
Automatic Test Concretization to Supply End-to-End MBT
for Automotive Mechatronic Systems

Jonathan Lasalle, Fabien Peureux
∗

Laboratoire LIFC (EA-4269)
Université de Franche-Comté

16, route de Gray
25030 Besançon, France

{jlasalle,fpeureux}@lifc.univ-fcomte.fr

Jérôme Guillet
Laboratoire MIPS (EA-2332)
Université de Haute-Alsace
12, rue des Frères Lumière
68093 Mulhouse, France
jerome.guillet@uha.fr

ABSTRACT
This paper presents an effective end-to-end Model-Based
Testing approach to validate automotive mechatronic sys-
tems. This solution takes as input a UML/OCL model
describing the stimuli of the environment that can excite
the mechatronic System Under Test. It applies model co-
verage criteria to automatically generate test cases, and fi-
nally takes an offline approach to translate the generated
test cases into executable test scripts that can be executed
both on simulation model and physical test bench. The
mechatronic System Under Test is then tested against a
Matlab/Simulink simulation model, which defines the test
oracle. This tooled and automated approach has been suc-
cessfully experimented on a concrete case study about the
validation of a vehicle front axle unit. This experimentation
enabled us to validate our approach, and showed its effec-
tiveness in the validation process of mechatronic systems.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.5 [Software Engineering]: Testing and De-
bugging; D.4.8 [Operating Systems]: Performance; I.6.4
[Simulation modeling]: Model Validation and Analysis

General Terms
Experimentation, Reliability

Keywords
Model-Based Testing, automated testing process, UML/OCL
notations, Matlab/Simulink simulation, mechatronic systems

∗Fabien Peureux is also external scientific consultant for:
Smartesting R&D center
18, rue Alain Savary
25000 Besançon, France

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ETSE ’11, July 17, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0808-3/11/07 ...$10.00.

1. INTRODUCTION
The growing complexity of software-intensive, real-time

embedded systems, combined with constant quality and time-
to-market constraints creates new challenges for engineering
practices in this domain. Testing is today the principal val-
idation activity in industrial context to increase the confi-
dence in the quality of systems, and appears therefore to be
strategic. Nevertheless, the industry is still faced to the use
of specific validation techniques which rely on manual, re-
peated and tedious efforts. In the last decade, Model-Based
System Engineering (MBSE) methodologies have emerged
on the sharing and standardisation of embedded software
technologies [9]. These approaches put a strong emphasis
on the use of models at the different steps of the system
specification, and even for testing activity. In this particu-
lar purpose, code is no longer the single source for selecting
test cases: testing against original expectations can be done
using Model-Based Testing (MBT) approach [13].

The main idea behind MBT is that a behavioural model of
the system, called a high-level test model, can be adopted as
the basis for automatically deriving test cases following dif-
ferent coverage criteria. MBT aims thus to ensure that the
final product conforms to the initial functional requirements.
It promises higher quality and conformance to the respec-
tive functional safety and quality standards, and increased
automation of the testing process [6]. Even if some obsta-
cles remain to a full-scale deployment, MBT approaches are
today getting closer and closer to an industrial reality. In
the one hand, theoretical concepts (and associated tools) are
now mature enough to be applied in many application areas.
In the other hand, MBT approaches have still to provide a
better degree of automation, especially to translate the gen-
erated test cases into executable test scripts, to empirically
show that it can give a good Return On Investment [7].

In this paper, we propose an end-to-end tooled MBT solu-
tion for the validation of mechatronic systems including real-
time and continuous execution issues. This solution takes as
input a UML behavioural model of the SUT environment,
uses model coverage criteria to automatically generate spe-
cific configuration (test cases), and finally takes an offline
approach to translate these configurations into test scripts,
which can be executed both on a Matlab/Simulink execu-
tion model and physical test bench. In the same time, the
execution model is indeed executed to compute the expected
values, that are compared in real-time with the results ob-
tained on the physical test bench.

This proposed solution, providing a suitable, automated
and repeatable process, has been experimented using a con-
crete case study about the validation of a vehicle front axle
unit.

This paper is organized as follows. Section 2 introduces a
simplified version of the Steering case study, which will be
used in the next sections to illustrate our approach. Sec-
tion 3 presents an overview of the MBT process and its
associated toolchain about model specification and test ge-
neration steps. Section 4 characterizes the concretization of
the generated test cases into executable test scripts. Sec-
tion 5 reports our experience about test execution process.
Finally, section 6 gives conclusions and outlines future work.

