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cluster They have become very attractive for high performance com-
Abstract puting, given their low cost compared to their computation
In this paper, we propose an efficient parallel implemeotati power and their abilities to compute faster and to consume
of the GMRES method for GPU clusters. This implementa-less energy than their pure CPU counterparts [2]. GPU clus-
tion requires us to parallelize the GMRES algorithm betweerters have already been used to accelerate numerical computa
CPUs of the cluster. Hence, all parallel and intensive computions of sparse linear solvers, as [3], [7] where authorghav
tations on local data are performed on GPUs and reductioparallelized the Conjugate Gradient solver (CG solver) on
operations to compute global results are carried out by CPUseveral GPU platforms and under different parameterstaffec
The performances of our parallel GMRES solver are evaluing its performance. For example, Cevahir and al. [7] have
ated on test matrices of sizes exceedingrbvs. They show presented the parallel implementation of a CG solver us-
that solving large and sparse linear systems on a GPU clustérg hypergraph partitioning on CPU and GPU clusters. They
is faster than that performed on its CPU counterpart. It is noshow that double precision CG solution with 32 GPUs on
ticed that a cluster of 12 GPUs is about 8 times faster than 46 nodes TSUBAME is 14 times faster than the CPU im-
cluster of 12 CPUs and about 5 times faster than a cluster gflementation of the same amount of nodes and CPU cores.
24 CPUs. However, we have noticed in the literature that most pdralle
implementations of sparse linear solvers were performed on
small sparse linear systems not exceedin@ unknowns.
1. INTRODUCTION Therefore our purpose in this paper is to solve more effec-
In numerous scientific and industrial applications, sajvin tively large sparse linear systems whose sizes exceedri0
large sparse linear systems is often the most costly step, knowns and to study the effect of these matrix sizes on the
both CPU time and memory space, in the computing procesperformances of our proposed sparse linear solver.

In fact, solving such linear systems tends to be slowed down The target sparse linear solver that we explore on a GPU
due to the large number of their unknowns and the irregularcjyster is a GMRES solver (Generalized Minimal RESidual),
ity of memory accesses to the few number of non-zero valuesince it is a generic and efficient method to solve linear sys-
of their matrices. Thus, any reduction in solving time ofsthe  tems. It gives better performances in most cases regamfiess
systems will result in a significant saving in the total numer properties of associated matrices to linear systems (spars
cal computation time. symmetry, number of unknowns, type of values, ...). More-
For the past few years, modern graphics processing unitver, it is an iterative method which is well-suited for lare
(GPUs) have become attractive tools to provide the high comsystems of a very large order. In fact, an iterative methaa-co
puting power and the large memory bandwidth required foputes a sequence of approximate solutions converging to the
sparse linear system solutions [6], [12]. Although inlfial exact solution. In contrast, a direct method determinesxhe
they were designed to carry out intensive computations ofct solution after a finite number of operations which leads t
graphic applications, GPUs have rapidly evolved to becomen expensive consumptions in computation time and memory
high performance accelerators for data-parallel tasksrand space, and which therefore is not suited for large linear sys
tensive arithmetic computations. To exploit the compotal  tems. GMRES parallelization has already been attempted on
power of this architecture, Nvidia has released the CUDAvarious parallel platforms using different approachedekd,
platform (Compute Unified Device Architecture) [14] which parallel GMRES algorithms are implemented on distributed
provides a high level GPGPU-based programming languaggmemory architectures for large linear systems. For ingtanc
(General-Purpose computing on GPUs) allowing us to proDias and al. [10] presented a parallel implementation of the
gram GPUs not only for graphic application purposes butestarted GMRES under the PVM message passing system on
also for general purpose computations of non-graphic applia MEIKO SPARC-based Computing Surface, and Couturier
cations. and al. [9] presented a parallel GMRES implementation on
Nowadays, the relevant parallel architectures exploitiegy  Grid’5000 using Java language and the MPJ library for com-



munication. Furthermore in recent years, several workes lik or
[8], [16] have proposed efficient GMRES solvers for GPUs.

AM~ R =b, x=M"1x ©)

However, we can see that most parallel GMRES implemente\hhereM is the preconditioning matrix. The main key points

tions proposed in the literature are either performed o pur

of the left-preconditioned GMRES method with restarts are

CPU platforms or on architectures equipped with a Singlerepresented in Algorithm 1.

