
A Test Generation Solution to Automate Software Testing
F. Bouquet

University of Franche-Comté
LIFC, 16 route de Gray

25030 Besançon, France

bouquet@lifc.univ-fcomte.fr

C. Grandpierre, B. Legeard, F. Peureux
LEIRIOS

18 rue Alain Savary
25000 Besançon, France

{grandpierre, legeard, peureux}@leirios.com

ABSTRACT
This paper describes the LEIRIOS Smart Testing™ approach to
the functional validation of an application by way of an example
that illustrates the process from start to end: from use cases and
functional requirements to the publication of generated tests in a
test repository and automatic execution of scripts with a test
execution robot. For this paper this testing solution is applied on
particular software to take part in a specific case study: how to
automate the testing of UML/MDA platform StarUML.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]
D.2.5 [Testing and Debugging]

General Terms
Reliability, Verification.

Keywords
Model-Based Testing, UML, OLC, software testing

1. INTRODUCTION
The growing complexity of software applications and the
necessity of retaining an overall view of software development
entail the implementation of high-performance application
validation strategies. Functional testing represents a keystone for
risk management, quality management and time-to-market
constraints. Model-Based Testing (MBT [1]) is a solution that
implements functional tests based on business requirements and
test design automation (test cases, executable scripts, test plan
coverage) while guaranteeing functional coverage completeness.
This solution encompasses the processes, tools and best
practices to improve conformity, traceability and risk
management.

Many approaches and/or tools implement model-based testing
with their own properties. The taxonomy [2] classifies some of
them according to different dimensions (model paradigm, test
selection criteria…). These dimensions are also used to classify
some MBT tools. TorX [3], TGV [4] and AutoLink [5] generate
automated test case using on-the-fly state space exploration

techniques from Input-Output Labelled Transition System
models. JUMBL [6] and Matelo [7] are model-based statistical
testing tools based on Markov chain usage models. AETG [8] is
dedicated to the automated generation of test inputs using n-way
search algorithms from a static, environment model.

The LEIRIOS Smart Testing™ solution is a tooled testing
approach to generate and manage functional tests from
UML /OCL models. [9] gives the UML/OCL subset available to
define behavioral models used in this testing solution. The main
principle of the LEIRIOS Smart Testing™ solution is:
- Modeling of a UML/OCL behavioral model. The model is an

abstraction of the system under test (SUT),
- Automated generation of test cases from the UML behavioral

model,
- Publishing of the generated tests into well-known test

repositories,
- Generation of executable scripts to automate the test

execution on the SUT.

The main objective of this paper is to demonstrate how
LEIRIOS Smart Testing™ can be applied to test a software
application like StarUML. The carrying out of this solution
makes it possible to highlight the problematic aspects lied to the
test generation and automation of such application.

This paper is organized as follows. Section 2 explains step by
step the solution applied on the defined case study. Section 3
proposes discussion points lied to the automation of software
testing. Finally section 4 concludes the paper.

2. CASE STUDY
In this section, we develop the LEIRIOS Smart Testing™
solution on the specific case study. The objective is to
demonstrate how the solution can be use to automate the testing
of any software application. To reduce the scope, we propose to
study the testing of a particular functionality of the StarUML
framework: the StarUML project management (SPM).

2.1 Scope definition
Functional testing of a software application requires that the
system under test is checked according to predetermined and
expected behavior under specific circumstances. This objective
thus raises the question of defining functionalities in an explicit
and detailed manner so that the testing team can develop a
consistent and measurable test plan (measurable especially in
terms of traceability and functional coverage metrics).

The StarUML framework provides numerous features to develop
UML/MDA platform. Among these ones, we propose to
automate the testing of the project management inside StarUML.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Project management includes all the functionalities tied to
creation, editing, and opening of StarUML projects.

The current practices in the field of functional requirement
definition are based on defining use cases and on characterizing
functional requirements that are defined, maintained and
sometimes traced throughout the lifecycle of the application:

• The use case approach is a method of capturing and
describing functional requirements of a system. A use case
contains one or more scenarios that define the way in which
the system must interact with users (called actors) to achieve a
goal or to cover a specific function of the application. In a use
case, the actor can either be human or another system.

• Requirement management helps reference “atomic” functional
requirements that are testable and which are maintained, i.e.
updated, when the application is modified.

In practice, these two approaches complement each other; use
cases provide an overall vision of representative user scenarios
for the application, and detailed requirements facilitate the
identification of key points in the software expected behavior.
Of course, these two elements (use cases and functional
requirements) are some of the elements used for analysis along
with the explanation of terminology, business entities, and the
definition of the roles of the users of the application.

