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Abstract
In this paper, we propose an efficient parallel implementation
of the GMRES method for GPU clusters. This implementa-
tion requires us to parallelize the GMRES algorithm between
CPUs of the cluster. Hence, all parallel and intensive compu-
tations on local data are performed on GPUs and reduction
operations to compute global results are carried out by CPUs.
The performances of our parallel GMRES solver are evalu-
ated on test matrices of sizes exceeding 107 rows. They show
that solving large and sparse linear systems on a GPU cluster
is faster than that performed on its CPU counterpart. It is no-
ticed that a cluster of 12 GPUs is about 8 times faster than a
cluster of 12 CPUs and about 5 times faster than a cluster of
24 CPUs.

1. INTRODUCTION
In numerous scientific and industrial applications, solving

large sparse linear systems is often the most costly step, in
both CPU time and memory space, in the computing process.
In fact, solving such linear systems tends to be slowed down
due to the large number of their unknowns and the irregular-
ity of memory accesses to the few number of non-zero values
of their matrices. Thus, any reduction in solving time of these
systems will result in a significant saving in the total numeri-
cal computation time.

For the past few years, modern graphics processing units
(GPUs) have become attractive tools to provide the high com-
puting power and the large memory bandwidth required for
sparse linear system solutions [6], [12]. Although initially
they were designed to carry out intensive computations of
graphic applications, GPUs have rapidly evolved to become
high performance accelerators for data-parallel tasks andin-
tensive arithmetic computations. To exploit the computational
power of this architecture, Nvidia has released the CUDA
platform (Compute Unified Device Architecture) [14] which
provides a high level GPGPU-based programming language
(General-Purpose computing on GPUs) allowing us to pro-
gram GPUs not only for graphic application purposes but
also for general purpose computations of non-graphic appli-
cations.

Nowadays, the relevant parallel architectures exploitingthe

high performances of GPUs are clusters equipped with GPUs.
They have become very attractive for high performance com-
puting, given their low cost compared to their computation
power and their abilities to compute faster and to consume
less energy than their pure CPU counterparts [2]. GPU clus-
ters have already been used to accelerate numerical computa-
tions of sparse linear solvers, as [3], [7] where authors have
parallelized the Conjugate Gradient solver (CG solver) on
several GPU platforms and under different parameters affect-
ing its performance. For example, Cevahir and al. [7] have
presented the parallel implementation of a CG solver us-
ing hypergraph partitioning on CPU and GPU clusters. They
show that double precision CG solution with 32 GPUs on
16 nodes TSUBAME is 17.4 times faster than the CPU im-
plementation of the same amount of nodes and CPU cores.
However, we have noticed in the literature that most parallel
implementations of sparse linear solvers were performed on
small sparse linear systems not exceeding 6·106 unknowns.
Therefore our purpose in this paper is to solve more effec-
tively large sparse linear systems whose sizes exceed 107 un-
knowns and to study the effect of these matrix sizes on the
performances of our proposed sparse linear solver.

The target sparse linear solver that we explore on a GPU
cluster is a GMRES solver (Generalized Minimal RESidual),
since it is a generic and efficient method to solve linear sys-
tems. It gives better performances in most cases regardlessof
properties of associated matrices to linear systems (sparsity,
symmetry, number of unknowns, type of values, ...). More-
over, it is an iterative method which is well-suited for linear
systems of a very large order. In fact, an iterative method com-
putes a sequence of approximate solutions converging to the
exact solution. In contrast, a direct method determines theex-
act solution after a finite number of operations which leads to
an expensive consumptions in computation time and memory
space, and which therefore is not suited for large linear sys-
tems. GMRES parallelization has already been attempted on
various parallel platforms using different approaches. Indeed,
parallel GMRES algorithms are implemented on distributed
memory architectures for large linear systems. For instance,
Dias and al. [10] presented a parallel implementation of the
restarted GMRES under the PVM message passing system on
a MEiKO SPARC-based Computing Surface, and Couturier
and al. [9] presented a parallel GMRES implementation on
Grid’5000 using Java language and the MPJ library for com-



munication. Furthermore in recent years, several works like
[8], [16] have proposed efficient GMRES solvers for GPUs.
However, we can see that most parallel GMRES implementa-
tions proposed in the literature are either performed on pure
CPU platforms or on architectures equipped with a single
GPU. Hence in this paper, we propose a parallel GMRES
solver for a mixed platform incorporating several GPUs and
CPUs.

