
A Model-Based Validation Framework for Web

Services

V. Pretre, F. Bouquet, C. Lang

Laboratoire d’Informatique de l’Université de Franche-Comté
16 route de Gray

25030 Besançon CEDEX
{pretre, bouquet, lang}@lifc.univ-fcomte.fr

Résumé

Nowadays, web services are more and more used for distant services. Since
they are very present, there is an important need of validation and verification. As
for any application, human error may occur during the development process.
In order to solve this problem, we propose in this paper a certification solution
relying on model based testing. Results of tests are used to compute a mark that
qualify quality of web services operations.
This solution is then integrating in a validation framework based on an UDDI
server. In this framework, web services are tested when they declare to the UDDI
server, and the obtained marks are supplied to customers seeking for services. In
order to give concrete expression of this solution, we apply it to a blog publication
example.

1 An introduction to web services quality

Web services (we note web service “WS”, and web services “WSs”) are a
particular form of distributed software. As any other software, they are not fully
reliable, their quality may change depending on several parameters (implementa-
tion, targeted computers, networks, ...). Thus, users can not be totally confident
on results given by the WS. The aim of this paper is to solve a part of these
problems by providing certification levels based on tests.

The first part of this paper presents WS context and why users may not be
confident about these WSs. Then, we introduce solutions to solve this problem
and at last, those solutions are merged into a validation framework.

1.1 Web services

The easiest definition for a WS is “server of a client-server scheme with commu-
nication based on XML messages” [13]. In fact the more commonly used protocol
is http and messages are encapsulated with SOAP (Simple Object Access proto-
col).



The main interest of WSs is independence from proprietary technologies and
programming languages.
Using XML to describe message content allows us to be independent from a com-
mon programming language for all members of the distributed application. Thus,
we can easily describe exchanged datas without taking care about a given program-
ming language. Moreover, a XML message can, when received, be transformed in
a suitable form : class, record, . . .
The use of well known protocols (http, https) makes WSs easy to deploy since
many libraries exist to handle these protocols.

WS UDDI server

client

1 : registration

2 : research

3 : WSs list4 : communications

Fig. 1 – Life cycle of a WS

An important point in WSs is the automatic discovery, performed with UDDI
servers [9]. When a WS wants to be discovered, it declares itself to an UDDI server
using a WSDL file (Web Services Description Language) [6]. This file describes
the different methods associated to the WS, how to call them, and the type of the
result. When a WS (or any other software) needs another WS, it will request the
UDDI server, who, depending on the demand, will give back a list of compliant
possibilities and associated WSDL files.
Figure 1 shows the life cycle of a WS call using a UDDI server.

In this paper, we will use two WSs examples. The first one is a blog framework
WS. It supplies ten operations : register (permits to an user to create an account
on the framework), login (logs the user in the WS), logout (logs the user out of
the WS), create (creates a new post), save (saves the current post), prePublish

(prepares the post for publication), tag (add tags to the post), categorize (puts
the post in categories), publish (publishes the post), open (open a previously
saved post).
The second WS is a blog directory WS, which provides one operation : ping. This
operation is used by blogs to inform the directory that a new post has been publi-
shed. For this article, we do not consider the web interfaces of the blog framework
and the blog directory.

As we can see in the blog framework, some operations need other one. We
introduce now relations existing between operations.



1.2 Dependencies between operations

There exist two kinds of dependencies between operations : temporal depen-
dencies and compositions which are introduced first.

Composition : a composition is the fact that an operation acts as a client of
another one. In our example, the publish operation call the ping operation to
inform the blog directory that a new post has been published.
In this article, we consider that compositions can be of two types : those where
results produced by composed operation impact composing operation’s behaviour,
and those in which the result is not used (in our example, the success of the ping

operation has no effect on the publication).

Temporal dependency : there is a temporal dependency when an operation can
be called only if another operation has been called previously. In our example, it
is impossible to open a post if no post has been saved previously.
Temporal dependencies can be split in two categories : “at least once” and “each

time”. We consider two operations a and b, where a temporally depends of b. If
the temporal dependency is of type “at least once”, then we have to call b once,
and then we can call a as much as we want (in our example, login and register

have this kind of dependency).
If the dependency is of type “each time”, if we want to call a, we must call b

before, and this every time we want to call a (in our example, publish and create

have an “each time” temporal dependency).

These two types of dependencies have an impact on WSs quality that we
introduce now.

