
On-Line Adaptive Parallel Prefix Computation

Jean-Louis Roch, Daouda Traoré, and Julien Bernard�

Équipe MOAIS (CNRS-INRIA-INPG-UJF)
Laboratoire d’Informatique de Grenoble
38330 Montbonnot Saint Martin, France

{Julien.Bernard, Jean-Louis.Roch, Daouda.Traore}@imag.fr
http://moais.imag.fr

Abstract. We consider parallel prefix computation on processors of dif-
ferent and possibly changing speeds. Extending previous works on identi-
cal processors, we provide a lower bound for this problem. We introduce
a new adaptive algorithm which is based on the on-line recursive coupling
of an optimal sequential algorithm and a parallel one, non-optimal but
recursive and fine-grain. The coupling relies on a work-stealing schedul-
ing. Its theoretical performance is analysed on p processors of different
and changing speeds. It is close to the lower bound both on identical
processors and close to the lower bound for processors of changing speeds.
Experiments performed on an eight-processor machine confirms this the-
oretical result.

1 Introduction

Given x0, x1, . . . , xn, the prefix problem is to compute the n products πk =
x0◦x1◦. . .◦xk for 1 ≤ k ≤ n, where ◦ is an associative operation. Prefix computa-
tion is a common operation in many algorithms including the evaluation of poly-
nomials and modular additions [1], packing problems, loop parallelization [2].

The iterative sequential prefix computation requires n operations ◦. However,
any parallel prefix circuit of depth d contains at least 2n − d operations ◦ (see
section 3). The minimal parallel time is Ω(log n) on a machine without concur-
rent write. Ladner and Fischer [3] proposed a parallel algorithm which takes a
time of 2 logn and 2n operations. Fich [4] proved that any algorithm of time
log n requires 4n operations. Then Ladner-Fisher’s algorithm is fine grain and
asymptotically optimal on n

log n processors . It can be scheduled on p < n
log n

identical processors in time 2n
p + O(log n). Since it carries out 2n operations,

it is not optimal for a fixed p. Nicolau and Wang [2] showed that a strict lower
bound for the parallel time on p identical processors is

⌈
2n

p+1

⌉
for n ≥ p(p+1)

2 .
They provided an algorithm, based on a cutting in (p + 1) blocks and a pipeline
between blocks, which reaches this lower bound. Most implementations either on
dedicated distributed architectures or circuits [1] are based on an off-line block
partitioning, with a block size depending on p.
� This work is supported by the French government ANR ARA-SSIA BGPR/SafeScale

and a France-Mali grant.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 841–850, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

842 J.-L. Roch, D. Traoré, and J. Bernard

The drawback of such optimal algorithms for a fixed number p of processors
is that the number of operations is at least 2 p

p+1 times greater than the number
n of operations performed by an optimal sequential algorithm. Thus, although
optimal on p processors, those algorithms are not efficient on a machine with
processors of different and possibly changing speeds. This is the practical case
for a multi-processor machine concurrently used by several users, since the load
of the processors varies during the execution. In this case, the scheduling must
be on-line.

To resolve this problem, we use an on-line work-stealing (see section 2) im-
plemented in Kaapi [5,6]. Bender and Rabin [7] extended this work-stealing to
processors of changing speeds: they analyze the time of an algorithm with re-
spect to Πave, the average speed per processor. On this model, we provide in
section 3 a lower bound 2n

p·Πave+Πmax
for computation time of parallel prefix,

where Πmax is the maximal speed of a processor during execution. We prove
this bound is tight on uniform processors: for n � p, a block algorithm –with
an off-line partitioning based on the relative speeds of the processors– reaches it.

In order to suit to processors with changing speeds, section 4 presents our
new adaptive algorithm that performs an on-line block partitioning without
assumption on the processor speeds. It is based on the recursive coupling of a
sequential optimal algorithm and a fine grain parallel one which is scheduled by
work-stealing. Its execution time, including on-line scheduling overhead, is Tp ≤

2n
(p+1)·Πave

+ O
(

log n
Πave

)
which is close to the lower bound, and asymptotically

optimal when processors are identical.
Finally, in section 6, we present experimental comparisons on a eight-processor

machine between this algorithm and an optimal one with off-line static parti-
tioning. Two cases are considered: dedicated processors and processors disturbed
by additional processes. Even for small values of n (100) and of p (1 to 8), our
adaptive algorithm has performances analogous to the optimal one when the
machine is dedicated to the computation, and it is faster when the machine con-
currently executes other processes (multiuser case), which is the practical case
that motivates this work.

