
Implementing a variant of XSLT in Scheme

Jean-Michel HUFFLEN

LIFC (FRE CNRS 2661), University of Franche-Comté
16, route de Gray. 25030 BESANÇON CEDEX. FRANCE.

Abstract. We describe a variant of the xslt language, usable for de-
signing bibliography styles according to a multilingual approach. Then
we show how we implement it efficiently using Scheme. In particular,
that allows us to give an operational semantics of this variant of xslt.

Keywords xslt, Scheme, bibliography styles, compiling templates into
functions.

0 Introduction

xml1 has succeeded as a format for data interchange. xslt2, the language of
transformations used for xml texts, is now widely used. Indeed it is viewed
as very high-level language, accessible to non-specialists in Computer Science.
That is why we have chosen this kind of language within our implementation of a
bibliography processor. Let us recall that such a program searches bibliographical
database files for some citation keys, arranges the references in a ‘Bibliography’
section put at the end of a printed document. That is, this section is an output
of the bibliography processor and becomes an input for the word processor.
So users do not have to build themselves this section when they are writing a
document, they just use citation keys throughout the document’s body. A well-
known example of such a bibliography processor is BibTEX [12], used mainly
with the LATEX word processor [8].

Our bibliography processor—MlBibTEX, for ‘MultiLingual BibTEX’—is a
reimplementation of BibTEX with particular focus on multilingual features. It is
implemented using the Scheme programming language [4] and a general overview
of this implementation is given in [2], where we also explain why we chose Scheme
for this task. In this article, we focus on the language used for bibliography styles.
Section 1 describes it as a variant of xslt. Section 2 explains how the kernel of
this language is implemented in Scheme. In this section, we attempt to be for-
mal in order to show that we follow a precise approach about the types we use.
Section 3 discusses some future directions for our program. Reading this article
requires basic knowledge of xml3, good practice of xslt [16] and Scheme.

1 eXtensible Markup Language.
2 eXtensible Stylesheet Language Transformations.
3 Readers interested in an introductory book can refer to [13].

<nbst:template name="format.date" language="magyar">

<nbst:apply-templates select="year"/>

<nbst:if test="month">

<nbst:text> </nbst:text> <!-- Putting a space character. -->

<nbst:apply-templates select="month"/>

<nbst:if>

</nbst:template>

<nbst:template name="format.date">

<nbst:if test="month">

<nbst:apply-templates select="month"/>

<nbst:text> </nbst:text>

<nbst:if>

<nbst:apply-templates select="year"/>

</nbst:template>

Fig. 1. Templates in the nbst language.

1 XSLT vs nbst

Bibliography styles rule the layout of a ‘Bibliography’ section. For example,
some titles of works are to be written using italicised characters, others are to be
enclosed between quotation marks (‘“. . .” ’ in American English). Bibliography
styles are diverse: the first name of an author may be written in extenso or
abbreviated to initials, it may be put before or after its last name. . . They are
influenced by cultural background, and depend on languages: for example, the
quotation marks look like ` « . . . » ’ in French.

The nbst4 language is described in [1]. In the following, we just emphasise
the difference with xslt. An nbst template may be given a language attribute,
as shown in the examples of Figure 1. A template with such an attribute has
higher priority than a template without it. If we consider the two templates of
Figure 1, we can see intuitively that the first template puts down a date within
a document in Hungarian, that is, the month comes after the year, whereas
the second template is a default template, usable for languages such as English,
French, German, . . . where the month comes at first.

There are two ways to handle the information about languages:

reference-dependent approach each reference of the ‘Bibliography’ section
of a document is expressed using the language of the corresponding entry in
a bibliographical data base file: for example, the month name of a reference
to a book written in English (resp. French, German, . . .) is given in English
(resp. French, German, . . .); so the language of a reference—what is put
within a ‘References’ section—is the language of the corresponding entry—
what is included in a bibliographical database—;

4 New Bibliography STyles.

<mlbiblio>

...

<book id="harrison1984" language="english">

<author>

<name>

<personname>

<first>Harry</first>

<last>Harrison</last>

</personname>

</name>

</author>

<title>West of Eden</title>

<publisher>Grafton Books</publisher>

<year>1984</year>

<month><aug/></month>

<address>London</address>

</book>

...