GPU. Hence in this paper, we propose a parallel GMRES

solver for a mixed platform incorporating several GPUs andajgorithm 1 Left-preconditioned GMRES with restarts

CPUs.
This paper is organized as follows. In section 2 is given

1: Sete the tolerance for the residual nomronvergence-
falseand chooseg

a general description of the GMRES algorithm followed by 2. while convergencelo

that of GPU architectures in section 3. In section 4 are pre-

_mM-1
sented key points of our parallel implementation of GMRES i EOZ_HI\F/Ioll (b=Ax)
solver on GPU cluster. In section 5, we show various relative 5 vy = ro/é
gains of GMRES implementation on a GPU cluster compared 6 for j—1tomdo
to that implemented on a CPU cluster with different sizes of 7. Wi — M~1Av
sparse matrices. Section 6 concludes this paper. 8: fo]r i—1to jjdo

9: hiﬁjZ(Wj,Vi)
2. PRINCIPLE OF THE GMRES METHOD 10: wj =wj—hi ;v
GMRES is the generalization of the MINRES method 11: end for
(MInimal RESidual) to be applied to non-symmetric and non- 12: hjt1j = [|wl|,
Hermitian linear systems, in particular, and to all types of 13: Vi1 = Wj/hjyaj
systems in general. It is an iterative method developed byi4:  end for

Saad and Schultz [15] and it gives good results in most caseds:

Therefore, it is considered as a well-suited solution fdvso

SetVm = [V1,--+,Vm| andHm = (hi j) an upper Hes-
senberg matrix of ordgim+ 1) x m

ing linear systems with large and sparse matrices. Let the fo 16: Solve a least-square problem of sizem
lowing system of equations: minye gm || Ber — Hmy||,
170 Xm = X0+ VmYm

Ax=b (1) 18 if [M~2(b—Axn)||, <ethen

. , 19 convergence- true
wherex,b e R", A€ R"™"is a nonsingular and sparse square .  aond i
matrix andn is the size of the system. The main idea of this ,,. Xo = X

. . . . m

method is to compute the solutigmf the linear systenl) in 22 end while

the Krylov subspac& (m; A;ro) generated byg + Kn, such
thatro = b— Axg is the residual associated with the initial
guess( of the systentl).

GMRES uses the Arnoldi process [4] to construct an or3. OUR CUDA GPU CLUSTER
thonormal basi¥, for K (m; A;ro). This process allows it to Our experimental platform is an Infiniband cluster with six
produce a sequence of approximate 50|utm$on\/erging CPUs Intel Xeon E5530 Nehalem. Each CPU is a Quad-Core
to the exact solutiox in at mostn iterations. Indeed, it mini- Processor running at2GHz. It provides a RAM memory of
mizes the residual norm of the approximate solution over thd 2GB and a memory bandwidth of Z&B/s, and it has two
Krylov subspace at each iteration until reaching the ddsire Nvidia Tesla C1060 GPUs.
residual tolerance. In the case of GMRES with restarts, the ~Hardware architecture of Tesla GPU is based on Nvidia
Arnoldi process is restricted at< niterations and restarted CUDA model which is also the name of the software for
with the last iteratex, as an initial guess to compute the new Programming this architecture. Tesla C1060 GPU contains
solution, in order to accelerate the method convergence arifi total 240 cores organized in 3freaming multiprocessors
to avoid the storage of a large orthonormal bagisSome-  (MPs), each with &treaming processoréSPs) running at
times, GMRES does not converge or takes too many iterations-3GHz. It provides 4GB otlevice memoryvith a memory
to satisfy the convergence criterion. Therefore, in mosesa bandwidth of 102GB/s, accessible by all its cores and also by
GMRES must contain a preconditioning step to improve itsthe CPU through the PCI-Express 16x Gen 2.0 interface. Be-

convergence. The preconditioning technique replaces/the s sides this global memory, each MP of this GPU has its own
tem (1) with the modified systems: fastshared memorgf 16KB shared among all its SPs.