The coupling of two algorithms, a sequential one and a parallel one, is inspired
by Daoudi et al [8] where it is applied to algorithms with the same number of
operations on identical processors. However, its use for processors with differ-
ent and possibly changing speeds, as well as the technique used to analyze its
complexity are original. This technique is very general, we think that it can be
applied to other problems.

2 Notations and On-Line Scheduling by Work-Stealing

Let W∞ be the critical-path in number of operations for an execution on an
unbounded number of processors; W is the total number of arithmetic operations
performed (work) by a given execution of the parallel algorithm. Note that W
does not include scheduling operations but may depend both on the number
of processors and the scheduling used for the considered execution. Let Tp be

On-Line Adaptive Parallel Prefix Computation 843

the execution time of the algorithm when scheduled on p physical processors,
including scheduling overhead;

Cilk [9] and Kaapi [5,6] are parallel programming interfaces that support
recursive parallelism and implement an on-line work-stealing scheduling based on
the work first principle. The principle of work-stealing is simple. Each processor
serially executes the tasks it has locally created according to a depth-first order.
When a processor Pv becomes idle, it steals the oldest ready task (breadth
first order) on a non-idle processor Pw, randomly chosen. For any series-parallel
program with critical path W∞ and work W on p identical processors, a work-
stealing schedule ensures with high probability that Tp ≤ W

p + O(W∞) [9,7].
Bender and Rabin [7] extended this theorem to heterogeneous processors of

different and possibly changing speeds. The authors proposed a model that en-
compasses the practical use of a parallel architecture concurrently shared by
various processes and users. Let Πi(t) be the instantaneous speed of proces-
sor i at time t, measured as the number of operations ◦ per unit of time. For
a computation with duration T , let Πave be the average speed by processor:
Πave =

�T
t=1
�p−1

i=0 Πi(t)
p·T . In [7], a high utilisation schedule of factor β is used

which is defined by the following property: if there are i < p idle processors,
then the fastest idle processor is at most β times faster than the slowest busy
processor. The parameter β can be tuned to optimize the performances of the
system by reducing the number of migrations. Indeed, it is not even necessary
to define a particular value of β [7] and in the sequel, we will assume β = O(1).

To implement such a high utilisation schedule, the previous work-stealing is
only modified in [7] when a processor Pv steals a work on an active processor
Pw that has no ready work to be stolen in its local queue. Then, if Pw is slower
than Pv by at least a β factor, then the work in progress on Pw is preempted
and migrated on Pv. In the case when the processors speeds do not change too
much, the following theorem bounds the execution time Tp.

Theorem 1. (see theorem 6 and 8 in [7]) With high probability, the number of
successful steal operations is O(p · W∞) and the execution time Tp is bounded by

Tp ≤ W

p · Πave
+ O

(
W∞
Πave

)
.

The next section stands a lower bound for parallel prefix on this model.

3 Lower Bound for Parallel Prefix on Processors with
Varying Speeds

In this paragraph, a lower bound is first given for p processors with varying
speeds. Then, an off-line algorithm is provided that proves this lower bound is
tight on p processors with constant and known speeds Πi. The next theorem
stands the lower bound with respect to Πave and also to the maximal speed
Πmax of all processors: Πmax = maxi=0,...p−1;t=1,...T Πi(t).

844 J.-L. Roch, D. Traoré, and J. Bernard

Theorem 2. A lower bound on the time Tp of any parallel prefix computation
on p processors with average speed Πave and maximal speed Πmax is

Tp ≥ 2n

p · Πave + Πmax
.

Proof. Let G be the computation DAG representing the execution of the parallel
algorithm. G has n+1 leaves corresponding to the inputs (xi)i=0,n; each internal
node matches an operation ◦ with two inputs. Let A be the predecessor graph of
a node that computes the output πn. In πn, each input xi is operand of exactly
one operation ◦; then A is a binary tree with n + 1 leaves. Thus A contains
exactly #A = n operations ◦. Besides, let d be the depth of G and B be the
complementary DAG of A in G. Since any prefix πi is a successor of the leaf xo

and the depth of A is at most d, at most d prefixes are computed in A; thus B
computes at least n−d prefixes and then contains at least #B = n−d operations
◦. As a consequence, the number #G = #A + #B of nodes ◦ in G is at least
2n − d (note that this first part of the proof is similar to the one established in
[4], theorem 2, for restricted prefix circuits of depth d = log n).