</mlbiblio>

Fig. 2. Example of bibliographical entry.

document-dependent all the references are expressed using the document’s
language, as far as possible: for example, all the dates are expressed using
the document’s language. According to this approach, the language of a
reference may be different from the language of the corresponding entry: for
example, a book written in English belonging to the ‘References’ section of
a document written in German.

Inside a bibliographical entry, some information may be expressed by another
language than the entry’s. For example, the following title for a book written in
English uses French words:

TITLE = {[Danse macabre] : french}

what is expressed by the notation ‘[...] : ...’ in MlBibTEX [1]. Such informa-
tion allows a word processor to hyphenate these words correctly, if need be. This
situation is more frequent with the document-dependent approach: for example,
when we process the title of a book written in English within a ‘Bibliography’
section for a document written in German, as mentioned above.

As shown by the title given above as an example, MlBibTEX deals with an
extended syntax of the format used by BibTEX [12], our parser building an xml
tree. An example is given in Figure 2, the language attribute of such an xml
tree for a bibliographical entry defaulting to english.

According to a document-dependent approach, building all the references
from an xml tree rooted by the mlbiblio element can be done as follows—the
use-language attribute being an extension of nbst—:

(*top*

(mlbiblio

...

(book (@ (id "harrison1984") (language "english"))

(author (name (personname (first "Harry") (last "Harrison"))))

(title "West of Eden")

(publisher "Grafton Books")

(year "1984")

(month (aug))

(address "London"))

...))

Fig. 3. Representation of the tree given in Figure 2 using the sxml format.

<nbst:apply-templates use-language="$document-language"/>

the document’s language being deduced from the multilingual packages loaded
when LATEX processes the document.

According to a reference-dependent approach, each son of an mlbiblio ele-
ment uses its own language information, what is specified by:

<nbst:apply-templates use-language="*self*"/>

2 Implementation of the nbst language

MlBibTEX uses the sxml5, described in [7], for xml trees. sxml is a concrete
representation of the xml infoset in the form of S-expressions. For example,
Figure 3 gives the sxml representation of the xml tree of Figure 2. sxml is the
basis of a toolboox including ssax6—a sax7 parser8 [6]—, SXPath9 [9]—that
allows users to address parts of an sxml document by means of paths defined
within the XPath language [15]. sxml is used within an implementation of xslt,
stx10, described in [10]. Now this implementation is not complete, but it allows
fragments using xslt and Scheme to be mixed.

2.1 Rough implementation

stx compiles each template of an xslt stylesheet into a Scheme function being
the form:
5 Scheme implementation of xml.
6 Scheme implementation of sax.
7 Simple api (Application Programming Interface) for xml.
8 Used within MlBibTEX to parse nbst texts.
9 Scheme implementation of XPath.

10 Scheme-enabled Transformation for xml data.

(lambda (cur-tree templates root envt) ...)

where cur-tree is the current sxml tree, that is, the sxml tree we are pro-
cessing, templates groups all the templates of the stylesheet (in stx, they are
grouped into a list), root the root of the sxml tree, and envt manages the bind-
ings of the variables defined in stx styleshets. To extend this process to nbst,
the compiled form of an nbst template is a function being the form:

(lambda (doc-lg cur-lg mode cur-tree templates root envt) ...)

where the additional arguments are doc-lg for the document’s language, cur-lg
for the current tree’s language, and mode for the mode attribute used by the
nbst:apply-templates and nbst:template, as in xslt11 [16, § 5.7]. If nbst
works according to a reference-dependent approach, doc-lg is bound to #f. If
there is no mode attribute, mode is bound to #f. If fact, the compiled form of an
nbst template can be viewed as a function of type:

LANGUAGE# × LANGUAGE ×MODE# × TREE ×
TEMPLATES × TREE × ENVIRONMENT →

STRING
(1)

where ‘T#’ is for a disjoint union of the T type and the false value (#f in
Scheme). It is well-known that this operation is easy to put into action within
Lisp dialects, provided that all the values of the T type are viewed as true. The
types used are:

– LANGUAGE (resp. MODE): an enumerated type for language information
(resp. mode information),

– TREE for sxml trees,
– TEMPLATES for grouping nbst templates,
– ENVIRONMENT for the management of the variables introduced in nbst

stylesheets.