This paper is organized as follows. In section 2 is given
a general description of the GMRES algorithm followed by
that of GPU architectures in section 3. In section 4 are pre-
sented key points of our parallel implementation of GMRES
solver on GPU cluster. In section 5, we show various relative
gains of GMRES implementation on a GPU cluster compared
to that implemented on a CPU cluster with different sizes of
sparse matrices. Section 6 concludes this paper.

2. PRINCIPLE OF THE GMRES METHOD
GMRES is the generalization of the MINRES method

(MInimal RESidual) to be applied to non-symmetric and non-
Hermitian linear systems, in particular, and to all types of
systems in general. It is an iterative method developed by
Saad and Schultz [15] and it gives good results in most cases.
Therefore, it is considered as a well-suited solution for solv-
ing linear systems with large and sparse matrices. Let the fol-
lowing system of equations:

Ax= b (1)

wherex,b∈R n, A∈R n×n is a nonsingular and sparse square
matrix andn is the size of the system. The main idea of this
method is to compute the solutionx of the linear system(1) in
the Krylov subspaceK (m;A; r0) generated byx0+Km, such
that r0 = b−Ax0 is the residual associated with the initial
guessx0 of the system(1).

GMRES uses the Arnoldi process [4] to construct an or-
thonormal basisVm for K (m;A; r0). This process allows it to
produce a sequence of approximate solutionsxm converging
to the exact solutionx

′
in at mostn iterations. Indeed, it mini-

mizes the residual norm of the approximate solution over the
Krylov subspace at each iteration until reaching the desired
residual toleranceε. In the case of GMRES with restarts, the
Arnoldi process is restricted atm≪ n iterations and restarted
with the last iteratexm as an initial guess to compute the new
solution, in order to accelerate the method convergence and
to avoid the storage of a large orthonormal basisVm. Some-
times, GMRES does not converge or takes too many iterations
to satisfy the convergence criterion. Therefore, in most cases,
GMRES must contain a preconditioning step to improve its
convergence. The preconditioning technique replaces the sys-
tem(1) with the modified systems:

M−1Ax= M−1b (2)

or
AM−1x̂= b, x= M−1x̂ (3)

whereM is the preconditioning matrix. The main key points
of the left-preconditioned GMRES method with restarts are
represented in Algorithm 1.

Algorithm 1 Left-preconditioned GMRES with restarts
1: Setε the tolerance for the residual normr, convergence=

f alseand choosex0

2: while convergencedo
3: r0 = M−1 (b−Ax0)
4: β = ‖r0‖2
5: v1 = r0/β
6: for j = 1 tom do
7: w j = M−1Avj

8: for i = 1 to j do
9: hi, j = (w j ,vi)

10: w j = w j −hi, jvi

11: end for
12: h j+1, j =

∥

∥w j
∥

∥

2
13: v j+1 = w j/h j+1, j

14: end for
15: SetVm = [v1, · · · ,vm] andHm = (hi, j) an upper Hes-

senberg matrix of order(m+1)×m
16: Solve a least-square problem of sizem:

miny∈R m
∥

∥βe1−Hmy
∥

∥

2
17: xm = x0+Vmym

18: if
∥

∥M−1 (b−Axm)
∥

∥

2 < ε then
19: convergence= true
20: end if
21: x0 = xm

22: end while

3. OUR CUDA GPU CLUSTER
Our experimental platform is an Infiniband cluster with six

CPUs Intel Xeon E5530 Nehalem. Each CPU is a Quad-Core
processor running at 2.4GHz. It provides a RAM memory of
12GB and a memory bandwidth of 25.6GB/s, and it has two
Nvidia Tesla C1060 GPUs.

Hardware architecture of Tesla GPU is based on Nvidia
CUDA model which is also the name of the software for
programming this architecture. Tesla C1060 GPU contains
in total 240 cores organized in 30streaming multiprocessors
(MPs), each with 8streaming processors(SPs) running at
1.3GHz. It provides 4GB ofdevice memorywith a memory
bandwidth of 102GB/s, accessible by all its cores and also by
the CPU through the PCI-Express 16x Gen 2.0 interface. Be-
sides this global memory, each MP of this GPU has its own
fastshared memoryof 16KB shared among all its SPs.

