
xslt 2.0 vs xslt 1.0∗

Jean-Michel HUFFLEN
LIFC (EA CNRS 4157)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
hufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

This article focuses on the new features introduced by Version 2.0 of xslt, the lan-
guage of transformations used for xml texts. We show why these new features—
groups of xml subtrees, functions, interface with schemas—ease the develop-
ment of some applications. Some examples, related to bibliography management,
will be demonstrated.
Keywords XPath 2.0, xslt 2.0, Muenchian method, sequences, multiple out-
puts, character mapping, datatype binding.

Streszczenie

Artykuł dotyczy nowych własności wprowadzonych przy wersji 2.0 xslt, języka
transformacji dla tekstów xml-owych. Pokażemy dlaczego te nowe własności—
grupy poddrzew xml-owych, funkcje, interfejs ze schematami—ułatwiają tworze-
nie pewnych aplikacji. Pokażemy przykłady z obszaru zarządzania bibliografiami.
Słowa kluczowe XPath 2.0, xslt 2.0, metoda Muencha, ciągi, wyjście wielo-
strumieniowe, przekształcanie znaków, wiązanie typów danych.

0 Introduction

This article follows [5, 6], which are introductions
to xslt1, proposed to the attenders of the 2005 and
2006 BachoTEX conferences. As for these last two
demonstrations, reading this article only requires
basic knowledge about xml2.

The first version (1.0) of xslt [26], the lan-
guage of transformations used for xml texts, has
succeeded and is now widely used to perform some
computations, to convert an xml text into another
xml-like format, or to generate html3 pages. How-
ever, some operations are difficult to perform with
the basic constructs of Version 1.0 and this led to
the design of new versions. The first attempt was
Version 1.1 [29]. The main problem addressed by
this proposal is the portability of xslt stylesheets
[27, § 3]: some functionalities tedious or impossi-
ble to express with xslt’s basic constructs can be

∗ Title in Polish: xslt 2.0 versus xslt 1.0.
1 eXtensible Stylesheet Language Transformations.
2 eXtensible Markup Language. Readers interested in an

introductory book to this formalism can refer to [19].
3 HyperText Markup Language. [17] is a good introduc-

tion to this language.

implemented in xslt 1.0 by means of extensions
written using a ‘more classical’ programming lan-
guage. But the available programming languages
depend on the xslt processor used: if you develop
with xsltproc4 [23], part of the gnome5 project, you
can extend your stylesheets with C functions; if you
develop with Xalan [2], part of the Apache project,
your extensions may be written using Java [10] or
C++ [21]; if you develop with Microsoft’s msxml3,
you can use the ecmaScript6 language; . . . More-
over, even if several xslt processors support the
same programming language for writing extensions,
they may do that in incompatible ways. Let us con-
sider the xml text given in Figure 1, specifying the
contents of some omnibus volumes. For each story
included into such a book, we make precise its ti-
tle and the year of its first publication. The xslt
program given in Figure 3 includes an example of

4 We used this xslt processor for the examples demon-
strated in [5, 6].

5 gnu Network Object Model Environment.
6 This script language comes from JavaScript [3] and

has been standardised by the ecma (European Computer
Manufacturers Association).

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1001

Jean-Michel HUFFLEN

<?xml version="1.0" encoding="ISO-8859-1"?>

<books>
<omnibus series="Doc Savage">

<author> <!-- The organisation of author elements is the same than in [9]. -->
<name><personname><first>Kenneth</first><last>Robeson</last></personname></name>

</author>
<booktitle>Doc Savage Omnibus #9</booktitle>
<year>1989</year>
<story><title>The Invisible-Box Murders</title><year>1941</year></story>
<story><title>Birds of Death</title><year>1941</year></story>
<story><title>The Wee Ones</title><year>1945</year></story>
<story><title>Terror Takes 7</title><year>1945</year></story>

