
Generating Security Tests
in Addition to Functional Tests

∗

Jacques Julliand, Pierre-Alain Masson, Régis Tissot

LIFC — Laboratoire d’Informatique de l’Université de Franche–Comté

16, route de Gray F–25030 Besançon, France

{julliand, masson, tissot}@lifc.univ-fcomte.fr

ABSTRACT

This paper is about generating security tests, in addition
to functional tests previously generated by a model-based
testing approach. The method that we present re-uses the
functional model and the adaptation layer developed for
the functional testing, and relies on an additional security
model. We propose to compute the tests by using some test
purposes as guides for the tests to be extracted from the
models. We see a test purpose as the combination of a secu-
rity property and a test need issued from the know-how of
a security engineer. We propose a language based on regu-
lar expressions for the expression of such test purposes. We
illustrate our approach with experiments on IAS.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Reliability, Security

Keywords

Model Based Testing, Test Purposes, Security Properties,
Test Needs

1. INTRODUCTION
Generating smart tests for security policies is a challenging

task, which is not fully addressed by nowadays test gener-
ation techniques. We consider in this paper some security
properties expressed w.r.t. a system, and our intention is to
ensure that these security properties are specifically tested.
We focus on access control properties.

∗This work is partially funded by the French National Re-
search Agency ANR (ANR-05-RNTL-01001) and the Région
Franche-Comté.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST’08, May 11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-003-2/08/05 ...$5.00.

We are in a model based testing (MBT) framework [10]. A
formal functional model of the system is written, from which
tests are extracted by means of a selection criterion. As the
model is an abstraction of the implementation under test
(IUT), the tests are concretized by means of an adaptation
layer which translates each operation call of the model into
an executable script on the IUT. The verdict of the tests is
obtained by comparing the results of the IUT with the ones
predicted by the model. These tests directly activates the
targeted functionality. They are functional tests. Testing
the security of a system requires more than functional test-
ing. The system must be proved to remain secure against
tortuous scenarios of use or attack.

Our contribution in this paper is twofold. Writing a for-
mal model and an adaptation layer is an important effort.
We show that they can be re-used with little supplementary
effort to compute additional security tests. Additionally, our
security tests rely on some test needs expressed by security
engineers w.r.t. security properties. They describe tortuous
situations in which security could be violated.

We propose to write an additional model dedicated to
security, which is much simpler to write than the full func-
tional model, as it concentrates only on the security require-
ments. The tests are computed form the security model by
using a test purpose as a selection criterion. We see test
purposes as sequences of operation calls, that correspond to
scenarios that exercise a security property according to a
test need. The tests issued from the security model are then
“replayed” on the functional model, to bring them to the
same abstraction level as the functional tests. This allows
re-using the existing adaptation layer to concretize the tests.

We formally describe a test purpose as a test pattern, and
we present in this paper a language dedicated to the expres-
sion of such test patterns.

Our approach have been experimented in the framework
of the french RNTL POSE project. We have generated tests
for access control properties of IAS, a smart card platform.

The IAS is presented in Sec. 2. Section 3 describes our
security testing process. Our language for describing test
patterns is presented in Sec. 4. We compare our approach
to related works and conclude in Sec. 5.

2. OVERVIEW OF IAS
This work was done in the framework of the french RNTL

POSE1 project, that brings together industrial (GEMALTO,
LEIRIOS, SILICOMP/AQL) and academic (LIFC/INRIA

1http://www.rntl-pose.info

Figure 1: A sample IAS tree structure

CASSIS project, LIG) partners. The problematic is the
conformity validation of a system to its security policy, es-
pecially for smart cards.

Experiments have been made with a real size industrial
application, the IAS platform. Prior to the project, a func-
tional model in B had been written by the LIFC and Leirios,
from which functional tests had been computed and ex-
ecuted on an IAS implementation by Gemalto. We have
completed these tests with security ones.

IAS stands for Identification, Authentication and electro-
nic Signature. It is a standard for Smart Cards developed
as a common platform for e-Administration in France, and
specified [3] by GIXEL2. IAS provides services to the other
applications running on the card.

IAS conforms to the ISO 7816 standard. The file system of
IAS is illustrated with an example in Fig. 1. Files in IAS are
either Elementary Files (EF), or Directory Files (DF), such
as file_fid_01 and file_fid_02 in Fig. 1 . The file system
is organized as a tree structure whose root is designed as
MF (Master File). An application is assigned a specific DF
on the card, which is called an ADF (Application Directory
File).