In CUDA programming environment, the GPU is viewed
as a co-processor to the CPU. All data-parallel and compute-



intensive portions of an application running on the CPU are
off-loaded onto the GPU. In fact, a CUDA program is a C
program running on the CPU with a minimal set of exten-
sions to the C programming language to define the C func-
tions to be performed on the GPU, calledkernels. Then on
the GPU, the same kernel is executed by a high number of
parallel threads in SIMD fashion (Single Instruction Multi-
ple Data). Threads are grouped together as a grid of thread
blocks, such that each MP executes one or more thread blocks
and each of its SP runs one or more threads within a block.
At any given clock cycle, threads execute the same instruc-
tion of a kernel, but each of them operates on different data.
Moreover, threads within the same block can coordinate their
execution through a synchronization point. In contrast, within
a grid of blocks, there is no synchronization at all between
thread blocks. Kernels work only with data in the GPU de-
vice memory and their final results must be communicated
to the CPU. Hence, the data must be transferredin andout
of the GPU. However, transferring datafrom or to the GPU
memory takes a significant amount of the global computation
time. The speed of copy memory between the CPU and the
GPU gives about 5GB/s which is much slower than the mem-
ory copy speed of the GPU memory, 102GB/s. Accordingly,
it is necessary to limit the transfer of data between the GPU
and CPU.

4. GMRES PARALLELIZATION ON A GPU
CLUSTER

In this paper, we choose to parallelize the GMRES al-
gorithm of [8] between CPUs of the cluster. It is an algo-
rithm adapted to GPUs with restarts and a very basic left-
preconditioning. Nevertheless, its parallelization requires to
study three important points which are data partitioning, data
dependencies and communications between the various com-
ponents of the cluster.

Before starting computations, our parallel GMRES solver
splits input data of the linear system between MPI processes
on the cluster. From Algorithm 1, the input data are the sparse
matrix A, the right-hand sideb, the initial guessx0 and the
preconditioning matrixM. Let p denote the number of MPI
processes on the cluster andn the size of the linear system to
be solved. The algorithm performs a simple data partitioning
by creatingp portions, of at most⌈n/p⌉ rows per MPI pro-
cess, for each element mentioned above. Consequently, each
MPI processk will have its own sparse matrixAk(n/p×n),
preconditioning matrixM−1

k (n/p×n/p) and right-hand side
bk of size n/p. To avoid the storage of the entire solution
vector x by all MPI processes, this vector is also split into
p sub-vectorsxk. As shown in Figure 1, the solution vectorxk

managed by the MPI processk is composed of two parts: the
local computed sub-vectorxk of sizen/p and the shared sub-
vectorsxLe f t andxRight computed by neighbor processes. Let
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Figure 1. Data partitioning of the sparse matrixA, the solu-
tion vectorx and the right-hand sideb into p portions required
locally by a CPU

bw> 0 be the bandwidth ofA, then the size of shared data is
∣

∣xLe f t
∣

∣+
∣

∣xRight
∣

∣≤ bw. The intermediate computed vectors in
Algorithm 1: r0, vi (i = 1, · · · ,m+1), w j ( j = 1, · · · ,m) and
xm are also split among all processes, such that vectorsv are
split as the solution vectorx in vk, vLe f t andvRight. After the
data splitting, our algorithm must compute the data depen-
dency pattern between MPI processes on the cluster. This op-
eration consists in computing for each process all its depen-
dencies with its neighbors, which can fulfill its sub-vectors
xLe f t, xRight, vLe f t and vRight. For that, a MPI process com-
putes what data it shares with each of its neighbors and then
exchanges this information with them.

Since a GPU works only on data of its memory, all lo-
cal input data,Ak, xk

0, bk andM−1
k , must be transferred from

CPU memories to the corresponding GPU memories. Sparse
sub-matricesAk are stored on GPU memories in HYB for-
mat (Hybrid) which stores only non-zero values in these ma-
trices. This storage format is the combination of two sparse
storage formats: Ellpack format (ELL) and Coordinate for-
mat (COO). It stores a typical number of non-zero values per
row in ELL format and remaining entries of exceptional rows
in COO format. It combines theefficiencyof ELL due to the
regularity of its memory accessing and theflexibility of COO
which is insensitive to the matrix structure. Therefore, the
HYB format gives on average the best performance in sparse
matrix operations on GPUs [5].