In CUDA programming environment, the GPU is viewed

M~tAx=M"1b (2) as aco-processor to the CPU. All data-parallel and compute-



intensive portions of an application running on the CPU are =~ —————ncolumns
off-loaded onto the GPU. In fact, a CUDA program is a C
program running on the CPU with a minimal set of exten-
sions to the C programming language to define the C func-
tions to be performed on the GPU, callkernels Then on

the GPU, the same kernel is executed by a high number of bandwi
parallel threads in SIMD fashion (Single Instruction Multi —
ple Data). Threads are grouped together as a grid of threao!::

(n/p)
rows
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blocks, such that each MP executes one or more thread blockg
and each of its SP runs one or more threads within a block.> . =
At any given clock cycle, threads execute the same instruc-z2 xRight
tion of a kernel, but each of them operates on different data.g-é’

Moreover, threads within the same block can coordinate thei BN
execution through a synchronization point. In contrasthimi

a grid of blocks, there is no synchronization at all between Ienn
thread blocks. Kernels work only with data in the GPU de'Figure 1. Data partitioning of the sparse matr the solu-

vice memory and their final results must be communicated;y, yectorx and the right-hand sideinto p portions required
to the CPU. Hence, the data must be transfeimeand out locally by a CPU

of the GPU. However, transferring defram or to the GPU
memory takes a significant amount of the global computation
time. The speed of copy memory between the CPU and th8W> 0 be the bandwidth oA, then the size of shared data is

GPU gives about 5GB/s which is much slower than the mem : : .
. < A
ory copy speed of the GPU memory, 102GB/s. Accordingly,xgcf)trLtRLXRl'?hrtL _Vib(\:v :T??_lht(;:r:i?'i? (cjo:gu.t.efd r;/]t)ec:r)]:js n

it is necessary to limit the transfer of data between the GPL;< are also split among all processes, such that vestars
m ’

and CPU. split as the solution vectorin vy, Vieft andvrignt. After the
data splitting, our algorithm must compute the data depen-
4. GMRES PARALLELIZATION ON A GPU dency pattern between MPI processes on the cluster. This op-
CLUSTER eration consists in computing for each process all its depen
In this paper, we choose to parallelize the GMRES al-dencies with its neighbors, which can fulfill its sub-vestor
gorithm of [8] between CPUs of the cluster. It is an algo-XLeft: XRight: Vieft @nd Vright. For that, a MPI process com-
rithm adapted to GPUs with restarts and a very basic leftPUtes what data it shares with each of its neighbors and then
preconditioning. Nevertheless, its parallelization egmito ~ €Xchanges this information with them.
study three important points which are data partitionirjad ~ Since @ GPU works only on data of its memory, all lo-
dependencies and communications between the various coréal input datady, X, by and M, 1, must be transferred from
ponents of the cluster. CPU memories to the corresponding GPU memories. Sparse
Before starting computations, our parallel GMRES solversub-matricesh are stored on GPU memories in HYB for-
splits input data of the linear system between MPI processe®at (Hybrid) which stores only non-zero values in these ma-
on the cluster. From Algorithm 1, the input data are the gparstrices. This storage format is the combination of two sparse
matrix A, the right-hand sidé, the initial guess¢q and the ~ storage formats: Ellpack format (ELL) and Coordinate for-
preconditioning matrixM. Let p denote the number of MPI Mat (COO). It stores a typical number of non-zero values per
processes on the cluster amthe size of the linear system to row in ELL format and remaining entries of exceptional rows
be solved. The algorithm performs a simple data partitignin in COO format. It combines thefficiencyof ELL due to the
by creatingp portions, of at mosfn/p] rows per MPI pro-  regularity of its memory accessing and freibility of COO
cess, for each element mentioned above. Consequenﬂy, eamich is insensitive to the matrix structure. Therefore th
MPI processk will have its own sparse matri&(n/p x n), HYB.format g.ives on average the best performance in sparse
preconditioning matriM, 1 (n/p x n/p) and right-hand side matrix operations on GPUs [5].
bk of sizen/p. To avoid the storage of the entire solution Afterward, the same GMRES algorithm (Algorithm 1) is
vectorx by all MPI processes, this vector is also split into run by all processes but on different sub-systexp& = by,
p sub-vectors. As shown in Figure 1, the solution vectdr k= 1,..., p. Each MPI process acts as a controller of the
managed by the MPI procekss composed of two parts: the main loop of GMRES iterations and, all data-parallel oper-
local computed sub-vectey of sizen/p and the shared sub- ations inside this loop will be performed by its GPU. In Al-
vectorsx, et andXright Computed by neighbor processes. Letgorithm 1, we can see that typical data-parallel operatigns