1.3 Web services quality

Confidence in WSs can be expressed in many ways : quality of results, compu-
ting time, treatment of private datas . . .
In this paper, we focus on the first point : quality of results. It is based on two
criteria : correctness and completness of results.

This quality depends on three parameters : development phase, network bet-
ween client and WS and relations between operations. The development phase
impact on quality result is obvious. WSs are, as any software, subjects to bugs due
to bad implementation.
Even if the WS used is fully reliable, network can lead to quality problems. Results
produced by the WS are right, but during transport some packets may be lost or
corrupted.
The last source of quality problems is relations between WSs operations. In most
compositions cases, the composing operation uses composed operation’s results
to compute its own ones. That leads to errors propagation if composed opera-
tions produces wrong results. Similar problems rise with temporal dependencies :
the difference is that results are not directly shared from operation to operation,
but passes through a third party (the customer or server side, in a database for
example).



To solve this problem, we propose a solution based on WSs certification. First,
we introduce the certification process, and then how we apply it in our validation
framework.

2 The certification process

The certification process we propose is done in four steps :
– modeling the WS ;
– generating tests from the model ;
– executing the tests ;
– using results of those tests for certification.
Now, we present each of those steps.

2.1 Modeling the web service

Related modeling solutions

Several tools have been used in order to model WSs (with or without tests pur-
pose). There exists standard languages in WSs : WSDL which describes the WS,
and BPEL which allows to model compositions made by a WS.
Those languages are specialised and this is a limitation. To model the whole WS
behaviour, we need at least three models : one written with WSDL for its descrip-
tion, one using BPEL describing its communications with other WSs and a third
one showing its temporal evolution.

For this third model, a solution is to use FSM1 like in [?]. This article presents
an enhancement of WSDL, in which evolution of the WS is modeled using FSM.
This article also proposes a procedure to transform WSDL into EFSM (extended
FSM). Another system of derivation has also been proposed in [8].
FSM and WSDL is not a complete solution, as it does not handle compositions
(unless a third model is added, such as BPEL). UML based solutions could be able
to handle those three aspects of a WS.

Merging UML and WSs have already been subjects to researches. In [?], rela-
tions between UML meta models and WSs dedicated languages is done. No guide
for models is introduced, contrary to the one which can be found in [?]. The
proposed solution is not relevant for our test tool for two reasons : behaviour of
WSs is not modeled (neither temporal evolution nor compositions) and the test
tool can not understand used models.
UML model for testing WSs are also introduced in [?]. A component diagram is
used to model the different parts of the WS, and STS2 describes the behaviour of
the WS. UML has also been proposed in [5], in order to model web sites (and not
WSs). This solution cannot be directly applied to WSs, but some sub parts may
be useful, such as sequence diagrams which model interactions between users.
Another UML modeling solution is proposed in [?]. The goal is not to produce
tests, but to generate OWL-S files which models the behaviour of a WS.

1Finite State Machines
2Symbolic Transition System



We present how to create this kind of model for WSs. This is done in four
steps, each one modeling a part of the WS : data it uses, behaviour of the WS,
its temporal evolution and its initial state. The first step is obvious. It is creation
of a class diagram which is used to model data used by the WS. The second step
concern behaviours.

Modeling web services operations behaviour

The class diagram is also used to represent WSs. Each WS (the WS under test
and those which may be composed) is modeled as a class, and each operation is
modeled as a method of this class.
The class name is based on the WS URL (www.example.com/onlineStore/ for
example). To know which WS is the subject of the test, the class name is prefixed
with “sut : :”.

When classes are set up, the vendor has to create the OCL code which models
operations behaviour. There exists two paradigms to create OCL code. The first
one uses pre-condition to forbid invocation of the operation if the system is not
in the right state (defensive modeling). The second one transforms pre condition
into “if” statements in post conditions, in order to raise error if invocation has
not been done at the right time (offensive modeling).
Table 1 shows OCL code for the publish operation of our example.

LTD uses post conditions to compute test goal. In the previous example, only
one test goal will be produced if we use defensive modeling (the test will check
if the article is added to the cart). With the second modeling solution, three test
goals will be produced : two which activate errors behaviour, and one for the suc-
cess case.
Offensive modeling is more adapted for test, as all behaviour of operations are
checked.

At this time of modeling, we know how each operations works, but we can not
know how the service evolves. We explain now how to model this evolution.