During Tp, at most p · Πave operations ◦ are computed; then, p · Πave · Tp ≥
2n − d. Besides, since G has a critical path with d operations ◦, Πmax.Tp ≥ d.
Putting things together gives (p · Πave + Πmax).Tp ≥ 2n. ��

To prove that this lower bound is tight, we now introduce a parallel algorithm
that reaches it in the restricted case where processors have uniform known
speeds.. For the sake of simplicity, the algorithm is first explicited in the case of
p identical processors, and after extended to processors with uniform speeds. On
p identical processors (Pi)i=0,...,p−1, the algorithm is based on a partitioning of
the n+1 entries (xi)i=0,...,n in p+1 blocks B0, . . . , Bp of approximately the same
size. To simplify, we suppose that each block Bi contains K = n

p+1 consecutive
elements.

Step 1. In parallel for i = 0, . . . , p−1, we compute on processor i the sequential
prefix of the block Bi. Let αi denote the last prefix of the block Bi. We notice
that the prefixes (πj)j=1,...,K of the block B0 are thus computed.

Step 2. We compute the p − 1 prefixes β0 = α0, β1 = α0 ◦ α1, . . . , βp−1 =
α1 ◦ . . . ◦ αp−1 of values α0, . . . , αp−1.

Step 3. On processor 0, we compute the product by βp−1 of each element of
the block Bp to obtain the prefixes πpK , . . . , πn. And, in parallel for i =
1, . . . , p − 1, we compute on processor i the product by βi−1 of each element
of the block Bi. We notice that these products are independant, even if they
are made sequentially. All the prefixes πi thus are obtained.

The execution time of this algorithm is 2K + p − 1 � 2n
p+1 , thus asymptotically

optimal. Its number of operations 2n− (2k+ p− 1) is strictly optimal because it
reaches the lower bound 2n − d. Moreover, we notice that by taking K = 2 and
by executing step 2 in a recursive way, it is the algorithm of Ladner and Fisher
[3] which takes W = 2n operations ◦ with a critical path W∞ = 2 log2 N .

On-Line Adaptive Parallel Prefix Computation 845

We now extend the previous algorithm to the case of p processors with uni-
form speeds Πmax = Π0 ≤ Π1 ≤ . . . ≤ Πp−1 by tuning the block sizes in the
partitioning. Let n0 = n

1+p·Πave·Π−1
max

. Blocks B0 and Bp, each of size n0, are
assigned to processor 0. For 1 ≤ i ≤ p − 1, the processor i is assigned a block
Bi of size n0

πi

Πmax
. We also have 2n0 +

∑p−1
i=1 ni = n. Step 1 and 3 takes a

time n0
Πmax

= ni

Πi
= n

Πmax+p·Πave
. So the whole time is 2n

Πmax+p·Πave
+ p, then

asymptotically equal to the lower bound of theorem 2.
However, this algorithm assumes that relative speeds of the processors are

known. It is not suited to the case of processors with varying speeds. In the next
section, we present an on-line parallel algorithm that adapts automatically to
the speeds of the processors by work-stealing.

4 Parallel Adaptive Algorithm

Our parallel algorithm with adaptive grain is based on the coupling of two algo-
rithms: a sequential process Ps which sequentially computes prefixes and mini-
mizes the number of operations and a variant of the preceding parallel algorithm,
but with fine grain and scheduled by work-stealing on the p − 1 other processes.
Initially, the process Ps starts the prefix computation of 1 to n . Let a = n

p+1
and b = p

p+1n, the prefixes of 1 to a and b to n will be computed by this process
Ps. However, the interval of indices [a, b] can be stolen and cut out recursively
by processes Pv that become inactive. The algorithms for Ps and processes Pv

are as follows:

Sequential algorithm on process Ps

1. Ps sequentially computes the prefixes starting from index 1 (i.e. π1), until
an index u1 such that the interval [u1, u2] of indices was stolen by a process
Pv.

2. Ps preempts Pv and recovers the last index k ≤ u2 computed by Pv, which
thus already computed ru1 = xu1 , ru+1 = ru1 ◦ xu1+1, . . . , rk = rk−1 ◦ xk. Ps

sends the value πu1−1 to Pv and starts again Pv (see below).
3. Ps computes πk = πu1−1◦rk. Then it takes again the sequential computation

of the prefix of k + 1 to n starting from k + 1 while returning at step 1.
We speak about jump operation. For each jump operation, Ps makes an
operation ◦.