Afterward, the same GMRES algorithm (Algorithm 1) is
run by all processes but on different sub-systemsAkxk = bk,
k = 1, . . . , p. Each MPI process acts as a controller of the
main loop of GMRES iterations and, all data-parallel oper-
ations inside this loop will be performed by its GPU. In Al-
gorithm 1, we can see that typical data-parallel operationsof



GMRES are those of sparse matrix-vector products (SpMV)
(lines 3 and 7), scalar-vector products (lines 5 and 13), dot
products (line 9), euclidean norms (lines 4, 12 and 18) and
AXPY operations (line 10). They are implemented as kernels
using CUDA programming language. We used the efficient
HYB kernel of Nvidia for the SpMV [5] and fastest kernels of
basic linear algebra subprograms of CUDA (cublas) [13] for
vector operations (cublasDdot, cublasDnrm2, cublasDaxpy).
For the rest of the parallel operations, we wrote their function
codes in CUDA as kernels. We developed a kernel for the
scalar-vector products (lines 5 and 13), a kernel to solve the
least-square problem (line 16) and a kernel for the solution
vector update (line 17).

Therefore, we have written the overall of our parallel GM-
RES code in C, using the extensions of CUDA for the GPU
programming. In this code, all kernels to be performed on
the GPU are defined as seperate functions, from those of
the CPU, by assigning it a function type qualifierdevice .
Then, each kernel inside the main loop of GMRES will be
called by the MPI process and executed by the GPU of this
last. Once on the GPU, each kernel will be executed in par-
allel by multiple thread blocks, whose number is provided
by the host (MPI process) when calling the kernel. In our
GMRES implementation, we set the thread block size to the
maximum block size supported by the GPU architecture, 512
threads. Then, each MPI process computes the number of
thread blocks,Blocks, to be involved in a kernel execution
on its GPU as follows:

Blocks=
(NumRows+Threads−1)

Threads
(4)

where NumRows is the number of local matrix rows and
Threadsis the thread block size. In this way, we will have
one thread per matrix row and/or vector element.

Besides these local computations, communications and
synchronizations between GPUs must be performed to assure
the solving of the complete sparse linear systemAx= b. In
every GMRES iteration of our parallel algorithm, there are
two types of synchronizations: before SpMV and after vector
operations. Before computing lines 3 and 7, it is mandatory to
construct complete vectorsx0 andv j , respectively, required to
perform the full SpMV at each GPU. For that, each MPI pro-
cess holds a global arraytmpof size

(∣

∣xLe f t
∣

∣+ |xk|+
∣

∣xRight
∣

∣

)

,
where its GPUwrites to or reads fromfor communicating
vector entries. Then, each GPU copies itsxk (resp.v jk) sub-
vector entries, required by other GPUs, to corresponding in-
dices oftmp vector of its host. Once these copies are held,
the MPI process performs required exchanges oftmpvector
entries with its neighbors usingMPI Alltoallv() communica-
tion function. After that, each GPU reads itsxLe f t andxRight

(resp.v jLe f t andv jRight) entries from corresponding indices of
tmpvector of its MPI process host. After each of the follow-
ing lines 4, 9, 12 and 18, MPI processes perform a reduction

operation on local scalars computed by GPUs at this line us-
ing MPI Allreduce()function, in order to compute the global
scalar of the complete linear system.

Scalar-vector products (lines 5 and 13) and the AXPY op-
eration (line 10) are performed locally by each GPU without
any synchronization. They involve only local data of vectors
and the global scalar computed before with a reduction oper-
ation. Line 16 solves a least-square problem of sizem, where
m is typically small. It is an inexpensive operation which can
be computed sequentially on local data by one thread in each
GPU. Line 17 computes, at each GMRES iteration, the ap-
proximate solutionxm for the linear system. It performs sim-
ple updates to the local part of the solution vector computed
at the previous iteration. It is executed as a kernel in parallel
by all GPUs because each of them is in charge of its own parts
of xm, Vm and the previous solution vectorx0.