</omnibus>
<omnibus>

<author>
<name><personname><first>Kenneth</first><last>Robeson</last></personname></name>

</author>
<booktitle>Doc Savage Omnibus #10</booktitle>
<year>1989</year>
<story><title>The Devil’s Black Rock</title><year>1942</year></story>
<story><title>Waves of Death</title><year>1943</year></story>
<story><title>The Too-Wise Owl</title><year>1942</year></story>
<story><title>Terror and the Lonely Widow</title><year>1945</year></story>

</omnibus>
</books>

Figure 1: Specification of some stories collected in omnibus volumes.

such an extension: in addition to the standard out-
put, another output file—named ‘Doc Savage-years’
when this stylesheet is applied to Figure 1’s text—
is created and contains all the years associated with
stories, these years being sorted.

The main addition provided by xslt 1.1 is an
xsl:script element [29, § 14.4], allowing some ad-
ditional functions to be directly included in xslt
texts. There is a wide choice among available pro-
gramming languages, an xsl:script element— in-
cluding a language attribute7 —is ignored by an
xslt processor if it is unable to deal with a partic-
ular programming language.

This xsl:script element has been viewed only
as a partial solution to the portability problem. In
addition, the need for a deeper revision of xslt ap-
peared at this time. As a consequence, xslt 1.1 did
not go past the working draft stage, and the new
‘official’ version of xslt is 2.0; here are the main
requirements for it [28]:
• authoring extension functions should be allowed

[28, § 2.6];
• grouping must be simplified and made more ef-

ficient [28, § 14];
7 Several implementations using different programming

languages are allowed for a function.

• XML Schema [30] must be supported8 [28, § 3]:
in particular, it must be possible to construct
XML Schema-typed elements and attributes.

In addition, xslt 2.0 provides:

• multiple output documents for one xslt pro-
gram;

• datatype binding, allowing processing data ac-
cording to their datatypes;

• character mapping, improving the error-prone
character escaping of xslt 1.0;

• temporary trees, replacing the result tree frag-
ments of Version 1.0 [26, § 11.1], but more op-
erations are permitted on temporary trees, that
is, users can address parts by means of XPath
expressions9.

8 Schemas allow users to define types precisely, which
makes more precise the validation of a xml text. A short
comparative study of some schema languages, including XML
Schema, is [24].

9 In fact, this operation is permitted by most of xslt 1.0
processors, after a conversion of the result tree fragments
into a node set —which is the type used by XPath to han-
dle parts of an xml document—but this functionality does
not belong to standard xslt 1.0. If you use Xalan, this can
by done by the xalan:nodeset, the xalan namespace pre-
fix being http://xml.apache.org/xalan. Another way is to

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

xslt 2.0 vs xslt 1.0

XPath, the language used to address parts of
an xml text, has been revised, too [32, 33]. More
precisely, xslt 1.0 (resp. 2.0) uses expressions of
XPath 1.0 [25] (resp. 2.0). In a first section, we
briefly show what is new in XPath 2.0. Then Sec-
tions 2 to 7 give some illustrations of most features
of xslt 2.0. Of course, these following sections do
not aim to replace the reference manuals [33, 35],
they just give some representative idea of the im-
provements provided by XPath 2.0 and xslt 2.0.

1 XPath 2.0’s new features

In the XPath 2.0’s data model [11, Ch. 2], every value
is a sequence. An atomic value is a special case of a
sequence: a one-element sequence. Some syntactic
constructs allows all the elements of a sequence to
be processed. As an example, let s be a sequence
whose elements are the numbers 30, 4, 2008—in
xslt 2.0, such a sequence may be introduced by:

<xsl:sequence select="30,4,2008"/>

anonymously or by:
<xsl:variable name="s" select="30,4,2008"

as="xsd:integer+"/>

as a variable’s value— :
• for $x in $s return $x + 1

yields the sequence 31,5,2009;
• every $x in $s satisfies $x gt 0

returns true because every number belonging
to s is positive;

