Gridification of a Radiotherapy Dose
Computation Application with the
XtremWeb-CH Environment

Nabil Abdennadher!, Mohamed Ben Belgacem', Raphaél Couturier?, David
Laiymani?, Sébastien Miquée?, Marko Niinimaki', and Marc Sauget?

! University of Applied Sciences Western Switzerland, hepia Geneva, Switzerland
nabil.abdennadher@hesge.ch,mohamed.benbelgacem@unige.ch,markopekka.niinimaeki@hesge.ch
2 Laboratoire d’Informatique de I'université de Franche-Comté
IUT Belfort-Montbéliard, Rue Engel Gros, 90016 Belfort - France
{raphael.couturier,david.laiymani,sebastien.miquee}Quniv-fcomte.fr
3 FEMTO-ST, ENISYS/TRMA, F-25210 Montbéliard , FRANCE

marc.sauget@univ-fcomte.fr

Abstract. This paper presents the design and the evaluation of the
gridification of a radiotherapy dose computation application. Due to the
inherent characteristics of the application and its execution, we choose
the architectural context of volunteer computing. For this, we used the
XtremWeb-CH environment. Experiments were conducted on a real vol-
unteer computing testbed and show good speed-ups and very acceptable
platform overhead, letting XtremWeb-CH be a good candidate for de-
ploying parallel applications over a volunteer computing environment.

1 Introduction

The use of distributed architectures for solving large scientific problems seems to
become mandatory in a lot of cases. For example, in the domain of radiotherapy
dose computation the problem is crucial. The main goal of external beam radio-
therapy is the treatment of tumors while minimizing exposure to healthy tissue.
Dosimetric planning has to be carried out in order to optimize the dose distribu-
tion within the patient. Thus, to determine the most accurate dose distribution
during treatment planning, a compromise must be found between the precision
and the speed of calculation. Current techniques, using analytic methods, models
and databases, are rapid but lack precision. Enhanced precision can be achieved
by using calculation codes based, for example, on the Monte Carlo methods. The
main drawback of these methods is their computation times which can rapidly
become huge. In [18] the authors proposed a new approach, called Neurad, using
neural networks. This approach is based on the collaboration of computation
codes and multi-layer neural networks used as universal approximators. It pro-
vides a fast and accurate evaluation of radiation doses in any given environment
for given irradiation parameters. As the learning step is often very time consum-
ing, in [5] the authors proposed a parallel algorithm that enables to decompose



the learning domain into subdomains. The decomposition has the advantage of
significantly reducing the complexity of the target functions to approximate.

Now, as there exist several classes of distributed/parallel architectures (su-
percomputers, clusters, global computing. ..) we have to choose the best suited
one for the parallel Neurad application. The volunteer (or global) computing
model seems to be an interesting approach. Here, the computing power is ob-
tained by aggregating unused (or volunteer) public resources connected to the
Internet. In our case, we can imagine, for example, that a part of the architec-
ture will be composed of some of the different computers of the hospital. This
approach presents the advantage of being clearly cheaper than a more dedicated
approach like the use of supercomputers or clusters. Furthermore and as we will
see in the remainder, the studied parallel algorithm corresponds very well to this
computation model.

The aim of this paper is to propose and evaluate a gridification of the Neurad
application (more precisely, of the most time consuming part, the learning step)
using a volunteer computing approach. For this, we focus on the XtremWeb-CH
environment[2]. We chose this environment because it tackles the centralized as-
pect of other global computing environments such as XtremWeb[11] or Seti[1]. It
tends to a peer-to-peer approach by distributing some components of the archi-
tecture. For instance, the computing nodes are allowed to directly communicate.
Experiments were conducted on a real global computing testbed. The results
are very encouraging. They exhibit an interesting speed-up and show that the
overhead induced by the use of XtremWeb-CH is very acceptable.

The paper is organized as follows. In Section 2 we present the Neurad applica-
tion and particularly its most time consuming part, i.e. the learning step. Section
3 details the XtremWeb-CH environment and Section 4 exposes the gridification
of the Neurad application. Experimental results are presented in Section 5 and
we end in Section 6 by some concluding remarks and perspectives.