4. Ps stops when it computed πn (the prefixes of indices of b to n cannot be
stolen). After having computed πn, it becomes a thief process and executes
the algorithm Pv.

Parallel algorithm on p − 1 processes Pv

– When it is preempted by Ps (see algorithm of Ps), Pv already computed
partial prefix locally ru1 , . . . , ruk

of interval [u1, uk]. It then receives the
value of the last prefix β = πu1−1 computed by Ps. It then finalizes the
interval [u1, uk] by computing the products πi = β ◦ ri for u1 ≤ i ≤ uk.

846 J.-L. Roch, D. Traoré, and J. Bernard

These products are parallel. On inactivity of another process thief, a half of
these computations remaining to be made on Pv in this interval can then be
stolen.

– When it is inactive, process Pv chooses a processor until finding an active
process Pw. It can be either Ps or another thief process. If the victim is Ps,
the steal is possible only if Ps has a remaining interval of indices ranging
between a and b.
1. Pv cuts the stealable interval on Pw in two parts. Pv extracts the right

part [u1, u2] of the interval and steals it. The left part remains on Pw.
2. Pv starts computation on the stolen interval [u1, u2]. It can be either a

computation of a local prefix (i.e. ru1 = xu1 , ru1+1 = ru1 ◦ xu1+1, . . .) or
the finalization of computations of prefixes starting from already com-
puted values rk (i.e. πu1+1 = πu1 ◦ ru1+1, πu1+2 = πu1 ◦ ru1+2, . . .).

The program stops when all the processors are inactive. The main point of
this algorithm is that a process that become slow will be preempted by the
sequential process or will be stolen by a parallel process. The following section
analyzes the complexity of this adaptive algorithm.

5 Asymptotic Optimality of the Adaptive Algorithm

We use the modified work-stealing schedule (theorem 1) to execute the adaptive
algorithm for the computation of parallel prefixes on p processors of changing
speed. As in [7], we assume that the speed of the processor vary within a constant
factor: there is a constant c ≥ 1 such that maxi,t Πi(t) ≤ c. mini,t Πi(t).

Theorem 3. With high probability,

Tp ≤ 2n

(p + 1)Πave
+ O

(
log n

Πave

)
∼n→∞

2n

(p + 1)Πave
.

Proof. For the analysis, we cut out the execution in two successive phases, φ1
and φ2. The phase φ1 is until Ps has computed πn. Then, the phase φ2 starts
when Ps becomes a work-stealer. Let nseq (resp. j) be the number of prefixes
(resp. jumps) computed by Ps during φ1. Let x (resp. y) be the number of final
prefix computed by the other processes (work-stealers) in φ1 (resp. φ2). Then
n = nseq + j + x + y and W = nseq + 2j + 2x + 2y. Let I1 (resp. I2) be the total
number of operations performed by idle processors during φ1 (resp. φ2).

1. During the phase φ1 of time Tp(φ1), the sequential prefix algorithm is always
executing on a processor and makes nseq + j operations ◦. We note Πseq the
average speed of this algorithm: Πseq = nseq+j

Tp(φ1) .
At each unit of time, the p − 1 others processors make the parallel part

of the adaptative algorithm and make in total 2x + y + j operations ◦ and
I1 inactivity operations. During φ1, the average speed per processor for this
part of the algorithm is Πave(φ1) = 2x+y+j+I1

(p−1).Tp(φ1)
The total number of operations ◦ in the phase φ1 is W (φ1) = nseq + 2j +

2x + y.

On-Line Adaptive Parallel Prefix Computation 847

2. During the phase φ2, the sequential part of the adaptative algorithm is fin-
ished. The p processors finalize the y prefix computations that were antic-
ipated in parallel and not finished in the phase φ1. During the phase φ2,
the p processors make thus y operations ◦ and I2 inactivity operations. The
average speed per processor during φ2 is Πave(φ2) = y+I2

p·Tp(φ2) .