We can see that there are two types of communications
in a GPU cluster. First, we have those occurring between
MPI processes on CPUs and GPUs. Indeed, MPI process re-
quests its GPU to give it the local computed scalars and, a
GPU requests its host to give it the globaltmp vector re-
quired for a SpMV operation. These communications are im-
plemented using copy functions of cublas:cublasGetVector()
for GPU→CPU communications andcublasSetVector()for
GPU←CPU communications. The second type of commu-
nications occurs between MPI processes using MPI functions
to perform reduction operations or to exchange shared data of
the global arraytmp.

The whole code of our parallel GMRES implementation
for a CPU cluster is written in C programming language, us-
ing MPI functions to perform communications between CPU
cores. We have developed our own CPU kernels for the paral-
lel operations of the GMRES method: SpMV product, vector
operations, solving the least-square and solution vector up-
date. With these developed kernels, we did not require to use
any CPU libreries sine the authors of [9] showed that there
is not a large difference between the use of our functions or
those of PETSc library.

5. EXPERIMENTAL RESULTS
5.1. Test sparse matrices

Our aim is to test our parallel GMRES algorithm on large
sparse linear systems whose sizes exceed 107 unknowns.
Moreover, target sparse matrices are those withband struc-
ture, since they arise in many numerical computations. We
chose to perform our tests on the real-world sparse matrices
of the university of Florida collection (UF collection) [11].
However, matrices in this collection are very small compared
to our desired matrix sizes. Therefore, we developed in C a
generator of sparse matrices which takes one real matrix of
the UF collection as an initial matrix to build large matrices.

This generator is executed in parallel by all MPI processes
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Figure 2. A generated large and sparse matrix from a real
matrix of UF collection

on the cluster before any execution of our GMRES algorithm.
It allows each MPI processk to build its sub-matrixAk by
performing several copies of the same real matrixB of the UF
collection and, such that all these copies in the cluster build
the large matrix of the sparse linear system. Let us denote by
N the desired size of the sparse linear system to be solved
and, thus, the size of the associated sparse matrix. At first,all
MPI processes load the same matrixB from its storage file.
Each of them computes the number of copiesNbk to perform
onB, such that:

Nbk =
⌈N/sizeB⌉

p
(5)

wheresizeB is the size of the matrixB and p the number of
MPI processes on the cluster. After that, each processk per-
forms Nbk copies of the matrixB on which it constructs its
sub-matrixAk. In order to build matrices with band structure,
each process places its copies on its part of the main diagonal
of the global generated matrix, as shown in Figure 2. Besides
these full copies, other sub-copiesLeft Part andRight Part
of the matrixB are performed to fulfill the empty spaces be-
tween two consecutive copies on the main diagonal of the
generated matrix. These sub-copiesLeft Part andRight Part
are performed from the widest row of the matrixB, which
defines the bandwidth of this matrix.

Table 1 shows 12 square matrices that are positive defi-
nite with real values entries, chosen from the UF collectionto
build our large test matrices. The columns of Table 1 give the
main characteristics of each matrix: the number of rows, the
number of non-zero values and the bandwidth of the gener-
ated matrices from these matrices. We can also see in Figure 3
the structures of these matrices.

5.2. Test platform
In our experiments, we have evaluated the speed of the par-

allel GMRES solver implemented on a GPU cluster against

Table 1. Description of the chosen matrices from UF collec-
tion

Matrix Nb. rows Nb. nonzeros Bandwidth
af 0 k101 503,625 9,027,150 1,716
bcsstk18 11,948 80,519 1,650

BenElechi1 245,874 6,698,185 1,171
cage14 1,505,785 27,130,349 1,492,443

ecology2 999,999 2,997,995 2,002
FEM 3D thermal2 147,900 3,489,300 206,126

G3 circuit 1,585,478 4,623,152 1,584,984
Ga41As41H72 268,096 9,378,286 64,512
shallowwater2 81,920 204,800 61,441

hood 220,542 5,494,489 220,543
raefsky4 19,779 674,195 17,820
thermal2 1,228,045 4,904,179 1,228,046

that implemented on a CPU cluster. As mentioned in sec-
tion 3, the experiments are performed on an Infiniband clus-
ter of six Xeon E5530 nodes. However in our GPU cluster of
tests, we exploit only two CPU cores of each node, such that
each CPU core manages one Tesla C1060 GPU since this last
is passive device. Therefore, we have compared the perfor-
mances of the GMRES solver implemented on a cluster of
12 GPUs with those obtained on clusters of 12 CPU cores
and those obtained on cluster of 24 CPU cores. Linux cluster
version 2.6.18 OS is installed on nodes. C programming lan-
guage is used for coding the GMRES algorithm on both GPU
cluster and CPU cluster. CUDA version 3.1.1 [14] is used for
programming GPUs, using CUBLAS 3.1 to deal with vector
operations and CUSP library [1] to perform a HYB SpMV
product in GPUs, and finally MPI functions are used to carry
out communications between CPU cores.