The Security Data Objects (SDO) are objects of an appli-
cation that contain highly sensible data such as PIN codes
(see for example pin2 in Fig. 1) or cryptographic keys, that
can be used to restrict the access to some of the data of the
application.

The services provided by the IAS module can be invoked
by means of various APDU3 commands.

Commands of IAS are for creating objects on the card,
changing the life cycle state of these objects, setting the val-
ues of some attributes or navigating through the file system.

IAS responds to a command by means of a status word
(i.e. a codified number), which indicates if the APDU com-
mand has executed correctly. If not, the status word codifies
the error that occurred.

In addition to the existing B functional model of IAS,
we have written a security model in B, focusing on the ac-
cess control mechanisms. The functional model was approx-
imately 15500 lines long, whereas our security model was
1000 lines long.

3. SECURITY PROPERTY BASED TEST-

ING PROCESS
We illustrate in this section the concepts of security prop-

erty, test need and test purpose, mentioned in Sec. 1. Then
we describe our process for generating security tests.

2http://www.gixel.fr - it is the trade association in France
for electronic components industries
3Application Protocol Data Unit - it is the communication
unit between a reader and a card; its structure conforms to
the ISO 7816 standards

3.1 Test Needs and Test Purposes
An access control security property for IAS states for ex-

ample that to write inside a DF, a given access condition has
to be true, otherwise the writing is refused. The functional
tests will exercise the property in two separate situations:
one where the writing succeeds, and one where it fails (pos-
sibly due to the access condition).

Security engineers want to test the property in other situ-
ations. For example, they think of the case when the access
rule is first true and then becomes false. The test need is
that the previous true value for the access rule has no side
effect at the moment of writing.

A test purpose corresponding to this test need is to: reach
a state where the access rule is true; perform the writing op-
eration4; reach a state where the access rule is false; perform
the writing operation.

This example illustrates that one often wants to express a
test purpose as both states to be reached and operations to
perform. We present in Sec. 4 a language for expressing test
purposes by means of states and actions. The formalization
of a test purpose is a test pattern.

In our process, we use a test pattern as a selection criterion
to compute abstract test cases from the security model. An
abstract test is a sequence of parameterized operation calls
from a (functional or security) model. The parameters are
instantiated and the test indicates the expected result of
each operation call, thus providing an oracle for the concrete
tests executed on the IUT.

We need a test generation tool able to compute sequences
of operation calls with instantiated parameters for either
reaching a particular state of the model, or enabling a par-
ticular operation of the model. We have used the LTG test
generation solution [4] from Leirios, and we have used the
test patterns as guides from which the tests have been com-
puted.

3.2 Process for Generating Security Tests
Our process for generating security tests uses an opera-

tional security model as an oracle and a test purpose as a
selection criterion. The process is made of four steps as
shown in Fig. 2:

1. generation of a set of symbolic abstract security tests
SST from a test purpose TP and the Security Pol-
icy Model SPM. The security parameters are instan-
tiated, while the purely functional parameters remain
abstracted.

2. functional valuation of the symbolic abstract security
tests into SAVT from SST and the Functional Model
FM. The conformance between the functional and se-
curity status words is checked w.r.t. a mapping R.

3. concretization of the tests from SAVT into SCT thanks
to an Adaptation Layer AL which maps the operations
and data of the model to the operations and data of
the IUT.

4. execution of each concrete test of SCT on the IUT.
The verdict is given by comparing the outputs from
the IUT and the ones predicted from the model.

4this is for making sure that before the loss of the right to
write, the writing operation was indeed possible, and not
refused for any other reason.

Figure 2: Security tests generation process

This process completes the model-based generation of the
functional tests. We re-use the FM, the AL and the execu-
tion ground installation of the concrete tests. The security
engineer has to design the SPM and the test purposes TP.
He is only concerned by the security policy specification,
and does not need to know the remainder of the functional
specification.

4. LANGUAGE FOR TEST PATTERNS DE-

SCRIPTION
In this section, we introduce the language that we have

designed to formally express the tests purposes as test pat-
terns. It is structured as three different layers: model, se-
quence, and test generation directive.

The model layer makes the language generic w.r.t. the
system modelling language, by describing the operation calls
and the state properties in the terms of the SPM. The se-
quence layer is based on regular expressions and allows to
describe test scenarios as sequences of operation calls leading
to target states. The test generation directive layer allows
to specify some coverage criteria for the test generation tool.