GMRES are those of sparse matrix-vector products (SpMVpperation on local scalars computed by GPUs at this line us-
(lines 3 and 7), scalar-vector products (lines 5 and 13), doing MPI_Allreduce()function, in order to compute the global
products (line 9), euclidean norms (lines 4, 12 and 18) andcalar of the complete linear system.
AXPY operations (line 10). They are implemented as kernels Scalar-vector products (lines 5 and 13) and the AXPY op-
using CUDA programming language. We used the efficientration (line 10) are performed locally by each GPU without
HYB kernel of Nvidia for the SpMV [5] and fastest kernels of any synchronization. They involve only local data of vestor
basic linear algebra subprograms of CUDA (cublas) [13] forand the global scalar computed before with a reduction oper-
vector operations (cublasDdot, cublasDnrm2, cublasDaxpy ation. Line 16 solves a least-square problem of sizevhere
For the rest of the parallel operations, we wrote their fiomct  mis typically small. It is an inexpensive operation which can
codes in CUDA as kernels. We developed a kernel for thébe computed sequentially on local data by one thread in each
scalar-vector products (lines 5 and 13), a kernel to solge thGPU. Line 17 computes, at each GMRES iteration, the ap-
least-square problem (line 16) and a kernel for the solutioproximate solutiorxy, for the linear system. It performs sim-
vector update (line 17). ple updates to the local part of the solution vector computed
Therefore, we have written the overall of our parallel GM- at the previous iteration. It is executed as a kernel in feral
RES code in C, using the extensions of CUDA for the GPUby all GPUs because each of them is in charge of its own parts
programming. In this code, all kernels to be performed orof x, Vim and the previous solution vectgy.
the GPU are defined as seperate functions, from those of We can see that there are two types of communications
the CPU, by assigning it a function type qualifiedevice_. in a GPU cluster. First, we have those occurring between
Then, each kernel inside the main loop of GMRES will be MPI processes on CPUs and GPUs. Indeed, MPI process re-
called by the MPI process and executed by the GPU of thigjuests its GPU to give it the local computed scalars and, a
last. Once on the GPU, each kernel will be executed in parGPU requests its host to give it the glotiatp vector re-
allel by multiple thread blocks, whose number is providedquired for a SpMV operation. These communications are im-
by the host (MPI process) when calling the kernel. In ourplemented using copy functions of cublasblasGetVector()
GMRES implementation, we set the thread block size to thédor GPU—-CPU communications andublasSetVector(jor
maximum block size supported by the GPU architecture, 51Z5PW«—CPU communications. The second type of commu-
threads. Then, each MPI process computes the number @ications occurs between MPI processes using MPI functions
thread blocksBlocks to be involved in a kernel execution to perform reduction operations or to exchange shared data o

on its GPU as follows: the global arraymp.
(NumRows+ T hreads- 1) The whole codg of our p_arallel GMRES_ implementation
Blocks= Threads (4)  for a CPU cluster is written in C programming language, us-

ing MPI functions to perform communications between CPU
where NumRowsis the number of local matrix rows and cores. We have developed our own CPU kernels for the paral-
Threadsis the thread block size. In this way, we will have |g| gperations of the GMRES method: SpMV product, vector
one thread per matrix row and/or vector element. operations, solving the least-square and solution vegter u
Besides these local computations, communications angate. With these developed kernels, we did not require to use
synchronizations between GPUs must be performed to assUgRy CPU libreries sine the authors of [9] showed that there

the solving of the complete sparse linear sys#x=b. In  js not a large difference between the use of our functions or
every GMRES iteration of our parallel algorithm, there aretnose of PETSc library.