We tested our solver on sparse matrices generated from the
sparse matrices of Table 1. The sizes of generated matrices
vary from 2·107 to 6·107 rows and manageable numbers of
non-zeros values vary from 59,925,452 to 1,634,561,260. The
number of non-zeros values of these generated matrices is re-
ported in the second column of Tables 2, 3, and 4. Our tests
are made in double precision data. All results obtained from
the performance evaluation of our GMRES solver are for a
residual tolerance thresholdε = 10−10, a restart limitm= 16
and, a right-hand sideb filled with 1 and an initial guessx0

filled with 12. For the sake of simplicity, we chose a precon-
ditioning matrixM easy to compute and to inverse, without
seeking for the best efficiency for some particular cases. For
that, we tookM as theA diagonal which provides a relatively
good preconditioning in most cases.

5.3. Results
Comparison results between GPU cluster and CPU clus-

ters are given in Tables 2, 3, and 4 for sparse linear systems
of sizes 2·107, 4·107, and 6·107 unknowns, respectively. We
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Figure 3. Structures of the matrices chosen from UF collection

Table 2. Comparison between GPU cluster and CPU clusters for size 2·107 unknowns
Matrix #Nonzeros TGPU T12CPUs Ratio12CPUs T24CPUs Ratio24CPUs #Iter Prec Error

af 0 k101 361·106 1.99s 15.45s 7.74 10.52s 5.29 62 1.52e-14 6.60e-17
bcsstk18 137·106 0.61s 4.98s 7.88 3.29s 5.39 30 4.90e-10 3.09e-12

BenElechi1 543·106 2.15s 17.36s 7.90 12.68s 5.90 70 1.50e-11 6.94e-17
cage14 395·106 1.75s 11.80s 6.80 10.75s 6.14 33 1.34e-08 2.67e-10

ecology2 60·106 0.71s 6.19s 8.59 4.29s 6.04 36 5.42e-10 6.76e-13
FEM 3D thermal2 516·106 2.15s 15.15s 7.09 10.38s 4.83 61 3.56e-07 2.41e-09

G3 circuit 71·106 1.69s 11.17s 6.59 10.12s 5.99 45 6.77e-10 9.30e-14
Ga41As41H72 706·106 7.20s 46.51s 6.48 32.27s 4.48 149 7.32e-11 7.66e-15
shallowwater2 60·106 0.63s 5.49s 9.06 3.78s 5.99 33 1.81e-13 1.12e-15

hood 520·106 2.30s 14.76s 6.30 10.51s 4.57 56 8.11e-10 2.66e-16
raefsky4 693·106 3.37s 23.56s 6.93 16.22s 4.81 87 1.32e-12 1.47e-17
thermal2 97·106 1.36s 6.74s 4.94 4.46s 3.28 27 7.64e-10 1.40e-12

Table 3. Comparison between GPU cluster and CPU clusters for size 4·107 unknowns
Matrix #Nonzeros TGPU T12CPUs Ratio12CPUs T24CPUs Ratio24CPUs #Iter Prec Error

af 0 k101 713·106 3.52s 27.15s 7.78 18.40s 5.23 62 1.40e-14 4.50e-15
bcsstk18 273·106 1.24s 9.90s 8.14 6.53s 5.26 30 4.90e-10 1.76e-11

BenElechi1 109 4.31s 34.74s 8.14 24.58s 5.70 70 1.50e-11 4.16e-17
cage14 823·106 3.08s 19.75s 6.49 17.99s 5.84 32 4.95e-08 2.12e-09

ecology2 120·106 1.35s 12.43s 9.14 8.54s 6.32 36 5.34e-10 6.54e-13
FEM 3D thermal2 109 4.03s 28.99s 7.30 20.48s 5.08 61 3.56e-07 1.81e-09

