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Abstract: The Smart Surface1project aims at designing an integrated micro-manipulator based on an
array of micromodules connected in a 2D array network. Each micromodule has a sensor, an actuator
and a processing unit. One of the aims of the processing unit is to recognize the shape of the part
that is put on top of the smart surface. This recognition or more precisely this differentiation is done
through a distributed algorithm that we call a criterion. The aim of this article is to present the ECO
framework, which is able to test exhaustively the efficiency of different differentiation criteria, in
terms of differentiation efficiency, memory and processing power needed. The tests show that ECO
is of great help for choosing the best criteria to implement inside our smart surface.
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Antenne de Montbéliard — UFR STGI,
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Une plate-forme de comparaison exhaustive pour différencier des formes en
distribué sur une matrice de capteurs actionneurs MEMS
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1 Introduction
During an assembly process, it is necessary to feed as-
sembly line workstations with well-oriented and well-
positioned parts. These parts are often jumbled and they
need to be sorted and conveyed to the right workstation.
To do so, the operations to be performed on parts are
the following: identifying, sorting, orienting, positioning,
feeding, and assembling. Among the most promising so-
lutions to perform these tasks on microparts, is the com-
bination of micro-electro mechanical systems (MEMS) in
order to form an actuator arrays. However, if a single mi-
croactuator is not powerful enough to move a micropart,
several microactuators working cooperatively might very
well do it. A MEMS sensor/actuator arrays with embed-
ded intelligence is referred as a smart surface.

The objective of the Smart Surface project is to design
such an integrated MEMS system which will be able to
identify, to sort, to orient and position microparts. This
article deals only with the identification part of the pro-
cess: A micropart is put on the Smart Surface which have
to recognize the part shape and give the proper orders to
the control system to move it on the right place. In fact,
recognition is not the proper term. Given a set of part,
the Smart Surface have to differentiate all the parts within
the set. As the processing power of the Smart Surface is
embedded in very limited space, this differentiation pro-
cess has to be optimized both in term of memory used and
processing power needed. The differentiation is made by
a distributed program loaded in the Smart Surface. For
the rest of the paper we call this program a differentiation
criterion. The aim of the Exhaustive COmparison (ECO)
framework which is presented in this article is to test ex-
haustively, i.e. for all kinds of possible part shapes, a set
of criteria to choose the most adapted ones. The main
condition for choosing a criterion is that it must be able
to differentiate all the possible parts, that is what we call
total differentiation. The other two remaining conditions
are: using the less memory and using the less computing
power.

The rest of the paper is organized as follows. Section 2
details the Smart Surface project. Section 3 presents the
ECO framework, while the tests are performed on sec-
tion 4. Some related works to shape representation are
presented section 5 and they are followed by the conclu-
sion and presentation of future works.

2 The Smart Surface Project

There have been numerous projects of MEMS actua-
tor arrays in the past and more precisely in the 1990’s.
These pioneer researches have developed different types
of MEMS actuator arrays, based on actuators either pneu-
matic [11, 5], servoed roller wheels, magnetic or thermo-
bimoph and electrostatic. Some of these preliminary stud-
ies use a sensorless manipulation scheme based on the
Goldberg’s algorithm [7] for parallel jaw grippers. The
jaw grippers are obtained with MEMS actuator arrays by
creating opposite field forces which then can orient and
move the parts. Bohringer et al. [1] have proposed a con-
cept called ”programmable force field” which is an ex-
tension of the Goldberg’s algorithm. This manipulation
scheme which is well-adapted for jaw grippers has shown
some limitations when adapted to MEMS actuator arrays.
For instance, the absence of a command law can lead to
uncertain behaviours or MEMS actuator arrays has to be
programmed for each different kind of parts. More recent
research has been conducted in order to include sensors
and to add intelligence to MEMS actuator arrays but it
either fails to develop it at a micro-scale or to be fully
integrated [6].

The objective of the Smart Surface project is to design
a distributed and integrated micro-manipulator based on
an array of micro-modules in order to realize an auto-
mated positioning and conveying surface. Each micro-
module will be composed of a micro-actuator, a micro-
sensor and a processing unit. The cooperation of these
micro-modules thanks to an integrated network will allow
to recognize the parts and to control micro-actuators in or-
der to move and position accurately the parts on the smart
surface. The parts are small, they cover a few numbers of
micro-modules.