Tab. 1 – Defensive and offensive modeling
Defensive modeling

Pre Post

self.post.state = postState::prePublished self.post.state = postState::published
Offensive modeling

Pre Post

if (self.post.state = postState::prePublished) then

self.post.state = postState::published
bresult = publishErr::ok

else

result = publishErr::badState
endif

Modeling temporal evolution

As the first step of modeling, modeling temporal evolution of a WS is not man-
datory for all WSs. This step is only needed for stateful3 WSs.

3A stateless WS has no temporal evolution. Behviour of a stateful WS will change depending on



To model the temporal evolution of a WS, we use a state-chart diagram. It has to
represent every sequences of operations that can be done by a customer, not only
a nominal case.

Figure 2 represents the full state-chart and a nominal one for our example (for
readability reasons, only name of operation called are written, not the parameters).
State chart must be complete for two reasons : produced tests cover all behaviours
of the WS under test, and all temporal dependencies will be found.
At this time, the model is almost finished. The last step is to instantiate data
modeled in the first phase of modeling.

serviceStarted

login()
userLogged

create()
postCreated

save()
postSaved

prePublish()
postPrePublished

tag()
postTagged

publish()
postPublished

logout()

serviceStarted register()

logout() login()

userRegistered

login()

userLoggedIn

create()open()

postCreated

prePublish()

save()
open()

postPrePublished

publish()

create()

categorize()

tag()open()

postPublished

create()

open()

[post.state = draft]

[post.state = pre]

[post.state = pub]

[post.state = null]

A nominal state-chart The full state-chart

Fig. 2 – Comparison between a nominal and the full state chart

Modeling initial state

Initial state of the system is an instance diagram. In its minimal version, it must
at least contain one instance of the class which models the WS.
In the first step of modeling, classes have been created to represent data used,
but no real value have been stored. The goal of the initial state is not only to
represent every data, but to facilitate test generation.
There is no need to represent all data, that would be useless. The most important
thing is to have representative data.

Once produced, this model is used to generate tests.

2.2 Generating and executing tests

We decide to validate WSs with a model based approach. The main reasons
are :

– validation must be done in the normal conditions of use (the same that a
customer have when he uses a WS) ;

customer’s actions



– team experience in the following area :
– model based testing [2] ;
– reification process ;
– distributed software.

We use LTD (Leirios Test Designer 4) with this model to produce the tests.
The first stage is the computation of behaviour of the model. A behaviour is :

– a transition of the statechart diagram ;
– a case described in OCL clauses.
We associate a test target to each behaviour. The second stage consists in

computing a sequence of method’s call to put the system from the initial state to
a state which activates the test target.
The last stage is to translate (reification process) the abstract test sequence into
a concrete call on the WS. So, we compare the result given by model (oracle) with
the result given by WS to decide if the test is correct (verdict). The comparison is
fully automatic because verdict and oracle are translated during reification process.

An important question about test execution is “Who will execute the tests ?”.
To answer this question, we see three solutions :

– the WS vendor executes tests himself : the advantage of this solution is that
tests have to be run only once. But it gives no guarantee for customers, the
vendor can lie on results of the tests ;

– the customer runs the tests before sending its datas : this solution is greedy
in computing power and bandwidth, constraining WSs to execute redundant
tasks, producing unused results. Another problem is that WSs may not be
free, and tests will cost to customer. The advantage of this solution is that
customer is sure of the WSs quality ;

– a third entity takes in charge the validation : this solution is thrifty in band-
width and computing power, as tests are only executed once. But the cus-
tomer confidence problem is just shifted. In this solution, the testing entity
has to prove its neutrality toward WSs vendors.

As shown before, model based testing solutions for WSs have already been
proposed in [?] or [7], but it is not the only way to test WSs. The solution intro-
duced in [10] presents a test system based on pool of similar WSs. All operations
are called with the same parameters, and the most common answer is considered
as the right one. We did not use this solution for two reasons : the first one that
we may not be able to find multiple similar operations, and the fact that most
operations produces the same results does not prove that this result is the right one.

So, we present our solution to give informations on WSs for futur customers.

2.3 Certifying quality

Two solutions are known for ensuring quality. The first one is introduced in [3].
In this paper, only WSs which are compliant with their requirements are published
on UDDI server. This solution ensures customers that results produced by WSs
they found on the UDDI server are safe, but it reduces the offer of WSs.
A second solution would be to have an evaluation of each WSs, and give it to
customer. According to our knowledge, this solution has not yet been set up for

4www.leirios.com



WSs, but exists in the component area. In [1], about forty criteria are used to
evaluate components. A survey of quality insurance for component is done in [4].
A certification based on test is proposed, in which certificaton is done when com-
ponent is free of bugs.