As in sxlt, such a function results in a string (STRING type).

As in stx, the first implementation of nbst looked into a list of templates and
found the first template matching the current tree. As in stx, priorities were
not managed and all the templates are stored into a list. That is irrelevant for
a prototype, but unacceptable for a program that aims to become public, as a
successor of BibTEX. In addition, let us notice that in ‘real’ bibliography styles:

– there is a large number of templates in a ‘actual’ bibliography style, that is, a
large number of potential values for the match attribute of an nbst:template
element, so it is inefficient to search a list as many times as a template is
invoked;

11 This feature being not implemented yet in stx.

– cases may be handled by using priority among rules [16, § 5.5]: for example,
if the title of a book has to be displayed differently in comparison with other
titles, this can be done by specifying two templates with book/title and
title as values for match attributes; in practice, this kind of situation is
frequent and it would be very inefficient to reach the end of a template list
in order to know if a ‘better’ template matches the current tree.

So MlBibTEX’s public version will include the compilation of nbst described
below.

2.2 Compilation of XPath expressions

When an nbst program is processed, the match attribute12 of each template is
split into the name of the subtree—element or attribute—matched and addi-
tional constraints. Let us recall that the values of this match attribute form a
subset of XPath expressions [15]. More precisely, they are steps, separated by the
‘/’ sign, each step exploring the childs or attribute of a node. The ‘//’ separator
is also allowed, in which case all the descendants of a node are explored. Here
are some examples:

title =⇒ title —
book/title =⇒ title — [name(parent()) = "book"]
book/title[../year = "2006"] =⇒

title — [name(parent()) = "book"] [../year = "2006"]

More formally, let t an (s)xml tree whose current node is an element named
element-name. Let us assume that we are writing a function checking that such
a subtree is matched by the XPath expression:

/?step1/. . . /stepn/element-name[expr1]...[exprp] (2)

we explain the meaning of our symbols in Fig. 4. We split this expression into
ts element’s name and a sequence of boolean expressions that are the compiled
form of the additional constraints given in (2). These boolean expressions can be
grouped into a function whose formal argument is textttt. This split operation
is performed as follows:

split(/?step1/. . . /stepn/element-name[expr1]...[exprp]) for t −→
(element-name,
compile(/?step1/. . . /stepn) for parent(t) ;
compile-boolean-expr(expr1) for t ;
. . .
compile-boolean-expr(exprp) for t)

This operation can be put into action within the sxml representation of xml
trees, but is not limited to it13. It just requires functions allowing us to move
throughout such a tree, e.g., parent, that returns the parent of a tree. Figure 4
gives the broad outlines of compiling XPath expressions.
12 Of course, the templates with a name attribute are processed differently.
13 . . . what we suggest by ‘(s)xml’.

compile() for t −→ ∅
compile(/?step1/. . . /stepn/L[expr1]...[exprp]) for t −→

compile-filter(L) for t ;
compile(/?step1/.../stepn) for parent(t) ;
compile-boolean-expr(expr1) for t ;
. . .
compile-boolean-expr(exprp) for t

compile(/?step1/. . . /stepn//L[expr1]...[exprp]) for t −→
compile-filter(L) for t ;
compile(/?step1/.../stepn) for

t0 ∈ ascendant-or-self(t) ;
compile-boolean-expr(expr1) for t ;
. . .
compile-boolean-expr(exprp) for t

compile(step) for t −→ compile-step(step) for t

compile(/step) for t −→ compile-filter(step) for t ;
at-root(t)

compile-step(L[expr1]...[exprp]) for t −→
compile-filter(L) for t ;
compile-boolean-expr(expr1) for t ;
. . .
compile-boolean-expr(exprp) for t

compile-filter(element-name) for t −→ name(t) = element-name

compile-filter(f()) for t −→ boolify(f(t))
compile-boolean-expr(expr) for t −→ boolify(compile-expr(expr) for t

compile-expr(op(expr1,expr2)) for t −→
op(compile-expr(expr1) for t,compile-expr(expr2) for t)

where:

– step, step1, ,. . . , stepn (n ∈ N and n > 0) are steps of a path—the ‘/?...’
notation means that the path may or may not start at the document’s root—;

– L is an expression matching (s)xml subtrees;
– expr, expr1, . . . ,exprp (p ∈ N) are expressions;
– t, t0 are (s)xml trees;
– element-name is the name of an xml element;
– f a function belonging to XPath’s library, it applies to the current node and its

compiled form is f;
– op is a binary operator (for example, a logical connector), and its compiled form

is op.