2. STEERING CASE STUDY
The testing approach has been applied on a real case study

about vehicle front axle unit dynamics. This study more
precisely concerns the behavior of the steering column and
the dampers of a motorized vehicle. The mechanical part of
the steering dynamic, depicted in Figure 1, contains:

• A steering wheel that allows the driver to activate the
steering column.

• A steering column that transfers loads of the steering
wheel to the rack rail.

• A rack rail that transforms the rotation movement of
the steering column to a translation motion.

• Hubs that allows to turn the wheels using the rack rail
movement.

Figure 1: Mechanical overview of the steering.

From testing point of view, the steering vertical dynamic
of the vehicle defines the SUT. Figure 2 depicts in broad
outline the steering vertical dynamic of the vehicle, which is
composed of the following mechanical parts:

• Two tires fixed on two suspension arms.

• A stabilizer bar between both arms.

• A suspension composed of a damper and a spring con-
nected to the vehicle body.

• A vehicle body with free rotations and translations.

Figure 2: Broad outline overview of the case study.

Testing such a vehicle full system requires to take into
account the complete driving framework that is defined, as
shown in Figure 3, by the environment, the driver and the
vehicle. This framework has indeed been proposed in several
papers that consider the driving task as an evolution of the
Driver-Vehicle-Environment triplet [8].

Figure 3: Driving framework.

To simplify the presentation, the impact of the driver,
which is modeled by several controllers, is not discussed in
this paper. Therefore, we consider that steering vertical
dynamic of the vehicle is only stimulated by its environment
through the layout of the road (which can contain bends,
slopes, banks, holes. . .) in relation with its own dynamic
characteristics (weight, speed. . .).

This simplified version of the Steering case study is used
in the rest of this paper to illustrate our MBT approach
and the executable script generation technique, which are
introduced in the next sections.

3. MBT APPROACH
MBT refers to the processes and techniques for the auto-

matic derivation of abstract test cases from abstract formal
models (abstract because relying on a model) and the gene-
ration of concrete tests from abstract tests.

In this section, we briefly describe the MBT approach that
is used in the context of mechatronic systems to derive test
cases from abstract formal models (called test model) writ-
ten with the Unified Modeling Language (UML [11]) and
the Object Constraint Language (OCL [15]). The first sub-
section gives an overview of the MBT process, subsections
2 and 3 respectively introduce the test model specification
and the automated test generation steps. The approach is
illustrated with the Steering case study.

3.1 Overall MBT Toolchain
Our MBT approach is based on the Test DesignerTM tool

provided by the company Smartesting1. Test DesignerTM

implements an integrated and automated MBT solution from
UML/OCL models [2] that defines the keystone of the pro-
posed MBT toolchain, as shown in Figure 4.

Figure 4: MBT toolchain.

This toolchain takes as input a test model defined by the
UML4MBT language [4], which is a subset of UML and OCL
notations. The UML4MBT models have a precise and un-
ambiguous meaning, so that the behaviour of those models
can be understood and manipulated by the Test DesignerTM

technology. OCL expressions indeed provide the expected
level of formalization necessary for model-based testing mod-
elling. This precise meaning makes it possible to simulate
the execution of the models and to automatically generate
test cases [3].

Each generated test case is typically an abstract sequence
of high-level actions from the UML4MBT models. These
generated test sequences contain the stimuli to be executed,
but also the expected results, obtained by resolving the as-
sociated OCL constraints.

To make them executable using a test automation tool,
a further concretization step is then needed to automati-
cally translate each abstract test case into a concrete (exe-
cutable) script. This translation is performed in an adap-
tation step: this step involves a SUT-specific adaptation
layer, designed once for the project by the validation en-
gineer, to define script patterns and mappings. They are
basically used to translate abstract names from the model
into concrete names in the target language, and to translate

1http://www.smartesting.com

the test case structure into scripts directly executable on a
simulated system or on a physical test bench.

Generated test cases can also be exported to a large vari-
ety of format including customizable HTML or proprietary
XML files (for documentation for example). In the scope of
the Steering case study, a dedicated real-time platform has
been used to execute the generated test scripts. This frame-
work, called TestInView, will be introduced and precisely
described in section 4.