4.1 Syntax of the Model Layer
It is given in Fig. 3. The rule SP describes access condi-

OP ::= operation name

|$OP

|$OP ”\{”OPLIST”}”

OPLIST::= operation name

|operation name”,”OPLIST

SP ::= state predicate

Figure 3: Syntactic Rules for the Model Layer

tions as state predicates over the state variables of the SPM
(expressed directly in the modelling language). The rule OP

allows to describe the operation calls:

• either by indicating which operation is called,

• or by the token $OP meaning “any operation is called”,

• or by $OP\{OPLIST} meaning “any operation is called
but one from the list OPLIST”.

4.2 Syntax of the Test Generation Directive
Layer

This part of the language is given in Fig. 4. It allows to
specify guidelines for the test generation step. We propose
two kinds of directives.

The rule CHOICE introduces two operators denoted as |
and ⊗ for covering the branches of a choice. Let S1 and
S2 be two test patterns. The pattern S1 | S2 tells the test

CHOICE ::=”|” | ”⊗”

OP1 ::=OP | ”[”OP”]”

Figure 4: Syntactic Rules for the Test Generation

Directive Layer

generator to generate tests for both the pattern S1 and the
pattern S2. S1 ⊗ S2 tells the test generator to generate tests
for either the pattern S1 or the pattern S2.

The rule OP1 tells the test generator to cover one of the
behaviours5 of the operation OP. It is the default option.
The test engineer can also ask for the coverage of all the be-
haviours of the operation by surrounding its call with brack-
ets.

4.3 Syntax of the Sequence Layer
This part of the language is given in Fig. 5. The rule SEQ

SEQ ::= OP1 | ”(”SEQ”)” | SEQ”;(”SP”)”

| SEQ ”.”SEQ

| SEQ REPEAT

| SEQ CHOICE SEQ

REPEAT::= ”*” | ”+” | ”?”

| ”{”n”}” | ”{”n”,}” | ”{,”n”}” | ”{”n”,”m”}”

Figure 5: Syntactic Rules for the Sequence Layer

is for describing a sequence of operation calls as a regular
expression.

A step of a sequence is either an operation call as denoted
by OP1 (see Fig. 4) or an operation call that leads to a state
satisfying a state predicate, as denoted by SEQ ;(SP).

Sequences can be composed by the concatenation of two
sequences, the repetition of a sequence or the choice between
two sequences. We use the usual regular expression repeti-
tion operators, augmented with bounded repetition opera-
tors (exactly n times, at least n times, at most n times,
between n and m times).

4.4 Test Pattern Example
We exhibit one of the test patterns written for the experi-

mentation of our approach. The property to be tested is “to
access an object protected by a PIN code, the PIN must be
authenticated”. The test need is “we want to test this prop-
erty after all possible ways to lose an authentication over a
PIN ”.

The test pattern has been written in two stages: the ini-
tialization stage and the core testing stage. The initializa-
tion stage simply aims at building the data structure re-
quired on the card to run the test. We don’t give it here.

Figure 6 shows the core testing stage, describing the test
purpose that combines the security property and the test
need in three steps. First, the pattern describes all the
possible ways for losing the authentication (for instance,
a failure of the VERIFY command or a reset of the retry
counter) over the PIN pin26. The aim of the second step

5Every branch of an operation described as a control struc-
ture (such as a conditional structure) is called a behaviour
of the operation.
6The B variable pin_authenticated_2_df (∈ PIN_ID ↔

is to select the DF file_fid_02 (with the command SE-

LECT_FILE_DF_CHILD) in order to apply an access command
inside of it. The final step of the test pattern describes the
application of the access commands inside the file_fid_02

DF (for instance for creating a new DF with the command
CREATE_FILE_DF) to test the access conditions.

(VERIFY | CHANGE REFERENCE DATA

| (RESET . SELECT FILE DF CHILD) | RESET RETRY COUNTER

| (SELECT FILE DF PARENT . SELECT FILE DF CHILD))

;(current DF = file fid 01 ∧ file fid 01 /∈ pin authenticated 2 df[{pin2}])

. SELECT FILE DF CHILD

;(current DF = file fid 02)

.[CREATE FILE DF|DELETE FILE | ACTIVATE FILE | DEACTIVATE FILE

| TERMINATE FILE DF | PUT DATA OBJ PIN CREATE]

Figure 6: Example of a test pattern

5. CONCLUSION
We have presented in this paper a method for generating

security tests in a model based testing context. We re-use
existing functional model and adaptation layer. We write
another model dedicated to security.

A test purpose, combining a security property and a test
need, is used for extracting interessant test cases from the
security model. The tests are then automatically replayed
on the functional model and concretized by means of the
adaptation layer.