two types of synchronizations: before SpMV and after vector

operations. Before computing lines 3 and 7, it is mandatry t

construct complete vectoxs andvj, respectively, required to 5. EXPERIMENTAL RESULTS

perform the full SpMV at each GPU. For that, each MPI pro-9.1.  Test sparse matrices

cess holds a global arréy pof size (| X eft| + [X| + [Xright|) Our aim is to test our parallel GMRES algorithm on large
where its GPUwrites to or reads fromfor communicating sparse linear systems whose sizes exceed utnowns.
vector entries. Then, each GPU copiesxitgresp.vjc) sub-  Moreover, target sparse matrices are those Withd struc-
vector entries, required by other GPUs, to corresponding inture, since they arise in many numerical computations. We
dices oftmp vector of its host. Once these copies are heldchose to perform our tests on the real-world sparse matrices
the MPI process performs required exchangesmgbvector  of the university of Florida collection (UF collection) [L1
entries with its neighbors usingPI_Alltoallv() communica- However, matrices in this collection are very small comgare
tion function. After that, each GPU reads }s; andxrignt ~ to our desired matrix sizes. Therefore, we developed in C a
(resp.vjLeft andvjright) entries from corresponding indices of generator of sparse matrices which takes one real matrix of
tmpvector of its MPI process host. After each of the follow- the UF collection as an initial matrix to build large matsce

ing lines 4, 9, 12 and 18, MPI processes perform a reduction This generator is executed in parallel by all MPI processes



Generated sparse matrix

Table 1. Description of the chosen matrices from UF collec-

tion
Real-world sparse matrix Matrix Nb. rows | Nb. nonzeros| Bandwidth
af.0_.k101 503,625 9,027,150 1,716
b Right_Part bcsstk18 11,948 80,519 1,650
= i’ LI&I?:J.* BenElechil 245,874 6,698,185 1,171
. by, cagel4 1,505,785| 27,130,349 | 1,492,443
£ e T ecology? 999,999 | 2,997,995 2,002
D'I < : FEM_3D_thermal2 | 147,900 3,489,300 206,126
5 ol ; G3_circuit 1585478 4,623,152 | 1,584,984
9 ' GadlAs41H72 268,096 9,378,286 64,512
I shallowwater2 81,920 204,800 61,441
) I hood 220,542 5,494,489 220,543
‘ T raefsky4 19,779 674,195 17,820
Figure 2. A generated large and sparse matrix from a real thermal2 1,228,045 4,904,179 | 1,228,046

matrix of UF collection

that implemented on a CPU cluster. As mentioned in sec-

on the cluster before any execution of our GMRES algorithmtion 3, the experiments are performed on an Infiniband clus-
It allows each MPI procesk to build its sub-matrixAx by  ter of six Xeon E5530 nodes. However in our GPU cluster of
performing several copies of the same real marof the UF  tests, we exploit only two CPU cores of each node, such that
collection and, such that all these copies in the clustddbui each CPU core manages one Tesla C1060 GPU since this last
the large matrix of the sparse linear system. Let us denote big passive device. Therefore, we have compared the perfor-
N the desired size of the sparse linear system to be solvethances of the GMRES solver implemented on a cluster of
and, thus, the size of the associated sparse matrix. Atdltst, 12 GPUs with those obtained on clusters of 12 CPU cores
MPI processes load the same matBixrom its storage file. and those obtained on cluster of 24 CPU cores. Linux cluster
Each of them computes the number of copié to perform  version 2.6.18 OS is installed on nodes. C programming lan-
on B, such that: guage is used for coding the GMRES algorithm on both GPU
[N/sizes| (5)  Cluster and CPU cluster. CUDA version 3.1.1 [14] is used for

p programming GPUs, using CUBLAS 3.1 to deal with vector
operations and CUSP library [1] to perform a HYB SpMV
product in GPUs, and finally MPI functions are used to carry

Nb =

wheresizes is the size of the matriB and p the number of
MPI processes on the cluster. After that, each prokese- .
forms Nby copies of the matri¥B on which it constructs its out communications between CPU cor.es.

sub-matrixAy. In order to build matrices with band structure, Ve tested our solver on sparse matrices generated from the
each process places its copies on its part of the main diagon8Parse matrices of Table 1. The sizes of generated matrices

