
IP/SOC 2006
Session: High Level / TLM

Distributed software behaviour analysis
through the MPSoC design flow

Julien BERNARD Serge DE PAOLI Fabrice SALPÊTRIER
INRIA/MOAIS STMicroelectronics IMAG/LSR

Montbonnot, France Crolles, France Grenoble, France
julien.bernard@imag.fr serge.de-paoli@st.com fabrice.salpetrier@imag.fr

Abstract: The complexity of develop-
ing Systems-on-Chip (Soc) is increasing
continuously, but the productivity of hard-
ware and software developers is not grow-
ing at a comparable pace. As a conse-
quence, the conception of a new SoC can
take a few years and software can’t wait its
availability. Therefore, on the one hand,
software development is carried out at the
simulation level. On the other hand, as the
SoCs have more and more cores, we have
to find innovative techniques for program-
ming them and observing the behaviour of
the programs.

This leads to introduce a programming
model allowing to run a complex applica-
tion and to measure its behaviour with re-
gards to the SoC model during the design
phase.

Our work is focusing on two main
domains. The first one is the program-
ming model, based on the work-stealing
paradigm. The second one is a profiler
technology probing the SoC model, with
a knowledge of the programming model,
and giving information on the behaviour
of the application. Typical usage of this
tool is to provide views and statistics re-
garding hardware resources, as well as
embedded software behaviour. Our objec-
tive is to be able to target both program-
ming model and profiling tools for a va-
riety of target system (SMP, simulators or
real SoCs). This paper is presenting this

two main objectives.

1 Work-stealing: a pro-
gramming model for
parallel computing

1.1 Principles of work-stealing
The work-stealing scheduling is based on
a greedy scheme: an idle processor can
steal a task that is ready on another pro-
cessor but not yet executed. Given an ap-
plication, we call Tp the execution time
on p processors, T1 the sequential time of
the application, T∞ the execution time of
the application on an infinite number of
processors. Then, according to Graham
[8], the execution time on p processors Tp

without the cost of scheduling time veri-
fies:

Tp <
T1

p
+ T∞ (1)

Efficient work-stealing schedulers
minimizes the cost of scheduling by gen-
erating parallelism only when required i.e.
only when a processor becomes idle: this
is known as the work-first principle. The
number of idles is bounded by T∞ on each
processor, so the scheduling overhead is
bounded by O(p.T∞), which is negligi-
ble if the application has a high level of
parallelism (i.e. T∞ � T1).

1



Initially developped for SMP architec-
tures [6], the principle has been extended
to processors with different speeds [1] and
then to distributed architecture [11], SMP
clusters and heterogeneous grids [10].

We are focusing on a particular usage
of work-stealing : adaptive applications.
The idea is to use two concurrent algo-
rithms, a fast sequential algorithm and a
parallel algorithm, and to generate paral-
lelism on-the-fly only when required. The
coupling of two algorithms using work-
stealing has already been studied for the
iterated product problem [4] and for the
prefix computation problem [12].

1.2 An example of simple adap-
tive application

If n is an integer and F is a function taking
a single argument, the problem is to calcu-
late F (i) for i from 0 to n− 1. Moreover,
we assume that the time for the computa-
tion of F (i) depends on i.

The sequential algorithm for comput-
ing this problem is very simple, it con-
sists in a simple loop. For our application,
we use a modified version of the loop. If
the range to be computed is [a, b[, then
sequential algorithm reserves a sub-range
of length log(b − a) at the beginning of
the range and computes them with a loop.
It does this as long as the range is not
empty. If the range is empty, then, the
parallel part of the algorithm takes place.
It searches for a non-empty range [a, b[
among the others processors. When it
finds one, it steals a sub-range of length
(b− a)/2 at the end of the range and then
computes this sub-range using the sequen-
tial algorithm. To explain these choices,
we must calcultate T∞.

We call τF the maximum time for the
computation of F (i) and τS the time of a
steal. For this algorithm, T1(n) = n.τF =

O(n) as a single processor will only com-
pute its range using a simple loop. As for
T∞, we must imagine an infinite number
of processor. The first one has the total
range of length u0 = n and computes a
sub-range of length log u0 = log n. Then
another processor will steal half of the rest
i.e u1 = (u0−log u0)/2 and will compute
a sub-range of length log u1, and so on re-
cursively until computing a sub-range of
length 1. After k steals, the sub-range
length is uk = (uk−1 − log uk−1)/2, and
necesseraly k ≤ log n. So, T∞(n) =
max0≤k≤log n(τF . log uk + τS .k). As we
know that uk < n/2k, we can say that
T∞(n) ≤ max0≤k≤log n(τF . log n/2k +
τS .k). In conclusion :

T∞ ≤ max(τF , τS) log n = O(log n)

1.3 Why work-stealing is suit-
able for embedded soft-
ware?

The work-stealing principle has many ad-
vantages regarding embbeded software.