We also have presented a language for expressing test pur-
poses, which relies on regular expressions.

The method have been experimented on a real size in-
dustrial application, the IAS platform for smart cards. We
have experimented three different test patterns, which gave
a total of 183 tests that have been run on the IAS imple-
mentation. The three patterns were for testing: the different
ways to lose the authentication over a PIN object (our exam-
ple in this paper); the interpretation of the access conditions
based on PIN authentication; the effect of life cycle changes
on the authentication over a PIN object.

The results of the experimentation are encouraging, since
the execution of the tests revealed some known differences
of interpretation of the specification by the developers and
the writers of the model. Moreover, the tests that we have
generated are not redundant with the tests computed from
the FM without the test patterns.

The TGV approach [5], and works from the Vertecs pro-
ject7 [9, 2] use explicit test purposes to extract tests from
specifications, both given as Input/Output Symbolic Tran-
sition Systems (IOSTS). Our approach is methodologically
different. Our intention is to re-use existing material, pro-
duced previously for using model-based testing. Despite
the strong hypothesis that this material already exists, this
makes our approach a ready to use industrial methodology
when it is the case. The language we use to express the
test purposes can be instantiated with various modelling lan-
guages. We have experimented it with B and in UML/OCL.

In [6], the authors show how tests dedicated to exercise a
given security policy can be obtained by reusing functional

DF_ID) associates to a pin identifier the DF identifiers where
the PIN object is authenticated.
7http://www.irisa.fr/vertecs/

tests. In comparison, we do not reuse the existing functional
tests, but we augment them with security tests, independent
from the functional ones. What we reuse is the existing func-
tional material (i.e. the functional model and the adaptation
layer). Our approach fits in what they call an independent
strategy.

Also, as a difference with the above cited approaches, we
have showed in a previous work [8] how the test purposes
can be automatically computed, by modelling the test needs
as syntactic transformation rules that transform regular ex-
pressions. The tool Tobias [7], that unfolds in a combina-
torial way tests expressed as regular expressions, could be
used to unfold our test patterns.

We are currently working at identifying and writing such
transformation rules, based on the IAS case study. This
work needs to be developed by studying many other case
studies, in order to produce rules sufficiently generic to be
applicable to a variety of examples. Rules could also be au-
tomatically deduced from the syntactic expression of a prop-
erty, as suggested by [1] for properties expressed in JTPL, a
temporal logic for JML.

6. ACKNOWLEDGEMENTS
We would like to thank all the partners of the POSE ANR

project, namely Gemalto, Leirios, Silicomp/AQL, LIG and
INRIA for their great role in this work.

7. REFERENCES
[1] F. Bouquet, F. Dadeau, J. Groslambert, and

J. Julliand. Safety property driven test generation
from JML specifications. In FATES/RV’06, volume
4262 of LNCS, pages 225–239. Springer, 2006.

[2] C. Constant, T. Jéron, H. Marchand, and V. Rusu.
Integrating formal verification and conformance
testing for reactive systems. IEEE Transactions on
Software Engineering, 33(8):558–574, Aug. 2007.

[3] GIXEL. Common IAS Platform for eAdministration,
Technical Specifications, 1.01 Premium edition, 2004.
http://www.gixel.fr.

[4] E. Jaffuel and B. Legeard. LEIRIOS Test Generator:
Automated test generation from B models. In B’2007,
volume 4355 of LNCS, pages 277–280. Springer, 2007.

[5] C. Jard and T. Jéron. TGV: theory, principles and
algorithms. Software Tools for Technology Transfert,
7(1), 2005.

[6] Y. Le Traon, T. Mouelhi, and B. Baudry. Testing
security policies: Going beyond functional testing. In
ISSRE’07, pages 93–102, 2007.

[7] Y. Ledru, F. Dadeau, L. Du Bousquet, S. Ville, and
E. Rose. Mastering combinatorial explosion with the
TOBIAS-2 test generator. In ASE’07, pages 535–536.
ACM, 2007.

[8] P.-A. Masson, J. Julliand, J.-C. Plessis, E. Jaffuel, and
G. Debois. Automatic generation of model based tests
for a class of security properties. In A-MOST’07,
pages 12–22. ACM Press, 2007.

[9] V. Rusu, H. Marchand, V. Tschaen, T. Jéron, and
B. Jeannet. From safety verification to safety testing.
In TestCom’04, volume 2978 of LNCS. Springer, 2004.

[10] M. Utting and B. Legeard. Practical Model-Based
Testing - A tools approach. Elsevier Science, 2006.