We have chosen the second solution, because it permits to customer to choose
the level of quality they want, and it does not impoverish the offer of WSs.
We exhibit now our solution for marking WSs.

The first step is to give each WS’s operation it own mark. We first thought
to a system based on four marks : 0 if the operation has not been tested yet,
1 if all tests failed, 2 if only some tested failed and 3 if all tests are succesfull.
This solution was simple and permitted to customers to quikly identify quality of
WSs. But the problem is that the mark 2 is not really representative. If we take
for example two operations a and b doing the same work. For each operation, ten
tests are generated and executed : one test fails for a, and seven fails for b. The
two operations will obtain the mark 2, even if b is less efficient than a.
To solve this problem, we decided to use percentage of successfull tests as mark.
This makes marks more representative of tests results, and customers can more
easily choose between two concurrent operations. To represent the 0 mark, a ne-
gative mark is given to the operation, in order to dissociate this case to the case
in which all tests have failed.

This approach is theoritical, and needs an implementation to be validated. We
introduce now our validation framework based on this solution.

3 Our validation framework

Our validation framework is based upon an UDDI server. UDDI based solution
has first been introduced in [11]. This idea was also used in [3], in which a UDDI
server tests WSs before their publication. It tests WS behaviour on client side,
but also uses proxies to know how the WS under test acts toward WSs in case of
composition. Another testing UDDI server is introduced in [12]. Contrary to our
solution, it is not a model of the WS which is used to test it, but a set of scenarios
describing use cases.
For our solution, we chose to rely on a UDDI server because it is used by both
customers (who seek for WSs) and WSs (which wants to be known). The second
reason is that UDDI server is neutral towards customers and WSs, and can stand
as the third entity described before for tests execution.
Figure 3 presents an overview of our framework. We present now some steps of the
framework life cycle. Phases 1 and 3 are not discussed, as they are not different
that with a classical UDDI server (except declaration, but the only difference is
that the UML model is given with the WSDL file). Phases 2 and 4.3 have already
been presented.
We introduce now the step 4.1 : dependencies discovery.



Vendor

1 - Deployment

2 - Test model production

3 - Registration

Web service

UDDI server

4.1 - Dependencies discovery
4.2 - Pools computation
4.3 - Tests generation

5 - Tests execution

Customer

6 - Search services

7 - Services certification

Fig. 3 – From web service deployment to customer certification

3.1 Discovering dependencies

Dependencies are extracted from the UML model given by the WS’s vendor.
First, compositions are seeked.

Extracting compositions

Compositions are found in operation post conditions. To discover them, we use a
regular expression on OCL code which finds operation calls. Those calls represents
synchronous compositions, in which results produced by composed operation are
used.
Only those compositions impact on results’ quality, as they can be responsible of
error propagation. We do not need to change modeling to handle other composi-
tions.

Now, compositions are found and our tool seeks for temporal dependencies.

Finding temporal dependencies

Temporal dependencies can not be automatically found in the UML model.
We first thought that the state-chart could be used to find “each time” temporal
dependencies : this is true in some cases (when a sequence of operations is written
in the state-chart, and that there is no way to get into the sequence), but not
for all. If we take a look at the state-chart of our example (figure 2), we can see
that if there were not the open operation, the sequence create - prePublish -

publish could be automatically found, and thus temporal dependencies between
those operations discovered.

To solve this problem, our proposal is to change the model. Temporal depen-
dencies will be described by a set of sequence diagrams, each of them specifying
a temporal dependency. Figure 4 depicts the temporal dependency between ope-
rationslogin and register.
All these diagrams must belong to a package named “temporalDependencies”.
This avoids our tool to explore sequences diagrams that role is not to describe
temporal dependencies.

Table 2 show dependencies found using our method. Using those dependencies,
we can compute, for each operation, the pool of operations on which it depends.



Customer Web service
register(username, password)

login(username, password)

Fig. 4 – Temporal dependency declaration

3.2 Creating pools of operations

For each operation, we define a pool, which is composed of all operations on
which it depends : for each operation x, we define the pool Px. We consider S as
the set of all known operations, and x a member of it.
The algorithm we propose to compute Px can be splitted in two steps. The first
one is to define the R dependency graph : vertices are operations, and each edge
represents a relation between two operations. These edges are oriented, according
to the relation’s direction (for example, if a composes b , then there will be an
edge starting from the vertice representing the operation a to the vertice repre-
senting the operation b). Figure 5 represents the graph made from our example.
The second step is to compute the transitive enclosure of R to produce the R′

graph. For each operation x, we define Px as the set of all neighbours of x in R′.