The strength of our project is the multidisciplinary col-
laboration among six labs specialized in their field and
more than twenty researchers. We are responsible for
the information management inside the smart surface, i.e.
distributed part differentiation and communication infras-
tructure.



Exhaustive
COmparison
framework

Set of criteria

Maximum
part size

1 1

1 1

A P

Comparison tree

1 0

0 0

1 1

1 0

1 1

0 0

Size: 2
ECO

Number of parts
to differentiate (2)

Figure 1: Overview of the framework.

3 The ECO framework

Before implementing the part differentiation algorithms
on the Smart Surface, we are interested to find out criteria
allowing high differentiation rates.

This section presents a framework for criteria com-
parison in differentiating parts, based on an exhaustive
part generation. The framework is presented in figure 1.
It receives as input a set of criteria, the maximum part
size (a square) and the number of parts to differentiate.
The framework exhaustively generates all the appropriate
parts. It generates several comparison trees: differenti-
ation tree, cost tree. An example of question which the
framework answers to is: What criteria differentiate best
three random parts not greater than 3× 3?

The constraints of the framework which will be relaxed
in future works are: parts can be rotated only at 90◦; no
error in sensors and communications; we work on family
of parts. We define a family of parts all the ideal parts
which have the same image (discrete representation) on
the surface. For example, the typographic letter L and L
(with and sans serifs) have the same image on the surface,
because the serifs are much smaller than the sensors.

The parts on the Smart Surface are supposed to be rep-
resented by square matrices of size 3 or 4. In order to find
criteria reaching 100% differentiation, all possible parts
of size P × P with P = 3 and P = 4 are considered.
This set of parts is used to generate groups of parts. These

Table 1: Information for groups of three parts.

Max
part
size

Number of
parts gener-
ated

Number of
unique parts
(T )

Number of groups

3× 3 512 35 C3
35 = 6545

4× 4 65536 1280 C3
1280 = 348706560

groups are used to test the criteria or combinations of cri-
teria which reach total differentiation. Our method has
five steps:
(1) First, all the parts of size P × P are generated.
(2) Afterwards, the resulting set of parts is reduced by
eliminating translations, 90◦ rotations and mirrors (see
tab. 1), as detailed below.
(3) Afterwards, all the combinations of n parts from the
previously generated parts are generated (see tab. 1).
(4) Afterwards, all the combinations of CCi criteria are
generated. For example, if Ci = {A,S, P} is the
set of criteria, the generated combinations are CCi =
{{A}, {S}, {P}, {AS}, {AP}, {SP}, {ASP}}. This
means that all the criteria are combined in order to dif-
ferentiate the parts. Several criteria have been tested, pre-
sented in section 4.
(5) Finally, the differentiation phase, detailed below.

Part generation A part on the P×P square may be rep-
resented as a binary matrix. In a P × P square, there are
2P×P parts. However, many of them are not connex, i.e.
in fact there are two parts instead of one. The connexity
checking is done with a research in depth. Afterwards, its
mask is generated. The mask is a matrix generated from
the initial matrix where the first columns and first lines
with only 0s are removed. This step removes translated
identical parts. During the next step, masks are rotated
90◦, 180◦ and 270◦, each mask is mirrored. After each 2
by 2 comparison, identical masks are removed such that
only one mask of same type remains. The parts remaining
after this process are unique compared to translation, ro-
tation of multiple of 90◦ and mirroring. Let T be the total
number of unique parts.
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Figure 2: An example of a group differentiation according
to a combination of criteria.

Part differentiation For each criterion Cj and each
group Gi of parts a differentiation matrix D is generated,
with D(i, j) = 1, if the values of the criterion between
the two parts i and j are diferent, otherwise it is 0.

DGi,Cj (k, l) = 1,∀k, l ∈ P
⇔ Cj differentiates all P ∈ Gi

(1)

In the case of a combination of several criteria CCj the
union of the differentiation matrices is computed. If the
matrix D contains only 1 values, the parts are said to be
differentiated according to this combination of criteria.

DGi,CCj
= ∪k∈CCj

DGi,Ck

CCj ⊂ {C1, C2, ..., Cm}
(2)

The matrix D is upper triangular. A differentiation is
said to be total if the matrices are differentiated according
to all possible groups. Fig. 2 is an example of the compu-
tation of a differentiation matrix with G1 = {P1, P2, P3}
for the combination of criteria CC1 = {ASP}.