For the sake of simplicity, we assume Πseq = Πave(φ1) = Πave(φ2) = Πave

(without loss of generality, since they are within a constant factor c). During φ2,
the processors which don’t execute the sequential algorithm (i.e. p−1 at each unit
of time) make 2x + y + J operations ◦ with a critical path W∞(φ1) ≤ 2. log2 n
related to recursive cutting. By applying the theorem 1, we obtain Tp(φ1) ≤

2x+y+j
(p−1)Πave

+O(log n
Πave

). Thus, Tp(φ1) = nseq+j
Πseq

= nseq+j
Πave

. And then, (p+1)Tp(φ1) =

(p − 1)Tp(φ1) + 2Tp(φ1) ≤ 2nseq+2x+y+3j
Πave

+ O
(
(p − 1) log n

Πave

)
. As n = nseq + x +

y + j, We obtain: (p + 1)ΠaveTp(φ1) ≤ 2n − y + j + O((p − 1)log n). In addition,

by applying theorem 1 to φ2, we obtain Tp(φ2) ≤ y
pΠave

+ O
(

log n
Πave

)
Thus,

(p+1)ΠaveTp = (p+1)ΠaveTp(φ1)+(p+1)ΠaveTp(φ2) ≤ 2n+j+ y
p +O (p log n).

The number j of jumps is lower than the number of successful stealing i.e.
O(log n) since W∞(φ1) ≤ 2 logn (theorem 1). Moreover, by using (p − 1)(nseq +
j) = (2x + y + j + I1) and nseq ≥ 2n

p+1 , we obtain y ≤ I1 ≤ (p − 2) logn. Finally,
we have: (p + 1)ΠaveTp ≤ 2n + O(p log n). ��

We can note that the proof and the theorem remain valid in the more gen-
eral and realistic case where Πseq ≥ Πave(φ1) (the sequential algorithm is al-
ways executed by a processor faster than the average of the processors) and
Πave(φ2) ≥ Πave(φ1) (the sequential processor added in phase 2 is faster than
the average of the other processors).

6 Experimental Results

We implemented the algorithms on a eight-processor SMP machine, with 31
GB of memory (Intel’s Itanium-2 at 1.5 GHz) and in the multi-user context
under the GNU/Linux 2.6.7 system. The adaptive and parallel algorithms are
implemented with Kaapi [5,6].

The experiments consist in the computation of prefixes of 10000 elements
(double) with a time of 1ms per operation ◦ while varying p the number of
processors from 1 to 8. The optimal sequential time of reference is 10s.

Tables 1 and 2 give the execution times obtained by the two parallel algorithms
(with fixed grain on p processors and adaptive grain). For each experiment, we
made 10 measurements and we kept the times of the fastest and the slowest
execution and the average time of the 10 executions.

Table 1 compares the execution times when there are no other computations
in progress on the processors. We notice that measurements of time are stable
(variation between minimum and maximum lower than 6% for the algorithm
with fixed grain and lower than 8% for the algorithm than adaptive grain). We

848 J.-L. Roch, D. Traoré, and J. Bernard

Table 1. Comparison of the times of the three algorithms on p identical processors

Sequential Static Adaptive
p=2 p=4 p=6 p=8 p=2 p=4 p=6 p=8

Lower bound 2n
(p+1)Πave

10.00 6.67 4.00 2.86 2.22 6.67 4.00 2.86 2.22

Min 10.087 6.73 4.04 2.89 2.82 6.73 4.03 2.88 2.23
Avg 10.09 6.74 4.05 2.93 2.87 6.73 4.04 2.89 2.24
Max 10.09 6.75 4.06 3.00 2.99 6.73 4.04 2.89 2.25

Table 2. Comparison of the times of the algorithms on p perturbated processors. Each
column reports, the minimal, average and maximal times of 10 executions. For each of
those 10 executions, the adaptive algorithm is the fastest.

Static Adaptive
p=2 p=4 p=6 p=8 p=2 p=4 p=6 p=8

Lower bound 2n
(p+1)Πave

7.49 4.50 3.22 2.50 7.49 4.50 3.22 2.50

Min 8.34 7.33 4.97 3.67 7.55 6.03 3.77 2.94
Avg 9.97 8.15 5.60 4.05 9.21 7.23 4.47 3.34
Max 10.41 8.57 5.77 4.31 10.28 8.12 5.23 3.86

check the optimality of the algorithm with fixed grain whose time is with less
than 8% of the lower bound. Moreover, we check the optimality of the adaptive
algorithm which is also less than 5% of the lower bound.

In table 2, additional processes of load are injected to disturb the load of the
machine and to simulate the behavior of a real machine, disturbed by other users.
In the aim of reproducibility, each experiment on p ≤ 8 processors is disturbed
by 9 − p artificial processes of duration larger than 10s. We can check in table 2
that the adaptive algorithm is at least 7% faster.