2 The Neurad application

The Neurad [4] project presented in this paper takes place in a multi-disciplinary
project, involving medical physicists and computer scientists whose goal is to en-
hance the treatment planning of cancerous tumors by external radiotherapy. In
our previous works [14, 16, 18], we have proposed an original approach to solving
scientific problems whose accurate modeling and/or analytical description are
difficult. That method is based on the collaboration of computational codes and
neural networks used as universal interpolator. Thanks to that method, the Neu-
rad software provides a fast and accurate evaluation of radiation doses in any
given environment (possibly inhomogeneous) for given irradiation parameters.
We have shown in a previous work ([5]) the interest of using a distributed algo-
rithm for the neural network learning. We use a classical RPROP * algorithm
with a HPU ® topology to do the training of our neural network.

4 Resilient backpropagation
% High order processing units



Original data in homogeneous
environments (mesure, Monte Carlo
simulation, ...) _ -
“’ Heterogeneous
N environments )

L

M
Data post-treatments

(filtering)

e 7/" ________ Dose dep05|t

/ evaluation
! Domain b
h decomposition 1 Evaluation Step
1 Local ! T
! training| |/ ]
! 1 / / v ~
| o Treatments )
I v results
‘ ,'

\* Global
neural networks

Fig. 1. The Neurad project

Figure 1 presents the Neurad scheme. Three parts are clearly independent: the
initial data production, the learning process and the dose deposit evaluation. The
first step, the data production, is outside of the Neurad project. They are many
solutions to obtain data about the radiotherapy treatments like the measure or
the simulation. The only essential criterion is that the result must be obtained
in an homogeneous environment.

The secondary stage of the Neurad project is the learning step and this is the
most time consuming step. This step is performed offline but it is important to
reduce the time used for the learning process to keep a workable tool. Indeed, if
the learning time is too huge (for the moment, this time could reach one week
for a limited domain), this process should not be launched at any time, but only
when a major modification occurs in the environment, like a change of context
for instance. However, it is interesting to update the knowledge of the neural
network, by using the learning process, when the domain evolves (evolution in
material used for the prosthesis or evolution on the beam (size, shape or energy)).
The learning time is related to the volume of data which could be very important
in a real medical context. Some work has been done to reduce this learning time
with the parallelization of the learning process by using a partitioning method
of the global dataset. The goal of this method is to train many neural networks
on sub-domains of the global dataset. After this training, the use of these neural
networks all together allows to obtain a response for the global domain of study.

However, performing the learning on sub-domains constituting a partition
of the initial domain may not be satisfying depending on the chosen quality of
the results. This comes from the fact that the accuracy of the approximation
performed by a neural network is not constant over the learned domain. Thus,



o %

|

I
exploitation area
eaIe Surured|

|

I

o %

- learning area -

overlapping areas

Fig. 2. Overlapping for a sub-network in a two-dimensional domain with ratio «

it is necessary to use an overlapping of the sub-domains. The overall principle is
depicted in Figure 2. In this way, each sub-network has an exploitation domain
smaller than its training domain and the differences observed at the borders
are no longer relevant. Nonetheless, in order to preserve the performance of the
parallel algorithm, it is important to carefully set the overlapping ratio a. It
must both be large enough to avoid the border’s errors, and as small as possible
to limit the size increase of the data subsets [5].

3 The XtremWeb-CH environment

High performance computing environments like MPI (Message Passing Interface)
[12] are widely used and have proved their efficiency. This class of systems are
very tightly coupled and powerful but not very error tolerant. Cluster comput-
ing environments like Condor [17] and volunteer computing systems like BOINC
[3] are loosely coupled and have a scheduler that distributes tasks to comput-
ing nodes. Cluster computing environments assume the fact that nodes are in
general directly accessible, one to another, but this does not apply to volunteer
computing systems.

XtremWeb-CH (XWCH) is a volunteer computing inspired large-scale com-
puting platform for distributed applications. In fact, it tends to be a good
compromise between cluster computing and volunteer computing. It is originaly
based on another platform called XtremWeb [11]. It is easy to install, maintain,
and it is supported by a Grid middleware (ARC [10]) and a workflow engine
(JOpera [9]). It consists in three components: one coordinator, a set of workers,
and at least one warehouse. Client programs use these components.