7 7
of the global generated matrix, as shown in Figure 2. Beside¥a"y from 2-10° to 6-10° rows and manageable numbers of
these full copies, other sub-copiksft Part and RightPart ~ Non-zeros values vary from 59,925,452 to 1,634,561,26@. Th

of the matrixB are performed to fulfill the empty spaces be- number of non-zeros values of these generated matrices is re

tween two consecutive copies on the main diagonal of th@orted in the second column of Tables 2, 3, and 4. Our tests

generated matrix. These sub-copigst Part andRight Part are made in double precision data. All results obtained from
are performed from the widest row of the matBx which the performance evaluation of our GMRES solver are for a

defines the bandwidth of this matrix. residual tolerance threshatd= 10719, a restart limitm= 16
Table 1 shows 12 square matrices that are positive def@Nd, @ right-hand side filled with 1 and an initial gueszo
nite with real values entries, chosen from the UF collection 11€d with 12. For the sake of simplicity, we chose a precon-

build our large test matrices. The columns of Table 1 give th&litioning matrixM easy to compute and to inverse, without

main characteristics of each matrix: the number of rows, th&€€king for the best efficiency for some particular cases. Fo
number of non-zero values and the bandwidth of the genef1at, We 100KV as theA diagonal which provides a relatively

ated matrices from these matrices. We can also see in Figured®°d Preconditioning in most cases.
the structures of these matrices.
5.3. Results

5.2. Test platform Comparison results between GPU cluster and CPU clus-
In our experiments, we have evaluated the speed of the paters are given in Tables 2, 3, and 4 for sparse linear systems
allel GMRES solver implemented on a GPU cluster againsbf sizes 2107, 4-10, and 6 10’ unknowns, respectively. We



(a) af_0_k101 (b)bcsstk18 (c) BenElechil (e) ecology2  (f) FEM_3D_thermal2

(g) G3_circuit (h) Ga41As41H7 (i) shallow_water2 (i) hood (k) raefsky4 () thermal2
Figure 3. Structures of the matrices chosen from UF collection

Table 2. Comparison between GPU cluster and CPU clusters for siz6’2inknowns

Matrix #Nonzeros| Tepy | Tixcpus | Ratiojxcpus | Toacpus | Ratioacpus | #lter Prec Error
af.0_k101 361-10F 1.99s| 15.45s 7.74 10.52s 5.29 62 1.52e-14| 6.60e-17
bcsstk18 137-10° | 0.61s| 4.98s 7.88 3.29s 5.39 30 | 4.90e-10| 3.09e-12
BenElechil 543-10° 2.15s | 17.36s 7.90 12.68s 5.90 70 | 1.50e-11| 6.94e-17
cagel4d 395.10° 1.75s | 11.80s 6.80 10.75s 6.14 33 | 1.34e-08| 2.67e-10
ecology?2 60-10° 0.71s| 6.19s 8.59 4.29s 6.04 36 | 5.42e-10| 6.76e-13
FEM_3D_thermal2| 516.1C° 2.15s| 15.15s 7.09 10.38s 4.83 61 | 3.56e-07| 2.41e-09
G3_circuit 71.10° 1.69s| 11.17s 6.59 10.12s 5.99 45 | 6.77e-10| 9.30e-14
Ga41As41H72 706-10F 7.20s | 46.51s 6.48 32.27s 4.48 149 | 7.32e-11| 7.66e-15
shallowwater2 60-10° 0.63s| 5.49s 9.06 3.78s 5.99 33 | 1.81e-13| 1.12e-15
hood 520-10° 2.30s | 14.76s 6.30 10.51s 4.57 56 | 8.11e-10| 2.66e-16
raefsky4 693-10° | 3.37s| 23.56s 6.93 16.22s 481 87 | 1.32e-12| 1.47e-17
thermal2 97.-10° 1.36s| 6.74s 4,94 4.46s 3.28 27 | 7.64e-10| 1.40e-12

Table 3. Comparison between GPU cluster and CPU clusters for siz6’4inknowns

Matrix #Nonzeros| Tepu | Tixcpus | Ratioiacpus | Toacpus | Ratioacpus | #lter Prec Error
af 0.k101 713.1C° 3.52s | 27.15s 7.78 18.40s 5.23 62 | 1.40e-14| 4.50e-15
bcsstk18 273-1C° 1.24s 9.90s 8.14 6.53s 5.26 30 | 4.90e-10| 1.76e-11
BenElechil 10° 4.31s | 34.74s 8.14 24.58s 5.70 70 | 1.50e-11| 4.16e-17
cagel4d 823.1C° 3.08s | 19.75s 6.49 17.99s 5.84 32 | 4.95e-08| 2.12e-09
ecology? 120-10° 1.35s | 12.43s 9.14 8.54s 6.32 36 | 5.34e-10| 6.54e-13
FEM_3D_thermal2 10° 4.03s | 28.99s 7.30 20.48s 5.08 61 | 3.56e-07| 1.81e-09
G3_circuit 138-10° 2.40s | 17.23s 7.34 15.62s 6.51 45 | 6.75e-10| 6.97e-13
Ga41lAs41H72 15-10° 13.19s| 86.02s 6.56 63.76s 4.83 149 | 5.68e-11| 1.37e-14
shallowwater2 120-10° 1.11s | 10.71s 9.60 7.21s 6.50 33 | 1.81e-13| 7.78e-16
hood 10° 4.16s | 27.83s 6.72 19.49s 4.68 56 | 8.11e-10| 1.78e-16
raefsky4 1.3-10° 6.72s | 47.11s 6.91 31.88s 4.74 87 | 1.29e-12| 1.65e-17
thermal2 201-1C° 1.67s 9.46s 5.58 6.26s 3.75 27 | 1.90e-09| 2.64e-10

