
JAG: JML Annotation Generation for Verifying
Temporal Properties�

Alain Giorgetti and Julien Groslambert

Université of Franche-Comté - LIFC,
16 route de Gray - 25030 Besancon cedex France

{giorgetti, groslambert}@lifc.univ-fcomte.fr

Abstract. We present a tool for verifying temporal properties on Java/
JML classes by generating automatically JML annotations that ensure
the verification of the temporal properties.

1 Introduction

We present JAG, a JML (Java Modeling Language) annotation generator for ver-
ifying temporal properties. JAG consists of a translator that transforms formulae
expressed in a temporal language dedicated to Java - first introduced in [7] - into
JML annotations that ensure the satisfaction of the temporal formulae.

JML (Java Modeling Language) [5] is a specification language for Java devel-
opped (by G.T. Leavens) at IOWA State University. JML annotations are intro-
duced as Java comments using the key character ’@’. The main annotations are
invariant, constraint, requires and ensures. An invariant clause defines
a property that must be satisfied in all visible states of the class, i.e., states be-
fore the invocation or after the termination of a method. An history constraint
relates the value of the current state and the one of the pre-state denoted with
the key word \old. Methods are described with preconditions (requires) and-
postconditions (ensures). JML allows to declare specification variables (ghost)
which can be assigned using a set clause.

The JML temporal logic extension [7] is inspired by Dwyers Specification
Pattern [4]. It can deal with exceptional termination of methods and can express
both safety and liveness properties. The semantics of the temporal formulae and
the translation rules are given in details in [7] for safety properties and in [1] for
liveness properties.

Take the example of a buffered transaction system (Fig. 1) encoded in Java,
with a method beginTransaction(), which starts a new transaction, two meth-
ods commitTransaction() and abortTransaction() to respectively validate
and abort (rollback) the current transaction and a modify() method which
writes the modification in a buffer. We would like to verify on this Java class
the following security properties describing the behavior of the class: (i) the
buffer must be empty before beginning a new transaction and (ii) each started
transaction must terminate.
� Research partially funded by the french ACI GECCOO.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 373–376, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

374 A. Giorgetti and J. Groslambert

package example.transacSystem;
public class TransactionSystem {

//@ ghost boolean trDepth = false;
//@ ghost int bufferFree;
//@ ghost int max = 100;
//@ invariant bufferFree <= max;
//@ constraint max == \old(max);
...

/*@ private normal_behavior
@ requires trDepth == false;
@ ensures trDepth == true;
@*/

public void beginTransaction() {
//@ set trDepth = true;
...

};
}

Fig. 1. A part of a JML specification: a Buffered Transaction System

The first property is a safety property (“something wrong must not happen”).
The second one is a liveness property (“under certain conditions, something good
must inevitably happen”).

These properties can be encoded as restrictions on infinite Java execution
sequences. However, it is not easy to translate them directly to JML annotations.
Therefore, we propose to designers a compact temporal logic language to express
such properties, and an automatic translation into standard JML annotations
that are directly inserted into the Java code under verification.

The properties (i) and (ii) can be easily expressed in the temporal logic lan-
guage of [7] by the following (bufferFree is the variable counting the free space
of the buffer):

(i) after commitTransaction() normal, abortTransaction() normal
\always {bufferFree == max}
\unless beginTransaction() called;

(ii) after beginTransaction() called \always true \until
abortTransaction() called, commitTransaction() called
under invariant {true} variant {bufferFree};

The first formula means that after a transaction is finished - when commit-
Transaction() or abortTransaction() terminates normally – and unless (\un-
less) a new transaction starts (beginTransaction() called), the buffer must
always (\always) be empty. The second formula means that after the start of
a transaction, the transaction must inevitably be (until) finished by a com-
mit or a rollback. The second formula is completed with a variant clause
which is a Java expression returning a natural number. This variant must de-
crease each time a method is called until the method commitTransaction() or
abortTransaction() is invoked. Notice also that there is a under invariant
keyword, here set to true, that allows to define a local invariant, that permits
to express an extra hypothesis for the liveness proof.