G3 circuit 138·106 2.40s 17.23s 7.34 15.62s 6.51 45 6.75e-10 6.97e-13
Ga41As41H72 1.5·109 13.19s 86.02s 6.56 63.76s 4.83 149 5.68e-11 1.37e-14
shallowwater2 120·106 1.11s 10.71s 9.60 7.21s 6.50 33 1.81e-13 7.78e-16

hood 109 4.16s 27.83s 6.72 19.49s 4.68 56 8.11e-10 1.78e-16
raefsky4 1.3·109 6.72s 47.11s 6.91 31.88s 4.74 87 1.29e-12 1.65e-17
thermal2 201·106 1.67s 9.46s 5.58 6.26s 3.75 27 1.90e-09 2.64e-10

report the performances of our parallel GMRES solver for
different sparse matrices generated from matrices mentioned
in the first column of each table. The results presented are ob-
tained from the mean value over 10 executions of the same
algorithm and for the same input data. The dashes (-) in some
cells of Table 4 indicate that there were GPU memory over-
flows for such data sizes and, thus, we could not solve the
linear system for these sparse matrices on the GPU cluster.

In the third, fourth and sixth columns, we report execu-
tion times in seconds of our solver on: a cluster of 12 GPUs,
a cluster of 12 CPU cores and a cluster of 24 CPU cores,
respectively. The number of iterations required to reach the
residual tolerance thresholdε = 10−10 is reported in the
eighth column of these tables. For the same sparse linear sys-
tem, it is identical for both implementations (GPU and CPU
clustes) of our parallel solver. The execution time includes



Table 4. Comparison between GPU cluster and CPU clusters for size 6·107 unknowns
Matrix #Nonzeros TGPU T12CPUs Ratio12CPUs T24CPUs Ratio24CPUs #Iter Prec Error

af 0 k101 109 4.84s 38.69s 7.87 26.13s 5.40 62 1.33e-14 2.54e-15
bcsstk18 410·106 1.78s 14.89s 8.23 9.78s 5.49 30 4.90e-10 4.30e-13

BenElechi1 1.6·109 6.48s 52.14s 8.14 37.08s 5.72 70 1.50e-11 6.94e-17
cage14 1.2·109 3.77s 26.26s 6.82 18.14s 4.81 32 5.70e-08 4.35e-10

ecology2 180·106 1.74s 15.48s 8.86 10.66s 6.13 36 5.32e-10 1.67e-13
FEM 3D thermal2 1.5·109 5.75s 42.92s 7.55 30.06s 5.23 61 3.56e-07 2.04e-09

G3 circuit 211·106 3.36s 25.97s 7.72 17.88s 5.32 45 6.74e-10 1.46e-13
Ga41As41H72 2.1·109 - - - - - - - -
shallowwater2 180·106 1.65s 15.93s 9.75 10.53s 6.38 33 1.81e-13 2.53e-15

hood 1.5·109 - - - - - - - -
raefsky4 2.1·109 - - - - - - - -
thermal2 299·106 2.13s 14.46s 6.81 11.27s 5.29 27 6.77e-10 1.60e-10

only the solving time of the linear system without the ma-
trix generation time, the data partitioning time and the con-
struction time of the data shared scheme. Besides the com-
putation timeTcomput of arithmetic operations, the execution
timesTGPU on GPU cluster andTCPU on CPU cluster include
the time of CPU↔CPU communicationsTCPU↔CPU and the
time of GPU↔CPU communicationsTGPU↔CPU on the GPU
cluster, as shown in the two following formula (6) and (7):

TGPU = Tcomput+TGPU↔CPU +TCPU↔CPU (6)

TCPU = Tcomput+TCPU↔CPU (7)

In order to validate our results, we have computed two pa-
rameters allowing us to verify the solution accuracy of the
solved linear system; which are the solution precision com-
puted on the GPU clusterprec and the error computation
between solutions of the two implementationserror. They
are reported in the ninth and tenth columns of the tables of
results. The solution precisionprec is the maximum value
among the components of the residue vector as shown in the
equation (8), whereXGPU is the solution vector computed by
the GPU cluster. The parametererror allows us to ensure that
both versions of the parallel solver implemented on the GPU
cluster and the CPU cluster give more or less the same so-
lution. It is the difference between the two solution vectors,
XCPU andXGPU, of the CPU cluster and the GPU cluster, see
the equation (9).