Using this solution, the pool of an operation x contains all operations on which
it depends, directly or not.

Now, we apply our pool reckoning on our example. Table 2 presents relations
linking operations and pools computed using these relations. Knowing this, we can
start validation for each operation.

Tab. 2 – Relations between operations and pools of dependencies (* indicates an “each
time” temporal dependency)

Operation Composes Temporally depends on Pool
Blog framework

register - - -
login - register register
logout - login login, register
create - login login, register
save - create create, login, register
open - save save, create, login, register

prePublish - create create, login, register
tag - prePublish* prePublish, create

login, register
categorize - prePublish* prePublish, create

login, register
publish ping prePublish* ping, prePublish, create

login, register
Blog directory

ping - - -

These pools are used to compute marks for each operation. To compute those



marks, we first need to test operations.

3.3 Tests execution

As explained before, tests are generated from the UML model. These tests
are given to testing agents, which are distributed through the Internet. We have
chosen agents because of their communication habilities and their capability to
travel on the network. These capabilities are useful to prevent overloading of a
single computer executing tests.

Order of test is defined from relations linking operations. First, we isolate ope-
rations that have no dependencies. They will be tested first.
The second test wave is composed of operations which only depend on already
tested operations. We repeat this until all operations have been tested. Dividing
operations into test waves can be done because there can not be cycles in the
dependency graph (their existence would lead to infinish loops - a calls b, which
calls a . . .- or impossible calls - a can not be called if b has not been called yet,
which can not be used if a has not be used before . . .).

Figure 5 represents the order of test in our example. Edges are the relations
between operations, and each layer corresponds to a testing wave (the lower layer
is the first test wave, the layer upon is the second wave and so on). Inside a testing
wave, order of test has no importance.

ph.photoFrame

ph.rotate ph.crop ph.resize ph.merge

ph.upload math.matrixSub

Fig. 5 – Graph of dependencies between operations, sorted to represent testing waves

Once all tests are executed, each agent sends results to the coordinator agent.
It uses these results and compare them to oracle computed from the model. Re-
sults of these comparisons are used to give a temporary mark for each operation. In
order to have the real mark, the coordinator agent computes pool for each service.
For each pool, the mark given is equal to the lowest mark of all operations included
in the pool. In this way, if an operation is unreliable, its mark influences the mark
of the pool, even if it does not directly influence other operations depending of
it. This makes customers able to see that there is a problem. Once all pools and
marks computed, they are used to update marks given to operations.
For our example, results of tests and obtained marks by operations are described
in table 3.



Tab. 3 – Marks obtained by operations and pools
Operation Single mark Pool mark

Online photo tool
ph.upload 100 100
ph.resize 100 100
ph.crop 73 73

ph.rotate 40 40
ph.merge 90 90

ph.photoFrame 45 40
Mathematical WS

math.martixSub 100 100

Now, we present the way the framework interacts with customers.

3.4 Finding and using WSs

When a customer searches for an operation to use, he gives its description to
our UDDI server, like in a normal customer-UDDI conversation. But he also gives
his requirements :

– wM , the mark wanted for operations ;
– mM , the minimal mark for operations it there exists no operation corres-

ponding the wM .
When our UDDI server receives the request, it find in the database all ope-

rations corresponding to the description. Then it filters this list to obtain only
operations having a mark above wM . If this filters returns an empty list, a new
filter is ran on to find operations aving a mark above mW .
The produced list is sent to the customer, who picks the most relevant operation.
Then he acts with the WS in a classic way.

4 Conclusion and future works

In this paper, we have presented a solution to solve confidence problem bet-
ween WSs and customers. We first introduced why customers can not trust WSs.
Then, we proposed a theoritical approach to solve this problem, and at least a
framework implementing this method.
The theoritical approach relies on model based testing. First, we have proposed
an UML modeling solution which presents two major interests. First, it uses UML
which is a wide spread language. This may facilitate the use of our method by
industrial actors. The second advantage is that our model not only describes the
functional behaviour of the WS, but also dependencies existing between services.
Thus, it is not mandatory to produce three models (one for behaviour, another for
composition and a last one for temporal dependencies). This implies a time gain
during modeling, but the produced model can not be as expressive as dedicated
one. A solution could be to introduce extensions to UML, but models would not
be as simple to create as nowadays.