In this case study we defined the testing scope via the following
use cases.

All the use cases define scenarios for the same actor: the
StarUML platform user. The underlined actions refer to defined
use cases.

Use Case 1: Create a project
Precondition -
Postcondition A new project was created
Called by the use cases -
Nominal scenario 1. The actor creates a new project

2. The actor can edit the project
3. The actor can save the project
4. The actor can close the project

Use Case 2: Edit a project
Precondition The project is open
Postcondition -
Called by the use cases Create a project, Open a project
Nominal scenario 1. The actor changes the project title

2. The actor can save the project
3. The actor can close the project

Use Case 3: Open a project
Precondition The project exists
Postcondition The project is open
Called by the use cases -
Nominal scenario 1. The actor opens a valid StarUML

project from a pathname
2. The actor can save the project

3. The actor can close the project

Use Case 4: Save a project
Precondition The project is open
Postcondition The project is saved
Called by the use cases Create a project, Open a project
Nominal scenario 1. The actor save the project as a

valid pathname
2. The actor can close the project

Use Case 5: Close a project
Precondition The project is open
Postcondition The project is closed
Called by the use cases Create a project, Open a project
Nominal scenario 1. The actor close the project

Notice that these use cases don’t give the different error cases
which would be tied to these actions (saving as an existing
pathname, opening a no project file…)

These use cases make it possible to make explicit the scope of
functional testing of our example. In addition some functional
requirements can complete the functional definition of the
validation campaign. Table 1 provides some informal
requirements used and traced throughout the testing process.

Table 1. Informal requirements for case study

Identifier Requirement definition
PRJ_CREATED A new project is created

MODIF_OK The project modifications are
effective

PRJ_OPEN The project opening successes

NOT_PROJECT The project opening fails: file is not a
project

PRJ_SAVED The project saving successes

FILE_ALRDY_EXISTS The project saving fails: file already
exists

PRJ_CLOSED The project is closed

These requirements identifiers are directly used for the test
modeling step then throughout the validation process for
traceability.

2.2 Modeling for Test Generation
2.2.1 Test material
LEIRIOS Smart Testing™ test generation is based on
exploration of a behavioral UML model. Concretely three UML
diagrams are available to design such test model.

 UML class diagram is the static view of the model. It
describes the abstract objects of the system and their
dependencies. The available UML elements are classes,
associations, enumerations, class attributes and operations.

 UML object diagram models the initial state of the SUT.
Objects and links compose such diagram.
 UML state-machine is used to model the dynamic SUT
behaviors as a finite state transition system. State-machines may
contain simple and composite states and any transition with
event/guard/action format.

Object Constraint Language (OCL [10]) is used to formally
express the SUT behaviors. OCL is used in class diagrams, to
formalize the expected behavior of class operations. It is also
used within state-machines to formalize transitions between
states – the guards and the effects of transitions are expressed as
OCL predicates.

This test material provides the elements to design the behavioral
model for testing SPM system. This test model is composed of
the three diagrams above-mentioned. The following subsection
presents these UML elements.

2.2.2 The SPM model

2.2.2.1 Class diagram
Figure 1 presents the class diagram of the SPM model. It depicts
the different objects of the SUT and the dependencies between
them.
We have three object types in SPM. The class under test is the
project manager. This is provided by a StarUML application and
manages a project at once.

Figure 1. Class diagram for SPM model

The class attribute Project::path abstracts the path of a saved
project. A new project has the default value UNDEFINED.

The others class attributes and associations are explicit.

The operation reTitle(newTitle) is an event simulating a user
modification of the current project title.

The operations deleteFile(path) and clearLog are testing-
dedicated operations to simulate the deletion of a file (basically a
project) and the clean of the application log.
These two operations are defined with the following OCL
expressions.

context:
 ProjectManager::deleteFile(path:PATH_NAME)
pre:
 project.oclIsUndefined() and
 path <> PATH_NAME::UNDEFINED and
 Project.allInstances()->exists(p.path=path)
post:
 Project.allInstances()->any(p|p.path=path).
path = PATH_NAME::UNDEFINED

context: ProjectManager::clearLog()
post:
 app.log = MESSAGE::NONE

All the other operations of ProjectManager class are events used
in the state-machine defined in the sequel.

2.2.3 Object diagram/Initial state
Figure 2 presents the object diagram that depicts the initial state
of SPM.

Figure 2. Initial state of SPM

We consider no project is open at the initial state of SPM.