Fig. 4. Compiling XPath expressions used in match attributes.

2.3 Organising compiled forms

Each element name originating from this split operation gives access to the
modes that can be used with it. For a particular mode, there are some possible
languages. For a particular language, there may be several rules organised by
priority. Each rule consists of a list of additional constraints (boolean expres-
sions) and a function to be applied in case of success. The data structure we use
can be defined as:

ELEMENT →
MODE# →

LANGUAGE# → INTEGER >→ CONSTRAINTS → FUNCTION

where:

– MODE and LANGUAGE have been introduced at § 2.1;
– ELEMENT is an enumerated type for elements’ names;
– priorities are integers, of INTEGER type;
– CONSTRAINTS is the type for sequence of boolean expressions;
– FUNCTION is the type of functions implementing a template, given in (1).

The first mapping (ELEMENT → . . .) is implemented by a hash table, so-
called t-table in Fig. 5, the others by association lists. The association list
whose keys are priorities is sorted decreasingly, what we mean by the ‘ >→’ sign.
In other words, priorities are arranged w.r.t. a decreasing order.

If we do not consider the language information, handled by nbst, this struc-
ture is suitable for an operational semantics of xslt programs: if an xml tree is
matched by several templates having the same priority, the choice among them
is left unspecified, that is, implementation-dependent.

The Scheme function putting the nbst:aply-templates element into ac-
tion is given in Figure 5: it uses some macros and functions defined in srfis14

[3,5,14]. If finding some information fails, the false value is returned. Otherwise,
the successive mappings are explored until a function implementing the right
template is found. Information is directly associated with keys, except for lan-
guages, where the list we get is to be searched, by decreasing order of priority
for corresponding rules.

3 Going further

It is well-known that some operations are difficult to perform in xslt. The nbst
language could be extended by adding elements more related to programming, as
XSieve [11] does for xslt. (Presently, nbst allows Scheme functions to be called
but only inside path expressions, by means of the call function [1, App. B].)
Our implementation could be useful for xslt itself, although some features are

14 Scheme Request for Implementation.

(define (n-apply-templates doc-lg cur-lg mode cur-tree t-table root envt)

;; See § 2.1 about the meaning of the formal arguments. The root argument is
;; needed, because some apply-templates elements may give access to the
;; document’s root at any point of the program.
(and-let* (;; Finding the whole information associated with the element name

;; of the current tree:
(a-list (hash-table-ref/default t-table (car cur-tree) #f))

;; Finding the information associated with the right mode or #f for
;; a template without mode:
(mode-assoc (assoc mode a-list))

(alist-0 (cdr mode-assoc))

;; Finding the template associated with the language information.
;; We consider the document’s language in document-dependent
;; approach, the current language otherwise:
(lg-0-assoc (assoc (or doc-lg cur-lg) alist-0)))

(let (;; Finding the first template whose constraint is fulfilled by the current
;; tree:
(c-assoc (find (lambda (association)

((car association) current-tree))

lg-0-assoc)))

(if c-assoc

((cdr c-assoc) doc-lg (car c-assoc) cur-tree t-table root envt)

;; Otherwise, backtracking to look for a default template:
(and-let* ((lg-assoc (assoc #f alist-0))

(c-assoc-0 (find (lambda (association)

((car association) current-tree))

lg-assoc)))

((cdr c-assoc-0) doc-lg

;; If a default template is selected, the current
;; language remains the same:
cur-lg cur-tree t-table root envt)))))

Fig. 5. Applying an nbst template to a current sxml tree.

to added: for example, there is no equivalent to the xsl:fallback element in
xslt [16, § 15].