prec = max
(

M−1 ·
(

b−A·XGPU)) (8)

error = max
∣

∣XCPU−XGPU
∣

∣ (9)

The relative gainsTCPU
TGPU

in the execution times of the GPU
cluster for different matrix sizes are shown in the fifth and
seventh columns compared to the cluster of 12 CPU cores
and the cluster of 24 CPU cores, respectively. In all con-
ducted experiments, we can see that the GPU cluster version
is faster than that of the CPU clusters. With the GPU clus-
ter, we gained in the execution time 5 to 10 times more than

with 12 CPU cores and 4 to 6.5 times more than with 24 CPU
cores. Moreover, we can notice that relative gains of some
types of matrices increase with the increasing of matrix sizes
and the decreasing of the matrix bandwidths (please see the
matrix thermal2). The GPUs work best on very large sizes
of matrices due to their data-parallel nature and their use of
the SIMD paradigm in a program execution, where each ma-
trix row is attributed to a single thread. In contrast, the matrix
bandwidth represents the size of the shared sub-vectorsxLe f t

andxRight to exchange with neighbors and, thus the number of
sub-vector entries that a GPU mustwrite to or read fromthe
tmpvector of its host (see section 4). Therefore a large matrix
bandwidth leads to the transfer of many sub-vector entries be-
tween a GPU and its host, whereas this type of data transfers
is the slowest communication in a GPU cluster and, hence, it
takes a significant amount of the global solving time.

From the tables of results, we can see that the precisions
prec of our results are sufficient, varying from3.56e-7 to
1.33e-14and in general they are around1e-10. We can also
see that the difference between the CPU cluster solutionXCPU

and the GPU cluster solutionXGPU computed for the same
sparse linear system is always quite low for the same preci-
sion of solving. This difference varies from2.41e-9to 1.47e-
17 which allows us to conclude that, for a sparse linear sys-
tem, our parallel GMRES solver on a GPU cluster almost
computes the same solution as that computed on a CPU clus-
ter.

6. CONCLUSION AND PERSPECTIVES
In this paper, we have presented a parallel GMRES algo-

rithm for solving large and sparse linear systems on a GPU
cluster. We have aimed to exploit the high power comput-
ing and the tremendous memory bandwidth of several GPUs,
required for solving such linear systems. We have paral-
lelized a GMRES algorithm with restarts and a basic left-
preconditioning adapted to GPUs between CPU cores of the
cluster.



The efficiency and performance of our parallel GMRES
solver for sparse linear systems is demonstrated by numer-
ical experimental results carried out on a GPU cluster. We
have compared the performances of this solver on a cluster
of 12 Tesla C1060 GPUs against those obtained on a cluster
of 12 E5530 CPU cores and those obtained on a cluster of 24
E5530 CPU cores. The experiments have been performed on
large sparse matrices with band structure and varying from
2 ·107 to 6·107 rows. The experimental results clearly show
that the solving of large and sparse linear systems on the GPU
cluster is faster than on the CPU cluster. The relative gainsof
the GPU cluster range from 5 up-to 10 compared to the clus-
ter of 12 CPU cores and 4 up-to 6.5 compared to the cluster of
24 CPU cores, for the same precision. We have also noticed
that the GPU cluster is more efficient for large sparse ma-
trix sizes, due to the high data-parallel nature of the GPUs,
provided that these large matrices do not exceed the limited
memory capabilities of the GPUs.

In future work, we will evaluate our parallel GMRES
solver on other structures of sparse matrices to see its perfor-
mance behavior on a GPU cluster according to these different
structures. We will also study the different methods of data
partitioning according to the sparse matrix structures. This
will allow us to minimize data sharing and dependencies be-
tween CPUs of the cluster and, thus, to deal with the slow
data transfers between GPUs and CPUs. In addition, we will
work on the parallel implementation of GMRES solver on a
grid computing equipped with GPU cards for solving large
and sparse linear systems whose sizes are in order of a billion
unknowns. However this type of parallel platform requires us
to take into account another parameter which is the asynchro-
nism of its different distant clusters.
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