• some $x in $s satisfies $x eq 0
returns false: zero does not belong to s.
An ‘if’ expression avoids using an xsl:choose

element for simple conditional expressions:
if (empty($s)) then 0 else $s[1]

yields the first element of the s sequence if it is not
empty, zero otherwise. Notice that:
• both branches— ‘then’ and ‘else’—must be

present within a conditional expression;
• given X and Y two XPath expressions, the two

conditional expressions:
if (empty($s)) then X else Y
if ($s) then Y else X

have two different meanings: in the first case,
the test yields true for an empty sequence—
‘()’— false otherwise [11, Ch. 10]; in the sec-
ond case, the test yields false for an empty
string, an empty node set, and zero, it returns
true for all the other values [20, pp. 77–80];

use the node-set function provided by the common module of
exslt (Extensions to xslt) [20, App. A].

<items>
<by-year year="1941">
<title>The Invisible-Box Murders</title>
<title>Birds of Death</title>

</by-year>
<by-year year="1942">
<title>The Devil’s Black Rock</title>
<title>The Too-Wise Owl</title>

</by-year>
<by-year year="1943">
<title>Waves of Death</title>

</by-year>
<by-year year="1945">
<title>The Wee Ones</title>
<title>Terror Takes 7</title>
<title>Terror and the Lonely Widow</title>

</by-year>
</items>

Figure 2: Grouping elements of Fig. 1’s text.

• atomic values should be compared using the op-
erators eq, ne, lt, le, gt, ge10 —as we do in
previous examples—whereas the operators =,
!=, <, <=, >, >= are also allowed for sequences
[11, Ch. 6].

Parentheses can be used throughout XPath ex-
pressions [11, Ch. 7]:

(if (author) then author else editor)/name
(: If there is an author element, select its name

child, otherwise, select the name child of the
editor element.

:)

Notice that XPath 2.0’s expressions can embed com-
ments, surrounded by ‘(:’ and ‘:)’.

XPath 2.0 offers more numerical data types than
XPath 1.0. In particular, some numerical types de-
fined in XML Schema—e.g., xsd:integer for the
relative integers—are allowed [31]. Likewise, other
data types for dates, times, and durations are pro-
vided.

XPath 2.0 also provides functions that allows
the contents of strings to be processed w.r.t. regu-
lar expressions: matches, replace, tokenize [11,
Ch. 10].

Last, let us mention that XQuery, a query lan-
guage comparable to the languages used in database
management, is an extension of XPath 2.0. A didac-
tic introduction to XQuery is [36], the official docu-
ment is [34].

10 Resp.: ‘EQuals’, ‘Not Equals’, ‘Less Than’, ‘Less than
or Equal to’, ‘Greater Than’, ‘Greater than or Equal to’.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1003

Jean-Michel HUFFLEN

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0" id="grouping" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:redirect="org.apache.xalan.xslt.extensions.Redirect"
extension-element-prefixes="redirect">

<!-- The extension-element-prefixes attribute gives the prefixes of extension functions or elements. If
need be, these external elements (resp. functions) are invoked (resp. called) when the stylesheet is applied
[26, § 14]. Xalan includes a Java class, org.apache.xalan.xslt.extensions.Redirect, providing three
methods: open(), close(), and write().

-->

<xsl:output method="xml" encoding="ISO-8859-1" indent="yes"/>

<xsl:key name="by-year" match="story" use="year"/>

<xsl:template match="books">
<xsl:variable name="the-stories" select="omnibus/story"/>
<items>
<xsl:for-each select="$the-stories[generate-id() = generate-id(key(’by-year’,year)[1])]">

<!-- That is, each subtree corresponding to the first occurrence of a year, given by the first position of
the node set returned by the key function.

-->
<xsl:sort select="year" data-type="number"/>
<!-- Sort them w.r.t. year information. The data-type attribute defaults to text. -->
<by-year year="{year}"> <!-- Some attributes—e.g., select— are interpreted, but not all. In these

last cases, the ‘{...}’ notation forces the value to be evaluated as an
XPath expression [26, § 7.6.2].