Some techniques related to partial evaluation could be used to optimise mul-
tiple evaluations among boolean expressions belonging to additional constraints
or remove unreachable templates. In the first case, this would lead to an improve-
ment of the CONSTRAINTS type and new organisation, based on decision trees.
However, we can remark that an nbst program is compiled on the fly, just before
being applied, in order to build a ‘References’ section. Such techniques are prob-
ably more accurate for a language like C, where a source program is compiled
into an executable file that may be run as many times as we want. Maybe the
same approach would be suitable for nbst.

4 Conclusion

We think that our nbst language is suitable for developing multilingual bib-
liography styles. After some experiment, it seems to us that simple cases are
handled easily. But we confess that the whole architecture—handling modes, lan-
guages, priorities—can appear as complex. The management of modes is strict,
in the sense that mode must coincide between the producer and consumer—
the nbst:apply-templates and nbst:template elements—whereas the man-
agement of language information is a kind of inheritance. The present work has
practical applications as a guideline for implementations. Even if Scheme is not
a strongly typed language, it shows that a precise approach has been followed.
It also establishes the behaviour of nbst programs from a mathematical point of
view.

References

1. Jean-Michel Hufflen: “MlBibTEX’s Version 1.3”. tugboat, Vol. 24, no. 2, pp. 249–
262. July 2003.

2. Jean-Michel Hufflen: “Implementing a Bibliography Processor in Scheme”. In:
J. Michael Ashley and Michel Sperber, eds., Proc. of the 6th Workshop on
Scheme and Functional Programming, Vol. 619 of Indiana University Computer
Science Department, pp. 77–87. Tallinn. September 2005.

3. Panu Kalliokoski: Basic Hash Tables. September 2005. http://srfi.schemers.
org/srfi-69/.

4. Richard Kelsey, William D. Clinger, Jonathan A. Rees, Harold Abelson,
Norman I. Adams iv, David H. Bartley, Gary Brooks, R. Kent Dybvig,
Daniel P. Friedman, Robert Halstead, Chris Hanson, Christopher T. Haynes,
Eugene Edmund Kohlbecker, Jr, Donald Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay Sussman and Mitchell Wand:
“Revised5 Report on the Algorithmic Language Scheme”. hosc, Vol. 11, no. 1,
pp. 7–105. August 1998.

5. Oleg B. Kiselyov: and-let*: an and with local bindings, a guarded let* special
form. March 1999. http://srfi.schemers.org/srfi-2/.

6. Oleg E. Kiselyov: “A Better xml Parser through Functional Programming”. In:
4th International Symposium on Practical Aspects of Declarative Languages, Vol.
2257 of lncs. Springer. 2002.

7. Oleg E. Kiselyov: xml and Scheme. September 2005. http://okmij.org/ftp/

Scheme/xml.html.
8. Leslie Lamport: LATEX. A Document Preparation System. User’s Guide and Ref-

erence Manual. Addison-Wesley Publishing Company, Reading, Massachusetts.
1994.

9. Kirill Lisovsky and Dmitry Lizorkin: “xml Path Language (XPath) and its func-
tional implementation SXPath”. Russian Digital Libraries Journal, Vol. 6, no. 4.
2003.

10. Kirill Lisovsky and Dmitry Lizorkin: “xslt and XLink and their implementation
with functional techniques”. Russian Digital Libraries Journal, Vol. 6, no. 5. 2003.

11. Oleg Parashchenko: XSieve: extending xslt with the roots of xslt. 2006. http:
//xmlhack.ru/protva/xtech2006-paper.pdf.

12. Oren Patashnik: BibTEXing. February 1988. Part of BibTEX’s distribution.
13. Erik T. Ray: Learning xml. O’Reilly & Associates, Inc. January 2001.
14. Olin Shivers: List Library. October 1999. http://srfi.schemers.org/srfi-1/.
15. W3C: xml Path Language (XPath). Version 1.0. w3c Recommendation. Edited

by James Clark and Steve DeRose. November 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116.

16. W3C: xsl Transformations (xslt). Version 1.0. w3c Recommendation. Edited by
James Clark. November 1999. http://www.w3.org/TR/1999/REC-xslt-19991116.