Adaptive: Due to its dynamic schedul-
ing, work-stealing adapts to every situa-
tion to offer the best finish time. It sup-
ports a great variation of data, and even a
loss of a unit, with theoretically [1] and
experimentally [6] [2] guaranteed perfor-
mace, which makes it a predictable model.

Robust: The scheduling is totally de-
centralised, all the units play the same
role, no unit is privileged. Moreover, it
tries to minimize the number of commu-
nications between units. Thus, this model
prevents a loss of a central unit and con-
tention problems on communication chan-
nels.

Long term: Work-stealing suits to-
day’s platform with a few processors but
also tomorrow’s platform with tens of pro-
cessors. The model is independent from

2



the underlying architecture and is scal-
able. Experiments on clusters and grids
show that it can support a great number of
processors.

So work-stealing offers a novel ap-
proach for embedded systems as they con-
tain more and more processor cores. Such

a technique allows the programmer to
avoid the constraints of the architecture.

2 A tool for behaviour
prediction and perfor-
mance evalutation

Figure 1: Profiling through a programming model

2.1 Profiling services through
the programming model

Profiling an application running on multi-
ple processors consist in two main parts:
local profiling for improving local func-

tions on a single processor, and global
profiling for improving the overall be-
haviour and performance of the applica-
tion. We are only interested in the second
part as the first part can be achieved with
traditional tools.

Figure 2: Pajé: an exemple of visualisation tool for parallel applications. This example
has been obtained with a multi-DSP SystemC simulation platform

3



For large scale computations on clus-
ters and grids, many tools already exist
such as Vampir [3] or Pajé [5] (see Fig. 2).
They are mainly based on MPI (Message
Passing Interface) [9]. The message pass-
ing paradigm is not the same as the work-
stealing paradigm, yet they share common
points in the way applications using these
paradigms can be profiled.

The common goal is to get the relevant
information from the programming model
(see Fig. 1) to see the behaviour of the
application and its performance. We want
to give information in the context of the

user’s program, thanks to a generic instru-
mentation of the programming model. In
MPI, the scheduling is active, the com-
munications and task creations are initi-
ated by the programmer so that the be-
haviour of the application is always the
same. As for work-stealing, the schedul-
ing is passive, the communications and
task creations are initiated by the middle-
ware. The scheduling can differ from an
execution to another. But the way to watch
the task and the communication remains
the same (see Fig. 3), the interpretation
could differ somehow.

Figure 3: Vampir: a tool for the visualisation of MPI applications

2.2 Multi-level probing for a
better profiling

Our main contribution to these techniques
is to apply them in the context of em-
bedded software development tools, more
particularly focusing on SystemC/TLM
simulation platforms.

As the programming model does not
depend on the underlying architecture, it
is possible to test the application on any
architecture that the model supports. So
we don’t need the final SoC to have a quite
precise idea of the performance of the ap-
plication, we can make more and more ac-
curate measures as we use architectures
that are closer to the final SoC.

An added value of this approach is
to be available across the design flow.
For example, a Symetric Multi-Processor

(SMP) machine can be used to observe the
global behaviour of the application. Then
SystemC level (not cycle accurate) can be
used to refine the first observation. Then
cycle-accurate simulation provides more
precise performance measures. And fi-
nally we can use test boards to tune pre-
cisely the application.

We can also get information from
the target architecture, as a complement
of the information from the programing
model. For example, in TLM platforms,
it is possible to record transactions. Then
we obtain multiple levels of information
combining: architecture information, pro-
gramming model information and appli-
cation information.

The profiling tool is in fact the combi-
nation of platform probing, the program-
ming model knowledge and the visuali-

4



sation tool. The programming model has
an abstraction of the architecture, the plat-
form does not know the embedded soft-
ware. But the profiler can combine infor-
mation from both and it gives relevant in-
formation to the programmer. In the end,
the programmer can focus on its applica-
tion.

2.3 Measures and visualisation
In our programming model, work-
stealing, and our main architecture target,
SystemC/TLM platforms, we can com-
bine many useful informations.

At the programming model level, we
know when a steal is requested and
when it succeeds, a steal always gener-
ates a communication between two nodes.
Then, after a successful steal, a new task
starts on the stealer processor and makes
computations until the next steal, so we
can determine the beginning and the end
of a task life. We can also measure the
time for each task. At the TLM/SystemC
level, we can intercept the raw commu-
nications between components (see Fig.
2) which correspond to writes in mem-
ory or messages between two processors.
Knowing we use a work-stealing model,
we can correlate the raw communications
with the steal request and task creation.