-->
<!-- Copy the complete fragments [26, § 11.3] of all the title elements of the stories coming out in

the same year:
-->

<xsl:for-each select="key(’by-year’,year)"><xsl:copy-of select="title"/></xsl:for-each>
</by-year>

</xsl:for-each>
</items>
<xsl:if test="element-available(’redirect:write’)">
<!-- This test allows us to invoke the beginning of this template even if the redirect:write extension

element is unavailable. In other words, we can run this stylesheet with another xslt processor than
Xalan. If Saxon [13] is used as an xslt 1.0 processor, the equivalent element is saxon:output, the
saxon prefix being bound to the namespace http://icl.com/saxon.

-->
<redirect:write file="{@series}-years">
<xsl:for-each select="$the-stories/year">

<xsl:sort select="." data-type="number"/>
<xsl:value-of select="concat(.,’ ’)"/>

</xsl:for-each>
</redirect:write>

</xsl:if>
</xsl:template>

</xsl:stylesheet>

Figure 3: Muenchian method of grouping elements in xslt 1.0.

2 Grouping

Given the xml text given at Figure 1, let us try to
group the titles of included stories by year. More
precisely, we are seeking for the xml text given in
Figure 2.

In xslt 1.0, the only way to group elements is
to define a key partitioning these elements11. Apply-
ing it to such an example results in a complex and
memory-intensive method, called the Muenchian

11 We already showed how to use keys in [6].

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

xslt 2.0 vs xslt 1.0

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="2.0" id="grouping-plus" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsl:output method="xml" encoding="ISO-8859-1" indent="yes"/>
<xsl:output method="text" encoding="ISO-8859-1" name="additional-text"/>

<xsl:template match="books">
<xsl:variable name="the-stories" select="omnibus/story" as="element(story)*"/>
<items>
<xsl:for-each-group select="$the-stories" group-by="year">

<xsl:sort select="xsd:integer(year)"/> <!-- Shorthand for ‘year cast as xsd:integer’. -->
<!-- The contents of the year elements are coerced into integers, so they are sorted as numbers. -->
<by-year year="{year}"><xsl:copy-of select="current-group()/title"/></by-year>

</xsl:for-each-group>
</items>
<xsl:result-document href="{@series}-years" format="additional-text">
<!-- The outputs performed when this element is invoked are stored into the file whose name is given by

the href attribute.
-->

<xsl:perform-sort select="distinct-values($the-stories/year)">
<!-- This ‘new’ element is used to receive the result of a sort, as a sequence [12, Ch. 5]. The

distinct-values function eliminates the duplicates values of a sequence [11, Ch. 10]. Since the
order of the values in the result sequence is undefined, we have to use it before sorting.

-->
<xsl:sort select="." data-type="number"/>
<!-- Of course, using the data-type attribute still remains possible. -->

</xsl:perform-sort>
</xsl:result-document>

</xsl:template>

</xsl:stylesheet>

Figure 4: Grouping elements by values in xslt 2.0.

method, after Steve Muench of Oracle [16, § 6.2].
Let us look at Figure 3: the by-year key allows us to
group all the story elements sharing the same year.
We retain the story elements corresponding to the
first occurrences of each year, given inside a year el-
ement. To do that, we label each story element with
a unique identifier by means of the generate-id
function [26, § 12.4]. Then these story elements
are sorted according to the information about years
[26, § 10]. Approaching our goal, for each story
element corresponding to the first occurrence of a
year, we consider all the story elements whose the
information about the year is the same, given by
the by-year key. At last (!), the title elements
of each of these story elements are copied into the
result, that is, they are embedded into a by-year el-
ement. In analogous applications, several keys may
be needed, corresponding to group levels.