The coordinator is the main component of the XWCH platform. It controls
user access and schedules jobs to workers. It provides a web interface for man-
aging jobs and users, and a set of web services. These are user services and
worker /warehouse services implemented using WSDL (Web Service Description
Language) [8], that simplifies client development for languages that support it
(and most popular programming languages do).

A worker is a Java daemon that runs on the user machine. Assumed to be
volatile, the workers periodically report themselves to the coordinator, accept
jobs, retrieve input, compute jobs, and store the results of the computation on
warehouses. If the coordinator does not receive a signal from a worker, it will
simply remove it from the scheduling list, and if a job had been assigned to that
worker, it will be re-assigned to another one. A schema of the architecture is
shown in Figure 3.

wn
2 - o
& 8 2
+ © 9]
C w0
5 5 n (2)
E Q 2 @ Workers
o ) S [
g [<=D| z S 2 &
& ] T 3] Warehouses
o (1) 5 o g}
o £ = = (3)
5 <, =< <
o w
5}
©
. v
s Admin. 5
services =

Fig. 3. The XtremWeb-CH architecture

A warehouse is a file server that acts as a data storage system for workers and
client programs. Workers may not necessarily be able to communicate directly
with each others, due to firewalls and NAT sub-networks. For these reasons,
warehouses are used as intermediaries to exchange, store and retrieve data.

Job submission is done by a client program which is written using a flexible
API, available for Java and C/C++ programs. The client program runs on a
“client node” and calls the user services to submit jobs (Figure 3, (1)). The main
flexibility provided by the use of this architecture is to control and dynamically
generate jobs especially when their number cannot be known in advance. Com-
munications between the coordinator and the workers are always initiated by
the workers following a pull model (Figure 3, (2)):

— Workers receive jobs (Figure 3, (3)) only if they send a “work request” signal;

— When a worker finishes its job, it stores its output file on a warehouse and
sends a “work result” signal to the coordinator;

— During its execution, a worker (respectively warehouse) periodically sends
“work alive” to the worker service (respectively warehouse service) to report
itself to the coordinator.



As a whole, XWCH is easy to install, maintain and use. Its components are
programmed mainly using Java, and their process memory sizes in a typical
32-bit GNU/Linux computer are:

— Coordinator 190 MB including the Glassfish Java container;
— Worker 40 MB;
— Warehouse 80 MB.

Experiments presented in [15] show that the performance of XWCH is compa-
rable with Condor [13], another non-intrusive computing system that has similar
functionalities but is somewhat more difficult to install.

The main characteristics of the new version of XWCH, compared to previous
ones, are: dynamic job generation, flexible data sharing (data replication) and
persistent jobs. These features are presented in [7] and will not be detailed in
this paper.

4 The Neurad gridification

As previously exposed, the Neurad application can be divided into three steps.
The goal of the first step is to decompose the data representing the dose distri-
bution on an area. This area contains various parameters, like the nature of the
medium and its density. This part is out of the scope of this paper.

The second step of the application, and the most time consuming, is the
learning in itself. This is the one which has been parallelized, using the XWCH
environment. As exposed in section 2, the parallelization relies on a partitioning
of the global dataset. Following this partitioning all learning tasks are indepen-
dently executed in parallel with their own local data part, with no communica-
tion, following the fork/join model. Clearly, this computation fits well with the
model of the chosen middleware.

The execution scheme is then the following (see Figure 4):

1. We first send the learning application and its data to the middleware. In a
first time, we send the application to data warehouses (DW), and the create
an "application module" on the coordinator (Coord.) including references
retrieved from the previous sending operation. In a second time, we apply
the same process to application data.

2. When a worker (W) is ready to compute, it requests a task to execute to the
coordinator (Coord.);

3. The coordinator assigns the worker a task. This last one retrieves the appli-
cation and its assigned data, by requesting them to DW with references sent
by the coordinator, and so can start the computation;

4. At the end of the learning process, the worker sends the result to a warehouse.

The last step of the application is to retrieve these results (some weighted
neural networks) and exploit them through a dose distribution process. This last
step is out of the scope of this paper.