We note that the time are very changing but we observe that in the case of the
minimum time, the adaptive algorithm is not so far from the lower theoretical
bound (Πave = 8

9). We think this is due to the scheduling of the system.
In conclusion, the adaptive algorithm brings a guaranteed performance when

the machine is divided between several users, while adapting automatically to
the available resources during the execution. Moreover its performance remains
close to optimal even in the ideal case where the processors are all dedicated
to the application. It thus appears to be more powerful than the sequential
algorithm or than a fixed parallel algorithm.

This is confirmed by another experimentation where each elementary test
corresponds to simultaneous launching in competition of the nine programs:
adaptive algorithm on eight processors, sequential algorithm and the fixed par-
allel algorithm for the seven values p = 2, . . . , 8 processors. Table 3 summarizes
the results on a 10 test campaign. For 10 executions, the adaptive algorithm is
always the fastest.

On-Line Adaptive Parallel Prefix Computation 849

Table 3. Comparison of the times of the 9 algorithms simultaneously launched – On
the 10 executions of each test, the adaptive algorithm was the fastest

Sequential Static Adaptive
p=2 p=4 p=6 p=7 p=8 p=8

Min 20.53 18.70 16.41 13.93 13.54 12.25 10.79
Max 22.96 20.04 17.23 15.86 14.56 13.66 13.06
Avg 21.69 19.24 16.89 15.13 13,89 13.16 12.09

Median 22.00 19.26 16.96 15.12 13.76 13.12 12.18

Its average time of execution is on average 19% times shorter than that of the
optimal fixed parallel algorithm on 8 processors, with variations to 40% on one
of the tests.

7 Conclusion

Motivated by the use of multi-processor machines shared between several users,
we introduced a new parallel algorithm for the prefix computation which adapts
automatically and dynamically to the available processors. This algorithm per-
forms an asymptotically optimal number of operations. It is equivalent to that
of the sequential algorithm when only one processor is available and to that of
an optimal parallel algorithm when p identical processors are available. In the
case of p variable processors speeds, its time is equivalent to that of an optimal
algorithm on p identical processors speed equal to the average speeds. These
theoretical results are validated by the experiments made on a SMP machine
with 8 processors. A first perpsective is to validate it on the national French
heterogeneous grid GRID’5000 within the ANR BGPR-Safescale project.

More generally, our adaptive algorithm is based on the recursive and dynamic
coupling of two algorithms, a sequential one, optimal in terms of number of op-
erations, and a parallel one with a maximum degree of parallelism. Both the
algorithm and its analysis are applied to the prefix computation, for which any
parallel algorithm requires more operations than the sequential algorithm. How-
ever, we think that both this scheme and its theoretical analysis are more general
and may apply to other problems, in particular for the resolution of exact linear
systems.

References

1. Dimitrakopoulos, G., Nikolos, D.: High-speed parallel-prefix vlsi ling adders. IEEE
Trans. Computers 54(2) (2005) 225–231

2. Wang, H., Nicolau, A., Siu, K.Y.S.: The strict time lower bound and optimal sched-
ules for parallel prefix with resource constraints. IEEE Trans. Comput. 45(11)
(1996) 1257–1271

3. Ladner, R., Fischer, M.: Parallel prefix computation. J. ACM 27(4) (1980) 831–838

850 J.-L. Roch, D. Traoré, and J. Bernard

4. Fich, F.E.: New bounds for parallel prefix circuits. In: STOC ’83: Proceedings of the
15th ACM symp. Theory of computing, New York, NY, USA, ACM Press (1983)
100–109

5. Jafar, S., Gautier, T., Krings, A.W., Roch, J.L.: A checkpoint/recovery model for
heterogeneous dataflow computations using work-stealing. In Springer-Verlag, L.,
ed.: EUROPAR’2005, Lisboa, Portogal (2005)

6. MOAIS Project: KAAPI homepage. http://gforge.inria.fr/projects/kaapi/
(since 2005)

7. Bender, M.A., Rabin, M.O.: Online scheduling of parallel programs on heteroge-
neous systems with applications to cilk. Theory Comput. Syst. 35(3) (2002) 289–304

8. Daoudi, E.M., Gautier, T., Kerfali, A., Revire, R., Roch, J.L.: Algorithmes parallèles
à grain adaptatif et applications. TSI 24 (2005) 1–20

9. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5 Mul-
tithreaded Language. In: Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’98). (1998)

	Introduction
	Notations and On-Line Scheduling by Work-Stealing
	Lower Bound for Parallel Prefix on Processors with Varying Speeds
	Parallel Adaptive Algorithm
	Asymptotic Optimality of the Adaptive Algorithm
	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