In this paper, we propose to adapt this process to val-
idate automotive real-time mechatronic system. The two
major issues of this work are thus about the automation
of the process (especially the concretization step performed
by the adaptation layer) and the management of continu-
ous systems. Indeed, in order to represent behaviors of the
steering vertical dynamic, it is necessary to consider physi-
cal and mathematical rules that cannot be modelled using a
UML4MBT model. UML4MBT, which defines the specifica-
tion language taken as input of the toolchain, only describes
discrete actions. Consequently, it cannot be used to express
the continuous behaviours of the SUT.

Regarding that, our approach consists in modelling, using
UML4MBT, the environment of the SUT in a discrete man-
ner, and in deferring the management of continuous time is-
sues at the concretization level. In this way, the test model
describes the dynamic of the SUT environment, meaning
how the SUT can be stimulated by its environment (and
not how it evolves against these stimuli). The expected
behaviours of the SUT is thus computed latter during the
adaptation step of the process, which then appears more
complex than a simple mapping between abstract and con-
crete data.

The next sections introduce in a more detail way each step
of this process and illustrates the corresponding toolchain
results using the Steering case study.

3.2 Modeling
UML is widely used as a modelling support for Model-

Based Testing [5]. There are several reasons for this interest.
Firstly, UML provides a large set of diagrammatic notations
for modelling purposes, with several complementary repre-
sentations. A static representation (i.e. class diagrams) can
be used to model the points of control and observation, and
the data that represents the abstract state of the modelled
system. Secondly, OCL associated with UML makes it pos-
sible to have precise models: this means that the expected
behaviour can be formalized using OCL, and test cases can
also be derived in an unambiguous way [1, 12].

Our test generation approach is based on a UML test
model that synthesizes the behavior of the environment of
the SUT (i.e the layout of the road), and not the behavior of
the SUT as usually performed in traditional MBT approach.
This test model is based on 2 types of UML diagrams:

• A class diagram defines entities (name, attributes), the
relationships between these entities (by association)
and actions (by operations) carried-out to change the
value of these entities. This defines the static view of
the modelled environment.

• An object diagram represents instances pertaining to
the different classes of the test model. Thus, this dia-
gram defines the initial value of the entities represen-
ting the environment.

Finally, the dynamical aspect of the test model is captured
by annotating the operations of the class diagram with OCL
formula, which precisely formalize their expected behaviour.
This level of precision makes the model formal and allows
the test generation to be completely automated.

To model the environment of the steering vertical dynamic
using UML4MBT, only one class diagram and one object
diagram are needed. The class diagram, shown in Figure 5,
contains only one class (called Road) and some enumerations
classes defining set of possible values.

Figure 5: Class diagram of the Steering case study.

The class Road is defined by the following 7 attributes (the
two last attributes are used by OCL constraints to make
sure that the generated roads are realistic and executable in
safety on the test bench):

• the distance that can be short or great.

• the direction that can be straight, maxleft, left,
maxright or right.

• the bank that can be NULL, left or right.

• the slopes (leftSlope and rightSlope) that can be
different between the left and the right side of the ve-
hicle (in order to represent pothole for instance). Each
slope (left and right side) is represented by an integer
value comprised between minus two and two.

• the constant difAlt that memorizes the higher gap of
the slopes between the two previous road parts.

• the counter ticNB that is incremented each time the
road attributes are updated.

Figure 6 shows the corresponding object diagram describ-
ing the initial state of the model.

The class Road also contains a single operation called step.
A step represent a part of a road. Each time this operation
is executed, it means that the vehicle run a road part ha-
ving the characteristics defined by the 5 parameters of the
operation: the distance (inDistance), the direction (inDi-
rection), the bank (inBank), the left and the right slopes
(inLeftSlope and inRightSlope). This operation updates
the first five attributes of the class Road with the abstract
value given by the corresponding input parameter.

Figure 6: Object diagram of the Steering case study.

As mentioned above, there are some restrictions for the
succession of two steps to ensure that the generated roads
plots are practicable in a real context. For example, a road
part with a left bank just after a road part with a right bank
(or vice/versa) is not allowed (a null bank between them is
required). That is why the precondition of the operation
step contains a lot of OCL constraints to ensure the correct-
ness of the generated road. The previously given restriction
is expressed by the following OCL constraint:

(self.bank<>BANKS::LEFT or inBank<>BANKS::RIGHT)

and

(self.bank<>BANKS::RIGHT or inBank<>BANKS::LEFT)

Once the test model is achieved, it can be used to auto-
matically produce test cases using the test generation tool.
The next subsection presents this step.