Neurad

Fig. 4. The proposed Neurad gridification

5 Experimental results

The aim of this section is to describe and analyze the experimental results we
have obtained with the parallel Neurad version previously described. Our goal
was to carry out this application with real input data and on a real volunteer
computing testbed.

Experimental conditions The size of the input data is about 2.4Gb. In order
to avoid noises to appear and disturb the learning process, these data can be
divided into, at most, 25 parts. This generates input data parts of about 15Mb
(in a compressed format). The output data, which are retrieved after the process,
are about 30Kb for each part. We used two distinct deployments of XWCH:

1. In the first one, called “distributed XWCH”, the XWCH coordinator and
the warehouses were located in Geneva, Switzerland while the workers were
running in the same local cluster in Belfort, France.

2. The second deployment, called “local XWCH?” is a local deployment where
coordinator, warehouses and workers were, in the same local cluster, at the
same time.

For both deployments, the local cluster is a campus cluster and during the day
these machines were used by students of the Computer Science Department of



the IUT of Belfort. Unfortunately, the data decomposition limitation does not
allow us to use more than 25 computers (XWCH workers).

In order to evaluate the overhead induced by the use of the platform we have
furthermore compared the execution of the Neurad application with and without
the XWCH platform. For the latter case, we want to insist on the fact that the
testbed consists only in workers deployed with their respective data by the use
of shell scripts. No specific middleware was used and the workers were in the
same local cluster.

Finally, five computation precisions were used: le ™1, 0.75¢ ™, 0.50e ™1, 0.25¢ !

and le=2.

Results Table 1 presents the execution times of the Neurad application on 25
machines with XWCH (local and distributed deployment) and without XWCH.
These results correspond to the measures of the same steps for both kinds of
execution, i.e. the sending of local data and the executable, the learning process,
and retrieving the results. Results represent the average time of 5 executions.

Precision | 1 machine | Without XWCH | With XWCH | With local XWCH
le™! 5190 558 759 629
0.75¢ " 6307 792 1298 801
0.50e* 7487 792 1010 844
0.25¢ " 7787 791 1000 852
le™? 11030 1035 1447 1108

Table 1. Execution time in seconds of the Neurad application, with and without using
the XWCH platform

As we can see, in the case of a local deployment the overhead induced by the
use of the XWCH platform is about 7%. It is clearly a low overhead. Now, for
the distributed deployment, the overhead is about 34%. Regarding the benefits
of the platform, it is a very acceptable overhead which can be explained by the
following points.

First, we point out that the conditions of executions are not really identical
between, with and without, XWCH contexts. For this last one, though the same
steps were achieved out, all transfer processes are inside a local cluster with a
high bandwidth and a low latency. Whereas when using XWCH, all transfer
processes (between datawarehouses, workers, and the coordinator) used a wide
network area with a smaller bandwidth. In addition, in the executions without
XWCH, all the machines started immediately the computation, whereas when



using the XWCH platform, a latency is introduced by the fact that a computation
starts on a machine, only when this one requests a task.

This underlines that, unsurprisingly, deploying a local coordinator and one
or more warehouses near a cluster of workers can enhance computations and
platform performances.

6 Conclusion and future works

In this paper, we have presented a gridification of a real medical application, the
Neurad application. This radiotherapy application tries to optimize the irradi-
ated dose distribution within a patient. Based on a multi-layer neural network,
this application presents a very time consuming step, i.e. the learning step. Due
to the computing characteristics of this step, we have chosen to parallelize it
using the XtremWeb-CH volunteer computing environment. Obtained experi-
mental results show good speed-ups and underline that overheads induced by
XWCH are very acceptable, letting it be a good candidate for deploying parallel
applications over a volunteer computing environment.

Our future works include the testing of the application on a larger scale
testbed. This implies, the choice of a data input set allowing a finer decomposi-
tion. Unfortunately, this choice of input data is not trivial and relies on a large
number of parameters.