The major challenge is to find out a combination of cri-
teria which leads to a total differentiation, i.e. for any
group of parts, a differentiation of the parts using one
combination of our criteria is always achieved.

The following algorithm details this process: Let n be
the number of parts which are needed to be differentiated.
The framework generates all the groups of n parts. If T is
the total number of unique parts, there will be Cn

T groups.
1: for each CCi = subset of {C1, C2, ..., Cm} do
2: for each group Gi subset of n elements in P do
3: if CCi is a criterion then
4: build the differentiation matrix DGi,CCi

5: else
6: {CCi is a combination of criteria}
7: for each Cj in CCi do
8: build the differentiation matrix DGi,CCj

=⋃
DGi,Cj

9: end for
10: end if
11: compute the differentiation rate t
12: end for
13: compute the average ta of all differentiation rates t
14: end for
15: build comparison tree

The usefulness of criteria is presented as a simplified
tree (path XY is the same as Y X) called comparison tree
(see fig. 4 in section 4). Each node has a value expressed
as percentage of differentiation using all the criteria of the
path from the root of the tree. Finally, a cost (execution
time, memory used etc.) is associated to each branch.

4 Tests

The aim of our work is to differentiate relatively small
parts by finding a set of criteria. These parts are repre-
sented by square matrices of order 3 or 4. All criteria are
tested in order to find combinations of criteria reaching
total differentiation. Among these criteria, the fastest ex-
ecution time and/or the lowest memory cost are selected.

Description of the criteria The differentiation criteria
must be simple and easy to implement. For example, the
first criterion, P (the perimeter), is the number of cell
frontiers between “1” (pressed sensor) and “0” (unpressed
sensor). The second criterion, S (the area), consists in
counting all the “1” contained in a part. Here are the cri-
teria used:



Contour-based criteria: P , the number of 1 having at
least one neighbor at 0; A, the number of 1 having at least
three neighbors to 0 and forming a right angle.

Region-based criteria: S, the number of 1 of the part;
L, the maximum length between 1 of the part; N , the sum
of the number of bits that change between two succes-
sive lines respectively columns; Z, the maximum length
between all the 0 of part; D, the sum of 1 located on
both diagonals; F , the sum of all Manhattan distances be-
tween 0; M , the sum of the number of bits that change;
R, the sum of the number of V shape angles; I , the sum
of the number of identical lines with the number of iden-
tical columns; T , the product of all Manhattan distances
between 0; Y , the product of all Manhattan distances be-
tween 1; E, the product of the number of bits that change
between each two successive lines with the number of bits
that change between each two successive columns; K, the
product of the number of bits that change from: the first
line with the other lines, the last line with the other lines,
the first column with the other columns, the last column
with the other columns; C, the sum of the number of V
shape angles.

Criteria reaching total differentiation Among all the
combinations of criteria, only combinations reaching to-
tal differentiation are considered. The test show that the
minimal combinations of criteria for matrices of size 3×3
are:
CCi = {{TM}, {TK}, {Y F}, {YM}, {Y K}, {Y E}}
and for matrices of size 4× 4 are:
CCi = {{CFIDMRZ}, {CFILMRZ}}.

Fig. 3 presents the number of combinations of criteria
reaching total differentiation function of the size of the
combination. For 3× 3 matrices all combinations of size
2 are removed from the combinations of size 3. For exam-
ple (T,M) and (Y,E) reach 100%, therefore combinations
ATM and AYE have been removed because they provide
no additional differentiation. It’s the same for all combi-
nations.

Memory costs and execution times of the criteria
reaching 100% To sum up, for 3×3 matrices six com-
binations of two criteria, among the criteria that we are
defined, reach a total differentiation. However, it is obvi-
ous that the binary representation criterion, together with
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Figure 3: Size of combination reaching 100%.

the grid based method [14], is sufficient to differentiate
the parts. Although it is very costly in memory because
the whole matrix is saved, i.e. 9 bits, 90◦ rotation matri-
ces and mirrors matrices must also be saved. This gives
72 bits. Fig. 4 shows an example of memory consumption
for all combination of the criteria T, Y, F,M,K,X .

Fig. 4 shows that the combination TM reaches total
differentiation with 37 bits, less than the binary represen-
tation. Execution times necessary for each criterion are
measured. Fig. 5 presents the scatter of points of mem-
ory cost function of execution time of criteria. There are
several combinations of criteria that reach total differen-
tiation with lower execution time and memory cost than
binary representation.