2.2.4 State-machine
Figure 3 presents the state-machine used to describe the different
dynamic states of the SUT. Our SPM system is very simple, so
the corresponding state-machine is clearly comprehensive: a
project is open or not. At the initial state no project is open.

Figure 3. State-machine of SPM

User events and linked actions realize the state modifications
and the corresponding behaviors. The transition actions are
defined in OCL as follows:

action NewProject
post:
 if not project.modified then
 let p = Project.allInstances()->
 any(p|p.path=PATH_NAME::UNDEFINED) in
 p.modified = true and
 project = p and
 app.log = MESSAGE::PROJECT_CREATED
 --@REQ: PRJ_CREATED
 else
 app.log = MESSAGE::SAVE_BEFORE
 --@REQ: SAVE_PRJ_BFR
 endif

action CreateProject
post:
 let p = Project.allInstances()->
 any(p|p.path=PATH_NAME::UNDEFINED) in
 p.modified = true and
 project = p and
 app.log = MESSAGE::PROJECT_CREATED
 --@REQ: PRJ_CREATED

action OpenProject
pre:
 path <> PATH_NAME::UNDEFINED
post:
 project = Project.allInstances()->
 any(p|p.path=path) and
 app.log = MESSAGE::PROJECT_OPENED
 --@REQ: PRJ_OPEN

action NotOpenProject
pre:
 path <> PATH_NAME::UNDEFINED and
 not Project.allInstances()->
 exists(p|p.path=path)
post:
 app.log = MESSAGE::FILE_DOES_NOT_EXIST
 --@REQ: NOT_PROJECT

action CondOpenProject
pre:
 path <> PATH_NAME::UNDEFINED
post:
 if Project.allInstances()->
exists(p|p.pathName=pathName) then
 project = Project.allInstances()->
 any(p|p.pathName=pathName) and
 app.log = MESSAGE::PROJECT_OPENED
 --@REQ: PRJ_OPEN
 else
 app.log = MESSAGE::FILE_DOES_NOT_EXIST
 --@REQ: NOT_PROJECT
 endif

action SaveProject
pre:
 path <> PATH_NAME::UNDEFINED
post:
 if Project.allInstances()->
exists(p|p.pathName=pathName) then
 app.log = MESSAGE::FILE_ALREADY_EXISTS
 --@REQ: FILE_ALRDY_EXISTS
 else
 project.modified = false and
 project.pathName = pathName and
 app.log = MESSAGE::PROJECT_SAVED
 --@REQ: PRJ_SAVED
 endif

action ReTitle
post:
 project.title = newTitle and
 app.log = MESSAGE::PROJECT_RETITLED
 --@REQ: MODIF_OK
action CloseProject
post:
 project.oclIsUndefined() and
 app.log = MESSAGE::PROJECT_CLOSED
 --@REQ: PRJ_CLOSED

action NotCloseProject
post:
 app.log = MESSAGE::SAVE_BEFORE
 --@REQ: SAVE_PRJ_BFR

Notice the specific tags to link functional requirements (Table 1)
to corresponding behaviors. These tags make it possible to trace
given informal requirements.

2.3 Test Generation and Automation
From a UML behavioral test model LEIRIOS Smart Testing™
extracts test objectives. A test objective is a pair context-effect,
where effect is the system behavior to test and context the
condition to fire it.

From these test objectives LEIRIOS Smart Testing™ carries out
a theorem prover to automatically generate test cases. This
prover is used to search for a path from the initial state to a test
objective, and data values satisfying all the constraints along this
path.

A test case is composed of:
• a preamble (potentially empty); the sequence of operations or

events called to reach the behavior to test,
• a body; the execution of the tested behavior,
• a postamble (potentially empty); the sequence of operations to

return to the model initial state. Postambles are used to chain
the execution of many tests without reinitializing the system
after each test. The generation with postamble is optionally.

Table 2 presents some generated test cases from the SPM model.