We are also planning to test XWCH with parallel applications where com-
munication between workers occurs during the execution. In this way, the use of
the asynchronous iteration model [6] may be an interesting perspective.

References

1. Seti@home. http://setiathome.ssl.berkeley.edu.

2. N. Abdennadher and R. Boesch. Towards a peer-to-peer platform for high per-
formance computing. In Christophe Cérin and Kuan-Ching Li, editors, Advances
in Grid and Pervasive Computing, volume 4459 of Lecture Notes in Computer
Science, pages 412-423. Springer Berlin / Heidelberg, 2007.

3. David P. Anderson and Gilles Fedak. The computational and storage potential of
volunteer computing. In IEEE/ACM International Symposium on Cluster Com-
puting and the Grid. IEEE Press, May 2006.

4. J. M. Bahi, S. Contassot-Vivier, L. Makovicka, E. Martin, and
M. Sauget. Neurad. Agence pour la Protection des Programmes.
No: IDDN.FR.001.1800385.000.5.P.2006.000.10000, 2006.

5. J. M. Bahi, S. Contassot-Vivier, and M. Sauget. An incremental learning algorithm
for functional approximation. Advances in Engineering Software, 40(8):725-730,
2009. doi:10.1016/j.advengsoft.2008.12.018.

6. J. M. Bahi, R. Couturier, and D. Laiymani. Comparison of conjugate gradient and
multisplitting algorithms of nas benchmark with the jace environment. In IPDPS
2008. IEEE Computer Society Press, April 2008.

7. M. Ben Belgacem, N. Abdennadher, and M. Niinimaki. Virtual ez grid: A volunteer
computing infrastructure for scientific medical applications. In 5th international
conference, GPC 2010. Berlin: Springer, May 10-13 2010.



8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

E. Cerami. Web Services Essentials — Distributed Applications with XML-RPC,
SOAP, UDDI and WSDL. O’Reilly, 2002.

Gustavo Alonso Cesare Pautasso. Jopera: a toolkit for efficient visual composition
of web services. International Journal of Electronic Commerce (IJEC), 2005.

M. Ellert, M. Gronager, A. Konstantinov, B. Konya, J. Lindemann, I. Livenson,
J.L. Nielsen, M. Niinimaki, O. Smirnova, and A. Waananen. Advanced resource
connector middleware for lightweight computational grids. Future Generation
Computer Systems, 23(2):219 — 240, 2007.

G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb: A generic global com-
puting system. Cluster Computing and the Grid, IEEE International Symposium
on, 0:582, 2001.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI : portable parallel programming
with the message passing interface. MIT Press, 1994.

M. J Litzkow, M. Livny, and M. W. Mutka. Condor-a hunter of idle workstations.
In Condor-a hunter of idle workstations. IEEE, 1988.

L. Makovicka, A. Vasseur, M. Sauget, E. Martin, R. Gschwind, J. Henriet, and
M. Salomon. Avenir des nouveaux concepts des calculs dosimétriques basés sur les
méthodes de Monte Carlo. Radioprotection, 44(1):77-88, jan 2009.

M. Niinimaki, M. Ben Belcagem, and N. Abdennadher. Xwch-ccgrid. Technical
report, 2011.

M. Sauget, R. Laurent, J. Henriet, M. Salomon, R. Gschwind, S. Contassot-Vivier,
L. Makovicka, and C. Soussen. Efficient domain decomposition for a neural net-
work learning algorithm, used for the dose evaluation in external radiotherapy. In
Konstantinos Diamantaras, Wlodek Duch, and Lazaros S. Iliadis, editors, Artifi-
cial Neural Networks — ICANN 2010, volume 6352 of Lecture Notes in Computer
Science, pages 261-266. Springer, 2010.

Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in
practice: the condor experience. Concurrency - Practice and Ezperience, 17(2-
4):323-356, 2005.

A. Vasseur, L. Makovicka, E. Martin, M. Sauget, S. Contassot-Vivier, and J. M.
Bahi. Dose calculations using artificial neural networks: a feasibility study for
photon beams. Nucl. Instr. and Meth. in Phys. Res. B, 266(7):1085-1093, 2008.