5 Related work

Contour-based approaches Fourier descriptors: The
image is defined by a 1D function called shape signature,
which represents a compact representation of the image
[9]. Afterwards, a Fourier transform is applied [4, 3]. It
results in coefficients called Fourier descriptors. These
descriptors represent the shape of the object in the fre-
quency domain.

Freeman coding [8]: it consists in browsing the borders
of shape with elementary moves and coding the move-
ment.



Figure 4: Memory cost.

These methods are widely used for big pictures where
the outline of the image differs noticeably from the inside
of the images (parts). In our study these methods are not
very interesting given that we are working on tiny images
where the contour is equal or nearly equal to the surface.

Region-based approaches Grid based: a fixed-length
grid of cells on the image is drawn [13]. Going along
the grid from top to bottom and from left to right, each
cell wholly or partly covered by the form is affected with
the value 1, and others cells with 0 [14]. This produces a
binary number, which is the representation of our shape.
The difference between two parts is given by an XOR be-
tween their binary representations. This binary represen-
tation is very sensitive to rotation, translation and dilata-
tion, that is it requires a prestandardization.

Invariant moments: A set of seven descriptors are used
[12, 10, 2], called Husont invariants, computed by nor-
malizing central moments of order three. The invariant
moments are widely used in three dimension models or
large images that need to be compacted. It is not very
useful to apply this method in our case because the im-
ages are very small.

6 Conclusions and future works

In this article we presented an exhaustive framework al-
lowing to identify the criteria reaching a total differentia-
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Figure 5: Memory cost according to execution times of
criteria.

tion among a set of criteria. Our tests on groups of 3 parts
show that some combinations of two criteria for matrices
of size 3× 3 reached a total differentiation. We have con-
sidered the memory cost and execution time of the criteria
and combinations of criteria that achieve a total differenti-
ation. We have made a comparative study of these results
with the execution time and cost memory of the grid based
method. We have deduced that some combinations of cri-
teria reach a total differentiation with a smaller execution
time and a lower cost memory than the grid based method.

One idea for future work is to allow a more flexible ro-
tation (e.g. a 5◦ step-by-step rotation). Another idea is
to develop distributed algorithms for criteria in order to



implement them in the Smart Surface and compare their
execution time. Finally, we plan to implement the frame-
work on a G80 GPU with CUDA, in order to speed up the
comparison.
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[4] R. Diaz de Léon and L. Sucar. Human silhouette recogni-
tion with Fourier descriptors. In ICPR00, pages 709–712,
2000.

[5] H. Fujita. Group work of microactuators. In Interna-
tional Advanced Robot Program Workshop on Microma-
chine Technologies and Systems, pages 24–31, Tokyo,
Japan, Oct 1993.

[6] Y. Fukuta, Y.-A. Chapuis, Y. Mita, and H. Fujita. Design,
fabrication and control of mems-based actuator arrays for
air-flow distributed micromanipulation. IEEE Journal of
Micro-Electro-Mechanical Systems, 15(4):912–926, Aug
2006.

[7] K. Y. Goldberg. Orienting polygonal parts without sen-
sors. Algorithmica, 10(2-4):210–225, 1993.

[8] D. Lingrand. Introduction au Traitement d’Images. Vuib-
ert, Paris, France, 2nd edition, Feb. 2008.

[9] S. Loncaric. A survey of shape analysis techniques. Pat-
tern Recognition, 31(8):983–1001, 1998.

[10] M. Mercimek, K. Gulez, and T. Velimumcu. Real
object recognition using moment invariants. Sadhana,
30(6):765–775, 2005.

[11] K. Pister, R. Fearing, and R. Howe. A planar air levitated
electrostatic actuator system. In IEEE Workshop on Micro
Electro Mechanical Systems, pages 61–71, 1990.

[12] R. Prokop and A. Reeves. A survey of moment-
based techniques for unoccluded object representation and
recognition. GMIP, 54(5):438–460, sep 1992.

[13] A. Sajjanhar and G. Lu. A grid-based shape index-
ing and retrieval method. Australian Computer Journal,
29(4):131–140, 1997.

[14] C. Shahabi and M. Safar. An experimental study of alter-
native shape-based image retrieval techniques. Multime-
dia Tools Appl., 32(1):29–48, 2007.



Laboratoire d’Informatique de l’université de Franche-Comté
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