3.3 Test Generation
Basically, automatic test generation algorithm carries out

a systematic coverage, either of all behaviours (effects de-
fined by the OCL constraints) of the test model, or of pre-
defined use-case scenarios given by the validation engineer.
Each generated test corresponds to a sequence of operations
taking the form of a 3-part structure:

1. the preamble (potentially empty) is a sequence of ope-
ration calls that place the system in a state that allows
to activate the targeted behavior.

2. the test body contains the operation call (or sequence
of operation calls in the case of use-case scenarios) that
execute the given behavior.

3. the postamble (optional) that puts the system in the
same state than before the execution of the preamble
in order to link the execution of the tests.

Within the Steering case study, we have thus defined some
use-case scenarios to be able to cover a lot of configurations.
Moreover, in order to easily investigate more configurations,
we have also implemented a random-based algorithm. By
selecting a number of expected sequences and a number of
operation calls per sequences, the test generation engine au-
tomatically computes, in a random way, a set of test cases
corresponding to the selected parameters.

All these algorithms allow to obtain road layouts that are
defined by a sequence of step operation calls. Such a se-
quence, containing a large panel of configurations, is given
in Figure 7.

step(GREAT, STRAIGHT, NULL, 0, 0)

step(GREAT, STRAIGHT, RIGHT, 0, 0)

step(SHORT, STRAIGHT, NULL, 0, 0)

step(GREAT, RIGHT, LEFT, 0, 0)

step(GREAT, MAXLEFT, NULL, -1, -1)

step(SHORT, STRAIGHT, NULL, 0, 0)

step(SHORT, STRAIGHT, NULL, -2, 2)

step(SHORT, STRAIGHT, NULL, 2, -2)

step(SHORT, STRAIGHT, NULL, 0, 0)

step(SHORT, RIGHT, NULL, -1, 1)

step(SHORT, STRAIGHT, NULL, 2, 0)

step(GREAT, MAXLEFT, RIGHT, 0, 0)

step(SHORT, STRAIGHT, NULL, 2, 0)

step(SHORT, STRAIGHT, NULL, 0, 0)

step(SHORT, STRAIGHT, NULL, -2, 0)

step(GREAT, STRAIGHT, LEFT, 1, 1)

step(GREAT, STRAIGHT, NULL, -1, -1)

step(GREAT, STRAIGHT, NULL, 0, 0)

Figure 7: Steering case study scenario.

This scenario is described using a graphical representation
in Figure 8, where perpendicular lines separate the differ-
ent steps, gray lines represent a flat road stretch, light gray
lines define a downhill part, black lines define an ascending
part, and finally arrows depict the various banking. This
graphical representation is automatically generated using a
dedicated HTML publisher that directly takes as input the
generated test cases. This representation makes it possible
to check the correctness of the generated road very soon in
the process.

Figure 8: Steering case study graphical scenario.

A generated abstract test case describes a sequence of sti-
muli that defines the behaviour of the SUT environment,
i.e. a road that the vehicle has to run. These generated test
cases are abstract, i.e. they are not directly executable on
the real system. It is necessary to concretize them to link
abstract operations and data with the corresponding real

actions and values. In case of continuous time systems, as
UML4MBT models do not contains time information, the
addition of temporal structures is necessary during the con-
cretization step. The next section introduces the features of
the automated concretization and execution of the resulting
concrete test cases.

4. TEST CONCRETIZATION
The concretization step has two main purposes: first,

translate abstract operations into real actions and inject ob-
servation operations into test cases to be able to assign a
verdict. In this section, we call abstract operations the oper-
ations of the generated abstract test cases, and observation
operations the operations that has to be injected in the con-
crete scripts to perform observation.

In case of continuous time systems, as UML4MBT models
do not contains time information, the addition of temporal
structures is necessary during the concretization step. For
abstract operation, this is done by specific test publishers
which take into account the sequential aspect of the opera-
tion calls (using a classical mapping between abstract data
and concrete values). For observation operations, a SUT ex-
ecution model must be provided. Generally, such execution
models are created during system design step to simulate
the expected real system. This execution models are used
to compute the expected SUT values. Therefore, they are
used in two ways: one the one hand, to simulate the system
and validate the specifications of the retained solution, and
on the other hand to compute the expected values of the
real system (oracle).