Table 2. Tests cases from SPM model

Id Tested UML element
Test definition Tested

requirement preamble body postamble

1
Internal transition
PROJECT_OPEN

newProject()
/NewProject

newProject() newProject() closeProject()
clearLog() PRJ_CREATED

2

newProject()
reTitle(TITLE_1) newProject()

saveProject(PATH_1)
closeProject()
deleteFile(PATH_1)
clearLog()

SAVE_PRJ_BFR

3

Transition
NO_PROJECT →
PROJECT _OPEN

newProject()
/CreateProject

-

newProject()
closeProject()
clearLog()

PRJ_CREATED

4 Internal transition
PROJECT_OPEN
openProject(path)
/CondOpenProject

newProject()
saveProject(PATH_2) openProject(PATH_2)

closeProject()
deleteFile(PATH_2)
clearLog()

PRJ_OPEN

5 newProject() openProject(PATH_1) closeProject()
clearLog() NOT_PROJECT

6

Transition
NO_PROJECT → ◊ →

NO_PROJECT
openProject(path)
/NotOpenProject

-

openProject(PATH_1)

clearLog()

NOT_PROJECT

7

Transition
NO_PROJECT → ◊ →

PROJECT_OPEN
openProject(path)

/OpenProject

newProject()
saveProject(PATH_2)
closeProject() openProject(PATH_1) closeProject()

deleteFile(PATH_2)
clearLog()

PRJ_OPEN

8

Internal transition
PROJECT_OPEN
reTitle(newTitle)

/ReTitle

newProject()

reTitle(TITLE_1)

saveProject(PATH_1)
closeProject()
deleteFile(PATH_1)
clearLog()

MODIF_OK

9 Internal transition
PROJECT_OPEN

saveProjectAs(path)
/SaveProject

newProject()
saveProject(PATH_1)

closeProject()
deleteFile(PATH_1)
clearLog()

PRJ_SAVED

10
newProject()
saveProject(PATH_2) saveProject(PATH_2)

closeProject()
deleteFile(PATH_2)
clearLog()

FILE_ALRDY_EXISTS

11

Transition
PROJECT_OPEN → ◊ →

NO_PROJECT
closeProject()
/CloseProject

newProject()

closeProject()

clearLog()

PRJ_CLOSED

12

Transition
PROJECT_OPEN → ◊ →

PROJECT_OPEN
closeProject()
/CloseProject

newProject()
reTitle(TITLE_1)

closeProject()
saveProject(PATH_1)
closeProject()
deleteFile(PATH_1)
clearLog()

SAVE_PRJ_BFR

The LEIRIOS Smart Testing™ solution provides adapters and
exporters to manage and/or execute the generated test cases.

For instance test cases can be published to HTML/XML
languages. For an execution on the SUT, test cases can be
translated to test scripts in any language. Adapters are also
provided to export test cases in test management and execution
tools such as HP/Mercury Quality Center.

For our case study, many ways are available to automate the
execution of test scripts.
 StarUML is written in Delphi but it is multi-lingual project.
So we can translate generated test cases to test script in the
appropriate language and execute them from the application
sources.
 StarUML application owns a graphical user interface (GUI).
This GUI normally offers all the functionalities available to
manually design functional tests. Automated testing tools – like
HP/Mercury WinRunner – simulates a human user by moving
the mouse cursor over the application, clicking GUI objects, and
entering keyboard input. Such tool enables the writing of scripts
performing such process. These test scripts can be automatically
generated by LEIRIOS Smart Testing™ from the generated test
cases.
 StarUML exposes open API to outside to access most
programs that is UML meta-model, application object and so on.
For our SUT SPM, we can translate test cases to JScript tests to
execute them. For instance Table 3 presents a translation of the
test case 5 (Table 2). Each UML operation/event is translated to
a JScript function. These JScript methods are depicted in the
adaptation layer. This one is written once and shared among all
scripted tests.

Table 3. Example of JScript test

Test case Corresponding test script

preamble newProject()

var app
var prjmgr
var PATH_1

Init() //SETUP VARS

//PREAMBLE

NewProject()

body openProject(PATH_1) OpenProject(PATH_1) //CHECK ORACLE

postamble closeProject()
clearLog()

CloseProject()
ClearLog()

Adaptation layer
function Init() {
app = new
ActiveXObject("StarUML.StarUMLApplication")

 prjmgr = application.ProjectManager
 PATH_1 = "..\\projects\\p1.uml"
}

function NewProject() {
prjmgr.NewProject()

}

function OpenProject(path) {
prjmgr.OpenProject(path)

}

function CloseProject() {
prjmgr.CloseProject()

}

function ClearLog() {
app.Log(“”)

}

In every instance the main issue met while the automation is the
determination of the test verdict. Which StarUML elements are
observable? How link the values of StarUML objects and test
model elements? The following section notably discusses this
crucial point.

3. DISCUSSION
In this section we discuss about the different issues met while
this experimentation.

Scope definition

The UML test model is based on the use cases and/or functional
requirements. In our case study we arbitrarily decide the
perimeter. Then we gave some use cases potentially realizable

on the application. Finally we wrote some functional
requirements regarding the functional scope. For an industrial
case study it is preferable to decide all these scope elements with
the validation manager or equivalent.