We are currently using a platform
with a host processor (e.g. a microcon-
troller) and two DSPs, simulated with
SystemC/TLM. The processors commu-
nicate through two mailboxes and inter-
rupts. On top of that, a small hardware
adaptation layer provides an API. The em-
bedded software, based on the adaptive
work-stealing programming model, is the
same on any processor as it does not de-
pend on the underlying architecture. As
a consequence, the application is indepen-
dent from the processor types (typically, a
DSP is much more powerful than a micro-

controller), from the number of processors
(we can add or remove a processor), from
the characteristic of the processors (e.g.
speed). The programming model dynami-
cally adapts the application to the platform
architecture.

3 Conclusion

We are proposing tools and techniques
to facilitate embedded software develop-
ment. Our techniques are consisting in a
programming model, based on the work-
stealing paradigm, and a profiler technol-
ogy combining target probing and pro-
gramming model awareness. Our main
contribution to these techniques is to ap-
ply them in the context of embedded soft-
ware development tools, more particu-
larly focusing on SystemC/TLM simula-
tion platforms. In such an environment,
the programming model can take care
of load balancing according to hardware
constraints. Then, thanks to the profiler
wich collects data at different levels (hard-
ware and software), we can give the pro-
grammer an overall view of the applica-
tion. At the moment, we have some pre-
liminary successful results, the next step
is to build a full demonstration of this con-
cept in order to define a future generation
of tools. We also want to show that the
programming model we are using is suit-
able for a wide range of embedded appli-
cations.

References

[1] Michael A. Bender and Michael O.
Rabin. Scheduling Cilk multi-
threaded parallel programs on pro-
cessors of different speeds. In
ACM Symposium on Parallel Algo-

5



rithms and Architectures, pages 13–
21, 2000.

[2] Robert D. Blumofe and Dionisos Pa-
padopoulos. HOOD: A user-level
threads library for multiprogrammed
multiprocessors. Technical report,
The University of Texas at Austin,
October 1998.

[3] Holger Brunst, Dieter Kranzlmüller,
and Wolfgang E. Nagel. Tools for
scalable parallel program analysis -
vampir vng and dewiz. In DAPSYS,
pages 93–102, 2004.

[4] El-Mostafa Daoudi, Thierry Gau-
tier, Aicha Kerfali, Rémi Revire, and
Jean-Louis Roch. Algorithmes par-
allèles à grain adaptatif et applica-
tions. Technique et Science Informa-
tiques, 24:1—20, 2005.

[5] Jacques Chassin de Kergommeaux
and Benhur de Oliveira Stein. Pajé:
An extensible environment for visu-
alizing multi-threaded programs ex-
ecutions. In Euro-Par ’00: Proceed-
ings from the 6th International Euro-
Par Conference on Parallel Process-
ing, pages 133–140, London, UK,
2000. Springer-Verlag.

[6] Matteo Frigo, Charles E. Leiserson,
and Keith H. Randall. The im-
plementation of the Cilk-5 multi-
threaded language. In Proceedings
of the ACM SIGPLAN Conference
on Programming Language De-
sign and Implementation (PLDI’98),
June 1998.

[7] François Galilée, Jean-Louis Roch,
Gerson Cavalheiro, and Matthias

Doreille. Athapascan-1: On-line
Building Data Flow Graph in a Par-
allel Language. In IEEE, editor,
International Conference on Paral-
lel Architectures and Compilation
Techniques, PACT’98, pages 88–95,
Paris, France, October 1998.

[8] R.L. Graham. Bounds on multipro-
cessing timing anomalies. SIAM J.
Appl. Math., 17(2):416–426, 1969.

[9] Andreas Knüpfer, Ronny Brendel,
Holger Brunst, Hartmut Mix, , and
Wolfgang E. Nagel. Introducing the
open trace format (otf). In Compu-
tational Science – ICCS 2006, vol-
ume 3992 of LNCS, pages 526–533.
Springer, 2006.

[10] Remi Revire. Ordonnancement
de graphe dynamique de tâches
sur architecture de grande taille.
Régulation par dégénaration
séquentielle et distribuée. PhD the-
sis, Institut National Polytechnique
de Grenoble, September 2004.

[11] Jean-Louis Roch, Thierry Gautier,
and Rémy Revire. Athapascan:
API for Asynchronous Parallel Pro-
gramming. Technical Report RT-
0276, INRIA Rhône-Alpes, projet
APACHE, February 2003.

[12] Jean-Louis Roch, Daouda Traore,
and Julien Bernard. On-line adap-
tive parallel prefix computation. In
Euro-Par 2006 Parallel Processing,
volume 4128 of Lecture Notes in
Computer Science. Springer-Verlag,
2006.

6