report the performances of our parallel GMRES solver for In the third, fourth and sixth columns, we report execu-
different sparse matrices generated from matrices mesdion tion times in seconds of our solver on: a cluster of 12 GPUs,
in the first column of each table. The results presented are ola cluster of 12 CPU cores and a cluster of 24 CPU cores,
tained from the mean value over 10 executions of the sameespectively. The number of iterations required to reaeh th
algorithm and for the same input data. The dashes (-) in somesidual tolerance thresholel= 1071 is reported in the
cells of Table 4 indicate that there were GPU memory overeighth column of these tables. For the same sparse linear sys
flows for such data sizes and, thus, we could not solve théem, it is identical for both implementations (GPU and CPU
linear system for these sparse matrices on the GPU cluster. clustes) of our parallel solver. The execution time inckide



Table 4. Comparison between GPU cluster and CPU clusters for siz6’@inknowns

Matrix #Nonzeros| Tegpy | Tixcpus | Ratioiacpus | Toacpus | Ratioacpus | #lter Prec Error

af 0.k101 10° 4.84s | 38.69s 7.87 26.13s 5.40 62 | 1.33e-14| 2.54e-15
bcsstk18 410-10° 1.78s | 14.89s 8.23 9.78s 5.49 30 | 4.90e-10| 4.30e-13
BenElechil 1.6-10° 6.48s | 52.14s 8.14 37.08s 5.72 70 | 1.50e-11| 6.94e-17
cagelsd 1.2-10° 3.77s | 26.26s 6.82 18.14s 4.81 32 | 5.70e-08| 4.35e-10
ecology?2 180-10F 1.74s | 15.48s 8.86 10.66s 6.13 36 | 5.32e-10| 1.67e-13
FEM_3D_thermal2| 1.5-10° 5.75s | 42.92s 7.55 30.06s 5.23 61 | 3.56e-07| 2.04e-09
G3.circuit 211.1CP 3.36s | 25.97s 7.72 17.88s 5.32 45 | 6.74e-10| 1.46e-13

GadlAs41H72 | 21.10° - - - - - - - -
shallowwater2 180-10° 1.65s| 15.93s 9.75 10.53s 6.38 33 | 1.81e-13| 2.53e-15

hood 15.10° - - - - - - - -

raefsky4 21-10° - - - - - - - -
thermal2 299.1CF 2.13s| 14.46s 6.81 11.27s 5.29 27 | 6.77e-10| 1.60e-10

only the solving time of the linear system without the ma-with 12 CPU cores and 4 taBtimes more than with 24 CPU
trix generation time, the data partitioning time and the-con cores. Moreover, we can notice that relative gains of some
struction time of the data shared scheme. Besides the conypes of matrices increase with the increasing of matrigsiz
putation timeTcomput OF arithmetic operations, the execution and the decreasing of the matrix bandwidths (please see the
timesTgpy on GPU cluster andicpy on CPU cluster include  matrix thermald. The GPUs work best on very large sizes
the time of CPW->CPU communication3cpy.,cpu and the  of matrices due to their data-parallel nature and their dse o
time of GPU~CPU communication$gpy.cpu 0N the GPU  the SIMD paradigm in a program execution, where each ma-
cluster, as shown in the two following formula (6) and (7):  trix row is attributed to a single thread. In contrast, thenxra
bandwidth represents the size of the shared sub-vextgfs
Tepu = Teompurt Tepuscru+Teruacru  (6)  andxgign to exchange with neighbors and, thus the number of
Tcru = Tecomputt Tcruscru (7)  sub-vector entries that a GPU muwgtite to or read fromthe
i tmpvector of its host (see section 4). Therefore a large matrix
In order to validate our results, we have computed tWo papanqyidth leads to the transfer of many sub-vector entges b
rameters allowing us to verify the solution accuracy of theyean 4 GPU and its host, whereas this type of data transfers

solved linear system; which are the solution precision cOMig e sjowest communication in a GPU cluster and, hence, it