UML modeling

The modeling step doesn’t bring major issue if the previous step
is right completed. The idea is to abstract and reduce the SUT to
design a compliant test model. Concretely operations/events
correspond to user functionality and attributes precise the
different system behaviors.

However the test model is a behavioral model of the SUT. So
the test model designer has to know which behaviors are
expected regarding the user actions. In this case study, we don’t
precisely know how the StarUML interacts. So use cases and
functional requirements given in this paper are proper to authors.

Test verdicts and observation points

The test verdict (pass or fails) is determined by comparing some
values returned by the SUT and the equivalent values expected
in the test model.

In this case study we have real problem to observe the behaviors
of the StarUML application while the test execution. For
instance the execution of the test script example (Table 3)
triggers an exception like “File not found”. But this information
can not be catched by the test script. To workaround this
problem, we have to manage this exception type in the script (or
in its adaptation layer). For instance the code in Figure 4
manages the exception and gives the corresponding information
in the log. So the test verdict can be determined by comparing
the StarUML log (if observable!) and the attribute log designed
in the test model.
function OpenProject(path) {
 var fs = new
ActiveXObject("Scripting.FileSystemObject")
 if (fs.FileExists(path))
 {
 prjmgr.OpenProject(path)
 }
 else
 {
 application.Log("File not found")
 }
}

Figure 4. Example of an exception observation

StarUML API contents

We use StarUML API to concrete the generated tests to JScript
script. To determine the verdict of a test, we have to observe the
system via this API. So we strongly depend upon the fullness of
this API. For instance to determine the verdict of the test case
example (Table 3), we can compare the log values. For that the
API has to offer an access to the value of application log.

4. CONCLUSION
In this paper we illustrate the LEIRIOS Smart Testing™
approach on a given case study. This solution automates the

process of conception, generation, management and execution of
a functional test suite.

Such experimentation highlights some issues tied to the
automation of application testing. In this precise case study, the
scope of the functional testing and the system observation points
turn out critical to success such validation campaign.

The LEIRIOS Smart Testing™ solution is currently deployed on
large applications in the domains of Enterprise IT information
systems and eTransactions systems (banking, ticketing or e-
Admin applications).

5. REFERENCES
[1] M. Utting and B. Legeard. Practical Model-Based

Testing - A tools approach. Elsevier
Science/Morgan&Kaufmann, 2007. 454 pages, ISBN 0-
12-372501-1.

[2] M. Utting, A. Pretshner and B. Legeard. A taxonomy of
Model-Based Testing. Working Paper, April 2006. ISSN
1170-487X.

[3] TorX – Test Tool Information.
http://fmt.cs.utwente.nl/tools/torx.

[4] C. Jard and T. Jéron. TGV : theory, principles and
algorithms, J. Software Tools for Technology Transfer,
2005.

[5] B. Koch, J. Grabowski, D. Hogrefe and M. Schmitt.
Autolink – A Tool for Automatic Test Generation from
SDL Specifications. in Proc. IEEE International
Workshop on Industrial Strength Formal Specication
Techniques (WIFT98), Boca Raton, Florida, Oct. 1998.

[6] S. J. Prowell, JUMBL: A Tool for Model-Based
Statistical Testing. in Proc. HICSS’03, IEEE , p.
337c, 2003.

[7] Dulz W. and Fenhua Z. MaTeLo - statistical usage
testing by annotated sequence diagrams, Markov chains
and TTCN-3. in Proc. Third International Conference on
Quality Software, pp 336-342, Nov. 2003.

[8] D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C.
Patton. The AETG System: An Approach to Testing
Based on Combinatorial Design. vol. 71, no. 3, pp. 41-
47, Mar. 1992.

[9] F. Bouquet, C. Grandpierre, B.Legeard, F. Peureux, N.
Vacelet and M. Utting. A subset of precise UML for
model-based testing. A-MOST 2007: 95-104, Jul. 2007.

[10] J. Warmer and A. Kleppe. The Object Constraint
Language Second Edition: Getting Your Models Ready
for MDA. Addison-Wesley, 2003.

http://fmt.cs.utwente.nl/tools/torx

	INTRODUCTION
	CASE STUDY
	Scope definition
	Modeling for Test Generation
	Test material
	The SPM model
	Class diagram

	Object diagram/Initial state
	State-machine

	Test Generation and Automation

	DISCUSSION
	CONCLUSION
	REFERENCES