This model is then used to produce tests. Result of those tests are then used to
produce a mark for each operations : the mark represents the successful tests ratio.
This permits to customer to easily evaluate quality of an operation.

The theoritical approach has been then brought to a real validation framework,
based on an UDDI server. When a WS declares to it, he joins an UML model to
its WSDL description. This UML model is used to discover dependencies between
WS operations : those dependencies are then used to create pools of dependent
operations and to know order in which tests have to be executed. Then, we use
the UML model with a testing tool (LTD), to produce tests which are executed
by testing agents dispatched throughout Internet. They send results of the tests
to a coordinating agent which computes the mark for each operation.
When a customers asks to our UDDI server for WSs, it sends the list of correspon-
ding operations and their marks. This makes the customer aware of the quality of
the operation he is going to use.

At this time, the framework is not fully functionnal. We already have a tool for
dependencies discovery from UML model, which has been tested on real industrial
cases.
We are currently working on a second tool which aims to merge different WSs mo-
dels. This tool will be used when we have to test a WS which operates distributed
compositions (operations involved in the composition do not belong to the same
WS). Once this tool produced, we will focus on a automatic reification system. It
will be able to transform abstract tests produced by LTD into test agents, wich
will execute the tests.

Références

[1] Alexandre Alvaro, Eduardo Santana de Almeida, and Silvio Romero de Le-
mos Meira. Quality attributes for a component quality model. In Tenth In-
ternational Workshop on Component-Oriented Programming, Glasgow, Scot-
land, 2005.

[2] E. Bernard, F. Bouquet, A. Charbonnier, B. Legeard, F. Peureux, M. Utting,
and E. Torreborre. Model-based testing from UML models. In MBT’2006,
Model-based Testing Workshop, INFORMATIK’06, volume P-94 of LNI, Lec-
ture Notes in Informatics, pages 223–230, Dresden, Germany, October 2006.
ISBN 978-3-88579-188-1.

[3] Antonia Bertolino and Andrea Polini. The audition framework for testing
web services interoperability. In EUROMICRO-SEAA, pages 134–142. IEEE
Computer Society, 2005.

[4] Xia Cai, M. R. Lyu, Kam-Fai Wong, and Roy Ko. Component-based software
engineering : technologies, development frameworks, and quality assurance
schemes. In APSEC ’00 : Proceedings of the Seventh Asia-Pacific Software
Engineering Conference, page 372, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[5] Ana R. Cavalli, Stéphane Maag, Sofia Papagiannaki, Georgios Verigakis, and
Fatiha Zäıdi. A testing methodology for an open software e-learning platform.
In EDUTECH, pages 165–174, 2004.



[6] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawa-
rana. Wsdl 1.1. http ://www.w3.org/TR/wsdl, 2001.

[7] Philip Mayer and Daniel Lubke. Towards a bpel unit testing framework. In
TAV-WEB ’06 : Proceedings of the 2006 workshop on Testing, analysis, and
verification of web services and applications, pages 33–42, New York, NY,
USA, 2006. ACM Press.

[8] Avik Sinha and Amit Paradkar. Model-based functional conformance testing
of web services operating on persistent data. In TAV-WEB ’06 : Proceedings
of the 2006 workshop on Testing, analysis, and verification of web services
and applications, pages 17–22, New York, NY, USA, 2006. ACM Press.

[9] OASIS UDDI specification TC. Uddi version 3.0.2.
http ://uddi.org/pubs/uddi v3.htm, 2005.

[10] Wei-Tek Tsai, Yinong Chen, Raymond A. Paul, Hai Huang, Xinyu Zhou, and
Xiao Wei. Adaptive testing, oracle generation, and test case ranking for web
services. In COMPSAC (1), pages 101–106, 2005.

[11] Wei-Tek Tsai, Raymond A. Paul, Zhibin Cao, Lian Yu, Akihiro Saimi, and
Bingnan Xiao. Verification of web services using an enhanced uddi server. In
WORDS, pages 131–138. IEEE Computer Society, 2003.

[12] W.T. Zhang Tsai, Y. D., Chen, H. Huang, R. Paul, and N. Liao. Scenario-
based web service testing with distributed agents. In IEICE Transaction on
Information and System, pages 2130–2144, 2003.

[13] Werner Vogels. Web services are not distributed objects. IEEE Internet
Computing, 7(6) :59–66, 2003.