2 Description of the Tool

The JAG tool parses a Java file - possibly already JML annotated - with the
Iowa State University JML tools parser and takes as other input a file containing
temporal formulae (Fig. 2).

JAG: JML Annotation Generation for Verifying Temporal Properties 375

file

source

JAVA/JML JAVA/JML

syntax

abstract

tree

Annotation

generation
file

creation

Output

formulae

Temporal

file

Parsing

Parsing

Temporal

tree
syntax

abstract

formulae internal

transformations
Primitives

Java/JML

file

with

annotations

Fig. 2. Internal Structure of the Tool

Translating Temporal Formulae into Intermediate Primitives. The tool
reduces each temporal property into one or more intermediate primitives that
are semantically equivalent [7, 1]. The Inv primitive represents the safety part of
a property. The Loop primitive represents the liveness part of a property. The
Witness primitive represents special past marker on the class (for example to
know if a method has already been called during the execution).

Translating Intermediate Primitives into Standard JML Annotations.
Each Inv primitive is translated into a JML invariant. Each Loop is translated
into a set of invariants and history constraints that imply the decrease of
the variant and the deadlockfreeness of the system. Each Witness is translated
as a JML ghost variable.

The tool generates an output file including the original file enriched with the
generated JML annotations. This file can be used with other JML tools [2] to
validate or prove the temporal formulae.

Trace Preservation. The tool is able to keep the trace of the generated an-
notations, i.e. it is possible, given a generated annotation, to find the original
intermediate primitive and the original temporal property.

3 Experimental Results

The tool has been used on several examples. Table 1 summarizes the results
obtained with the JACK [3] tool as back-end theorem prover.

Table 1. Results

Example Name Number of temporal
properties to verify

Number of line annota-
tion generated

Number of PO (auto-
matically proved)

TransactionSystem 2 18 92 (91)
AtmTransaction 2 21 171 (171)

376 A. Giorgetti and J. Groslambert

4 Conclusion

The JAG tool generates JML annotations that imply the satisfaction of temporal
properties (both liveness and safety) of the language defined in [7]. The partic-
ularity of this work is that the annotations are standard and can be used with
all the tools taking JML files as an input. We first plan a better integration of
our tool into some back-end tools and second to extend our work to other spec-
ification input, like PLTL formulae. JAG can be downloaded from the following
page: http://lifc.univ-fcomte.fr/∼groslambert/JAG.

References

1. F. Bellegarde, J. Groslambert, M. Huisman, J. Julliand, and O. Kouchnarenko.
Verification of liveness properties with JML. Technical Report RR-5331, INRIA,
2004.

2. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino, and
E. Poll. An overview of JML tools and applications. In Th. Arts and W. Fokkink,
editors, Eighth International Workshop on Formal Methods for Industrial Critical
Systems (FMICS 03), volume 80 of ENTCS, pages 73–89. Elsevier, 2003.

3. L. Burdy, A. Requet, and J.-L. Lanet. Java Applet Correctness: a Developer-
Oriented Approach. In Formal Methods (FME’03), number 2805 in LNCS, pages
422–439. Springer, 2003.

4. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specifications
for finite-state verification. In International Conf. on Software Engineering, pages
411–420. IEEE Computer Society Press/ACM Press, 1999.

5. G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: a behavioral
interface specification language for Java. Technical report, Iowa State University,
Dept. of Computer Science, 1998.

6. G. Nelson. Techniques for Program Verification. PhD thesis, Stanford University,
1980.

7. K. Trentelman and M. Huisman. Extending JML Specifications with Temporal
Logic. In H. Kirchner and C. Ringeissen, editors, Algebraic Methodology And Soft-
ware Technology (AMAST’02), number 2422 in LNCS, pages 334–348. Springer,
2002.

	Introduction
	Description of the Tool
	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