The concretization and execution steps are managed by
the TestInView platform presented in subsection 4.1. To ad-
dress the case of continuous systems, the execution models
are created to compute the expected values with the Mat-
lab/Simulink platform presented in subsection 4.2. Finally,
the whole process of concretization and tests execution on
the SUT is given in the subsection 4.3.

4.1 TestInView Platform
TestInView is a software platform, based on TestStand

National Instrument software2, which allows to automati-
cally execute tests during the complete conception system
cycle. It is commercialized by the Clemessy company3. This
platform is particularly designed for testing embedded elec-
tronic systems, but it is also able to manage mechanical test
bench. It can be used on the whole testing process, from
the modeling to the execution on the test bench. The so-
lution architecture is based on a supervisor computer which
manages tests execution. If the SUT is physically available,
the supervisor is connected to the real time controller which
manages the SUT.

In our case, TestInView is used in two different ways:

• By executing tests locally on the Supervisor. In this
case, an execution model is loaded and executed into
TestInView to simulate the SUT.

• By using the real time controller connected to a test
bench.

Firstly, local execution allows to validate the execution
model of the SUT. When this model is definitely validated
2http://www.ni.com/teststand/
3http://www.clemessy.fr/

and if a physical prototype of the SUT is available, the tests
must be executed on it. To do this, the real time constraint
is added and TestInView manages the execution of the tests
on the SUT connected to the real time controller.

In case of discrete event systems (e.g. embedded elec-
tronic systems), the oracle can be directly obtained from
the UML4MBT model and none other model of the system
is needed. In case of continuous system, the SUT execu-
tion model must be used to create the expected values of
the test scenarios. The execution model is designed on the
Matlab/Simulink software platform.

4.2 Matlab/Simulink
Matlab is a numerical computation platform which in-

cludes an environment for multi-domain simulation and mo-
del design for dynamic and embedded systems (Simulink4).
Based on components libraries, Simulink is a graphical en-
vironment that allows to design, simulate, implement and
test time-varying systems. The SUT designed on Simulink
defines a model with inputs and outputs. Inputs must be
excited by the abstract operations described by the tests.
Outputs are used to be compared with the oracle. When
the model is validated, it becomes the oracle and it is used
to compute expected values.

With real time constraint, model outputs are computed
thanks to a solver. Solvers use a fixed-step time which de-
termines the output computation times. As the platform
TestInView is used during the whole testing process, the
Simulink model must be first exported and integrated into
the platform, and then executed in real time. Exportation is
done using SIT (Simulation Interface Toolkit) from National
Instrument.

4.3 Concretization Process
After the test generation, tests are exported to the TestIn-

View platform: each one is translated into the TestInView
file format which describes the executable sequence (sequence
file). The latter is generated in a TestStand file format. A
dedicated Test DesignerTM publisher was developed in order
to generated automatically those files. This step concerns a
traditional (manually designed) mapping between abstract
data and concrete values and structures.

The TestStand sequence, test vector and execution model,
can be loaded into TestInView and connected with the cor-
responding target, that is to say, either a simulated system,
either a physical test bench. The complete process is de-
picted on the figure 9.

When all files are provided to TestInView, the tests exe-
cution could be performed. Thanks to the oracle, expected
values are compared with real values during the tests. Com-
parison is done by Sanctions which define the comparison
modes between expected values and reals values (such as
equality, superior, inferior, validity area ...). An automati-
cally generated report summarizes in details the executed
tests and especially the results of the evaluated sanctions.
By a SUT states backup performed during the tests, local
execution can re-evaluate sanctions without using the SUT.

4.4 Steering Case Study Illustration
Once tests are generated, they can be exported to the

TestInView platform. At this stage, tests are ever abstract.

4http://www.mathworks.fr/

Figure 9: Concretization process.

Then, it is necessary to concretize them. This step consist to
associate each abstract part of the model to a real concrete
value. The table 1 represent the concretization values for
this case study.