EUted on thle GPU (;Iurs]tanec f"mdl the error comp_t;thatmn takes a significant amount of the global solving time.
etween so qtlons of the two implementatiagisor. They From the tables of results, we can see that the precisions
are reported in the ninth and tenth columns of the tables Oerec of our results are sufficient, varying froB.56e-7to

results. The solution precisioprec is the maximum value  § 334 14and in general they are around-10 We can also

among the components of the residue vector as shown in ﬂleEe that the difference between the CPU cluster sol XY
equation (8), wher&©"" is the solution vector computed by and the GPU cluster solutiod®PY computed for the same

the GPU cluster. The parametaror allows us to ensure that sparse linear system is always quite low for the same preci-

both versions of the parallel solver implemented on the GPU,; ¢ solving. This difference varies from41e-9to 1.47e-
clu_ster a_nd the CPU cluster give more or less t_he SaME 547 which allows us to conclude that, for a sparse linear sys-
lution. It is the difference between the two solution vestor tem, our parallel GMRES solver on a GPU cluster almost

CPU GPU
X and?( , of the CPU cluster and the GPU cluster, Seecomputes the same solution as that computed on a CPU clus-
the equation (9). ter

prec = max(M~.(b—A-XC)) (8)
error — maxXS™U _ XCP| 9 6. CONCLUSION AND PERSPECTIVES
In this paper, we have presented a parallel GMRES algo-
The relative gain% in the execution times of the GPU rithm for solving large and sparse linear systems on a GPU
cluster for different matrix sizes are shown in the fifth andcluster. We have aimed to exploit the high power comput-
seventh columns compared to the cluster of 12 CPU coreimg and the tremendous memory bandwidth of several GPUs,
and the cluster of 24 CPU cores, respectively. In all con+equired for solving such linear systems. We have paral-
ducted experiments, we can see that the GPU cluster versidelized a GMRES algorithm with restarts and a basic left-
is faster than that of the CPU clusters. With the GPU cluspreconditioning adapted to GPUs between CPU cores of the
ter, we gained in the execution time 5 to 10 times more thartluster.



The efficiency and performance of our parallel GMRES
solver for sparse linear systems is demonstrated by numer-
ical experimental results carried out on a GPU cluster. We

have compared the performances of this solver on a clusted®

of 12 Tesla C1060 GPUs against those obtained on a cluster
of 12 E5530 CPU cores and those obtained on a cluster of 24
E5530 CPU cores. The experiments have been performed on
large sparse matrices with band structure and varying from

2-10" to 6- 10’ rows. The experimental results clearly show J7]

that the solving of large and sparse linear systems on the GP
cluster is faster than on the CPU cluster. The relative gains
the GPU cluster range from 5 up-to 10 compared to the clus-
ter of 12 CPU cores and 4 up-tacBicompared to the cluster of

24 CPU cores, for the same precision. We have also noticed8]

that the GPU cluster is more efficient for large sparse ma-
trix sizes, due to the high data-parallel nature of the GPUs,

provided that these large matrices do not exceed the Iimited[9

memory capabilities of the GPUs.

In future work, we will evaluate our parallel GMRES
solver on other structures of sparse matrices to see itsrperf
mance behavior on a GPU cluster according to these different
structures. We will also study the different methods of data

partitioning according to the sparse matrix structuress Th 4

will allow us to minimize data sharing and dependencies be-
tween CPUs of the cluster and, thus, to deal with the slow
data transfers between GPUs and CPUs. In addition, we will
work on the parallel implementation of GMRES solver on a

]

grid computing equipped with GPU cards for solving large[11]

and sparse linear systems whose sizes are in order of anbillio
unknowns. However this type of parallel platform requires u

to take into account another parameter which is the asynchra
nism of its different distant clusters. [
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