on GNU/Linux systems and are
developped in C, except owlps-positioning for which we use
C++. Source code is versionned with the Git version control
system.

Fig. 8 shows a schematic view of the implemented algo-
rithms. Besides our own algorithms, we implemented three
techniques from the literature: RADAR, in its two version
(without [1] and with [9] Viterbi-like algorithm), and the Friis-
like formula of Interlink Networks [5].

VII. EXPERIMENTS

OWLPS has been deployed in our building and experi-
ments have been conducted. The building is a dense office
environment, with thick concrete interior walls and floor
separations, glass exterior walls and metallic window shades.
The experiment area is about 30m long and 10m large, and
includes the two first floors of the building. We used five APs,
two at the first floor and three at the second floor, one of them

R+1
N

29,5m

10,3m

0

Fig. 10. Map of the second floor of the experiment area. Red crosses represent
calibration points.

being out of the experiment area. Fig. 9 shows the building
map and the location of the APs. Fig. 10 shows the location
of the calibration points at the second floor of the experiment
area.

During the calibration phase, we created a database con-
taining 308 calibration points, with measurements in four
directions (north, south, east, west) for each of these points.
The meshing size of this set of points is 1 meter. We then
extracted points from this database in order to create larger
meshings: 2 meters (113 points), 3 meters (62 points) and 4
meters (35 points, which is about one per room).

Table I presents the results obtained with a reference path
of 86 points taken with a mobile terminal in the two floors
of our experiment area. The last line shows the best average
error of each algorithm, specifying which meshing gave the
best result amongst 1, 2, 3 and 4 meters.

Fig. 11 shows the path we took during our experiment, and
the best solution provided by the system, all algorithms taken
together. Fig. 12 displays tridimensional curves representing
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Mobile terminal
Runs owlps-client to
send positioning requests.

Access point
Runs owlps-listener to:
- capture requests,
- transmit them to the
  aggregator.

Aggregation server
Runs owlps-aggregator to:
- get requests from APs,
- aggregate identical requests
  sent by several APs,
- send aggregated requests to
  the positioning server.

Positioning server
Runs owlps-positioning to:
- get aggregated requests from
  the aggregator,
- run positioning algorithms,
- provide results.

Distribution
- (cross-)compilation
- installation scripts
- documentation

Administration
- setup scripts
- calibration script
- result manipulation
  scripts
- monitoring

Development
- version control
  system (git)
- test suite
- traces

Experimental testbed
- hardware
- data input (calibration, topology,
  equipment caracteristics…)
- data output (results)

Fig. 7. OWLPS hardware and software architecture

TABLE I
EXPERIMENTAL RESULTS: AVERAGE ERROR (“AVG.”) AND STANDARD DEVIATION (“STD. D.”).

Interlink Basic RADAR Discrete Continuous
Meshing Networksa RADAR FBCM FRBHM + VL FRBHM FRBHM

Avg. Std. d. Avg. Std. d. Avg. Std. d. Avg. Std. d. Avg. Std. d. Avg. Std. d. Avg. Std. d.
1m (308pts) 11.63 5.3 4.74 3.24 10.75 5.69 4.95 2.72 4.85 2.55 5.09 2.57 5.13 2.7
2m (113pts) 11.63 5.3 4.48 3.2 10.1 5.13 4.79 2.6 4.52 2.52 5.03 2.38 5.01 2.74
3m (62pts) 11.63 5.3 5.26 3.35 13.56 6.02 5.09 2.77 5.3 3.13 5.25 3.31 5.25 3.28
4m (35pts) 11.63 5.3 5.03 3.31 7 3.36 5.94 2.3 4.77 2.92 5.78 2.29 6.07 2.53

Best avg. (meshing) 11.63 4.48 (2m) 7 (4m) 4.79 (2m) 4.52 (2m) 5.03 (2m) 5.01 (2m)

aSince it is based on a pure propagation model, the accuracy of this algorithm is not dependent on the meshing.

the error of this best computed position: the higher is the curve,
the worse is the computed solution.

We can notice that the meshing does not seem to have
a big impact on the accuracy of the algorithms, at least
between 1 and 4 meters. Surprisingly the meshing that gives
the better results is often 2 meters and not 1 meter, just as
bigger meshings (3 and 4 meters) do not give notably worse
results. For these meshings, the pure fingerprinting algorithm
RADAR gives the best results most of the time. However, a
more in-depth test has showed that hybrid algorithms (FRBHM
variants) give more accurate results than RADAR variants
with a very large meshing. We have therefore to determine
what is the best compromise between the meshing size (of
which depends the deployment duration) and the accuracy of
the system.

Experiments in our building do not show significant accu-
racy improvement when using the topological data (Discrete
and Continuous FRBHM, RADAR with Viterbi-like). With a
one-meter meshing, the three Viterbi-enabled algorithms all
together provide only 11% of the best solutions, whereas
RADAR alone provides the best solution in 45% of the cases.
It would be interesting to evaluate the contribution of Viterbi-
like algorithms with other types of buildings.

We would like to estimate the error of each algorithm with
criteria more complex than the simple euclidean distance. For
instance, it is important to know if the mobile is located in a
wrong room: a little euclidean distance error may be enough
to imply a room change, whereas a bigger error having no
impact on which room the mobile is located in is generally
preferred.

VIII. NEXT ISSUES & CONCLUSION

OWLPS is an experimental indoor positioning platform
based on the Wi-Fi, in which we implement algorithms from
the literature and compare them to those from our research by
testing in a real environment. We proposed and implemented
algorithms, basic techniques and specifications that use the SS
cartography of the positioning area, propagation models, and
position history techniques (Viterbi-like algorithms) that use
the building topology when known.

Our field experiments validate the use of Wi-Fi-based posi-
tioning in indoor environments, with low-cost equipments and
a three-dimensional accuracy.

The next version of OWLPS should include an enhanced
iterative multilateration algorithm, resulting in a new Iterative
FRBHM variant. We are currently implementing an auto-
calibration subsystem, in order to better adapt Friis indexes to
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Fig. 9. Map of the building where the experiments take place. On the left is the first floor, where two APs are deployed, on the right the second floor, where
three APs are deployed. The experiment area is only the west wing, not the north one.

the fluctuations of the radio environment and handle technical
troubles (e.g. breakdown of an AP). We are also considering
the implementation of the ability for the system to self-deploy;
this would also allow us to add, move or remove APs and the
system to automatically change its configuration to keep a
good accuracy.

We will also extend our experiments to new contexts
and conditions, such as combination with other positioning
services [19] at the neighborhood of buildings.
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