DISTANCE GREAT 20 m
SHORT 0.5 m

DIRECTION

MAXLEFT 0.06
LEFT 0.05

STRAIGHT 0
RIGHT -0.05

MAXRIGHT -0.06

BANK
NULL 0 rad
LEFT +0.08 rad

RIGHT -0.08 rad

SLOPE

2 0.35 rad
1 0.1745 rad
0 0 rad
-1 -0.1745 rad
-2 -0.35 rad

Table 1: Concretization values of the Steering case
study.

Those values allow to calculate the real road layout. To
do so, we use a Matlab program that calculate concrete cha-
racteristics of the vehicle during time. For example, the fol-
lowing code calculate the position of the vehicle according
to slope and bank, as shown in Figure 10, where:

• Xtraj defines the trajectory of the vehicle gravity cen-
ter along X axis,

• Ytraj defines the trajectory of the vehicle gravity cen-
ter along Y axis,

• ZtrajL defines the height of left wheels,

• ZtrajR defines the height of right wheels,

• Course defines the course of the road.

%Slope calculation

slope = (leftSlope+rightSlope)/2;

Xtraj(indexPoint,1)=Xtraj(indexPoint-1,1)+

r(indexPoint,1)*sin(pi/2-slope)*

cos(course(indexPoint,1));

Ytraj(indexPoint,1)=Ytraj(indexPoint-1,1)+

r(indexPoint,1)*sin(pi/2-slope)*

sin(course(indexPoint,1));

%Bank calculation

Ztraj(indexPoint,1)=Ztraj(indexPoint-1,1)+

r(indexPoint,1)*cos(pi/2-slope);

ZtrajL(indexPoint,1)=Ztraj(indexPoint,1)+

r(indexPoint,1)*cos(pi/2-leftSlope)+

b/2*sin(bank);

ZtrajR(indexPoint,1)=Ztraj(indexPoint,1)+

r(indexPoint,1)*cos(pi/2-rightSlope)-

b/2*sin(bank);

Figure 10: Concretization rules of the Steering case
study.

Then, using this program, we obtain the table depicted
on the figure 11 that represents concrete values of the road
configuration during time (first column).

Figure 11: Example of vector data of the Steering
case study.

5. TEST EXECUTION
At this stage, a Simulink execution model calculates the

vehicle reaction according to the road characteristics. Thus,
we obtain theoretical response of the vehicle on this road.
The last step consists to the comparison of those theoreti-
cal results with practical results by launching the layout on
a test bench. This last step of our approach is described
through the Steering case study experimentations.

5.1 Execution Model
A simulation version of the SUT was developed: the gra-

phical part was realized using OpenGL whereas data calcu-
lations were done using a Simulink model. The simulation
module is depicted by the figure 12. It calculates expected
results.

Figure 12: Simulator of the Steering case study.

The simulation mode allows to determinate the expected
results, but also to validate the Simulink model real time ex-
ecution. Indeed, several outputs of the model are connected
to the test bench to activate it. If the real time execution of
the tests is not available, i.e. some cycle time of execution
are lost, the Simulink model could become unstable. In this
case, outputs could have some unexpected values. If these
outputs are connected to an actuator of the test bench, un-
expected motions could damage it. Therefore, simulation
mode also allows to validate all previous developments be-
fore the execution on the real system.

5.2 Physical Test Bench
The vehicle front axle unit dynamic test bench (shown

in Figure 13) includes all mechanical parts involved in the
steering dynamic and vertical dynamic of the front part of
a vehicle.

Figure 13: Test bench of the Steering case study.

The test bench takes only into account the front vehicle
part. Therefore, the body is replaced by a mass which cor-
responds to the vehicle front mass. The latter has a free
vertical translation and a free roll rotation. Three actuators
allow to generate dynamic load: one steering motor which
replaces the steering wheel, and two vertical electrical jacks
under tires. The steering motor is used to control the stee-
ring dynamic and the vertical jacks simulates a vertical road
profile.

5.3 Experimentation Results
In the same time, the full Simulink model of the vehicle

is executed to compute reference values. These values are
compared, in real-time, with the test bench sensor values
and several sanctions allow to check the SUT behavior.

An illustrative example can be found in Figure 14, which
draws the expected and the real value of the vehicle roll
angle. The black lines represent the sanction on this output
defined by a validity area of 5% of the expected value. The
execution of such scenario on this test bench is available at
the end of the video located in [14].

Figure 14: Roll angle of the Steering case study.

6. CONCLUSION
This paper presents a fully automated and suitable end-to-

end test framework, based on a UML/OCL MBT approach,
to address automotive mechatronic domain. It also reports
about successfully experimentation results carried out to val-
idate the steering vertical dynamic of a vehicle. Such an
integrated approach and continuous process, including the
automation of executable test script generation, constitute
strategic issues for testing activity to save time and to in-
crease safety and quality.

Within this test framework, the future works mainly con-
cern the nature of the test model and so the purpose and
the relevance of the generated test cases. In this way, we
are extending the expressiveness of the test model, which is
the input of the MBT solution. Therefore, we are currently
implementing a prototype to take into account embedded
systems characteristics by using SysML notation to specify
the test model [10]. We also plan to manage real-time issues
by using the UML MARTE profile: this feature makes it
possible to manage real-time constraints in the test model,
and thus allows to generate new types of test cases.

7. ACKNOWLEDGMENTS
This work has been supported within the French project

VETESS [14] (from September 2008 to August 2010) and
labelled by the French competitiveness cluster “automotive
of future” (http://www.vehiculedufutur.com).

8. REFERENCES
[1] M. Benattou, J.-M. Bruel, and N. Hameurlain.

Generating test data from ocl specification. In
Proceedings of the Int. Workshop on Integration and
Transformation of UML models (WITUML’02), 2002.

[2] E. Bernard, F. Bouquet, A. Charbonnier, B. Legeard,
F. Peureux, M. Utting, and E. Torreborre.
Model-based testing from UML models. In Proceedings
of the Int. Workshop on Model-based Testing
(MBT’2006), volume 94 of LNCS, pages 223–230,
Dresden, Germany, October 2006. Springer Verlag.

[3] F. Bouquet, C. Grandpierre, B. Legeard, and
F. Peureux. A test generation solution to automate
software testing. In Proceedings of the 3rd Int.
Workshop on Automation of Software Test (AST’08),
pages 45–48, Leipzig, Germany, 2008. ACM Press.

[4] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting. A subset of precise UML
for model-based testing. In Proceedings of the 3rd Int.
Workshop on Advances in Model Based Testing
(A-MOST’07), colocated with ISSTA’07, pages 95–104,
London, UK, July 2007. ACM Press.

[5] D. Buchs, L. Pedro, and L. Lucio. Formal Test
Generation From UML Models. Dependable Systems:
Software, Computing, Networks: Research Results of
the DICS Program, LNCS 4028:145–171, 2006. ISSN:
0302-9743.

[6] A. Dias-Neto and G. Travassos. A Picture from the
Model-Based Testing Area: Concepts, Techniques, and
Challenges. Advances in Computers, 80:45–120, July
2010. ISSN 0065-2458.

[7] E. Dustin, T. Garrett, and B. Gauf. Implementing
Automated Software Testing: How to Save Time and
Lower Costs While Raising Quality. Addison Wesley
Professional, 2009. ISBN 0 32 158051 6.

[8] D. Ehmanns and A. Hochstadter. Driver-model of lane
change maneuvers. In Proceedings of the 7th World
Congress on Intelligent Transportation Systems,
Turin, Italia, November 2000.

[9] J. Estefan. Model-Based Systems Engineering (MBSE)
Methodologies. Survey INCOSE-TD-2007-003-01.B,
MBSE Initiative and INCOSE Group, June 2008.

[10] J. Lasalle, F. Bouquet, B. Legeard, and F. Peureux.
SysML to UML model transformation for test
generation purpose. In Proceedings of the 3rd IEEE
Int. Workshop on UML and Formal Methods
(UML&FM’10), Shanghai, China, November 2010.

[11] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison
Wesley, 2th edition, 2004. ISBN 0 321 24562 8.

[12] A. Shaukat, M. Z. Iqbal, A. Arcuri, and L. Briand. A
search-based ocl constraint solver for model-based test
data generation. Technical Report 2010-16, Simula
Research Laboratory, October 2010.

[13] M. Utting and B. Legeard. Practical Model-Based
Testing - A tools approach. Morgan and Kaufmann,
2006. ISBN 0 12 372501 1.

[14] The VETESS web site.
http://lifc.univ-fcomte.fr/vetess/, 2010.

[15] J. Warmer and A. Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison
Wesley, 1996. ISBN 0 201 37940 6.