The implementation of the same functionality
in xslt 2.0 using groups—see Figure 4— is indis-
putably easier to understand. . . and much more ef-

ficient. The story elements sharing the same year
information are grouped. Then the current-group
function allows us to obtain the successive items—
story elements in this example—that are members
of the group we are processing [12, Ch. 7]. So when
XPath 2.0’s expression current-group()/title is
applied, we get all the successive title elements of
each member of this group. Let us remark that we
need neither keys, nor generated identifiers associ-
ated with nodes of the source text.

The main element processing groups in xslt 2.0
is xsl:for-each-group. More precisely, nodes of
the xml text that are selected by an XPath expres-
sion given by the select attribute may be grouped
since they share the same value, specified by the
group-by attribute, as we do in Figure 4. This
xsl:for-each-group element may be used with an-
other attribute, group-adajcent, to group only ad-
jacent elements. That is, the first item of adjacent
elements starts a new group, and the subsequent
item belongs to the same group if it shares the same

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1005

Jean-Michel HUFFLEN

value w.r.t. the group-adjacent attribute, other-
wise, a new group is started. This rule is iterated un-
til the end of adjacent elements. Two other possible
attributes of this element— group-starting-with
and group-ending-with—are also used to group
adjacent elements. In the first (resp. second) case,
just specify a pattern—as an XPath expression [12,
Ch. 6]—matching the first (resp. last) element of
each group. More details and many examples are
given in [12, Ch. 5].

3 Multiple outputs

As mentioned in the introduction, we can implement
this functionality in xslt 1.0 by using some exten-
sion functions. Figure 3 shows how to proceed if
you use Xalan. If another xslt processor is used,
this feature is protected by an xsl:if element, so
no error occurs. However, a complete implementa-
tion should take each xslt processor into account,
and let us recall that xslt processors do not have
to provide it. Finally, let us notice that in this im-
plementation provided by Xalan, the output mode is
supposed to be the same than the main stream’s—
here, xml—which may be unsuitable in some appli-
cations.

On the contrary, the program given in Figure 4
runs under any processor of xslt 2.0. There is a
main output stream, and additional ones can be
managed by means of the xsl:result-document el-
ement [12, Ch. 5]. Additional output methods can
be specified, in which case they must have been
given a name attribute. If the format attribute of
the xsl:result-document is given, it must be such
a name, otherwise the corresponding output stream
refers to the default xsl:output element. About
possible formats, let us mention that you may set the
method attribute to xhtml for generating xhtml12

outputs, in addition to the methods already known
in xslt 1.0: html, text, xml.

4 Functions

xslt 2.0 allows the definitions of functions that may
be used inside XPath expressions. These functions
use xslt’s constructs, so they are more portable
than xslt 1.1’s xsl:script elements. They must
belong to a namespace. As shown by Figure 5, the
as attribute allows us to make precise the type of
the function’s result, as well as the type of a param-
eter or a variable. Let us recall that such values are
sequences, the ‘?’ marker used inside as attributes
denotes a zero-or-one-length sequence.

12 eXtensible HyperText Markup Language. This a re-
formulation of html using xml conventions. See [17] for more
details.

<xsl:function name="add:month-position"
as="xsd:integer">

<!-- The add namespace prefix is supposed to be
defined [19, pp. 41–45]. xsd is the prefix
used for XML Schema’s types.

-->
<xsl:param name="the-month"

as="element(month)?"/>
<xsl:variable
name="the-index"
select="index-of((’jan’,’feb’,...,’dec’),

name($the-month/*[1]))"
as="xsd:integer?"/>

<!-- If the item does not belong to the sequence,
the index-of function returns an empty
sequence [11, Ch. 10].

-->
<xsl:value-of
select="if (empty($the-index)) then 13 else

$the-index"/>
</xsl:function>

Figure 5: xslt function returning a month’s number.

If we assume that the XPath expression month
gives access to an element defined as follows13:
<!ELEMENT month (jan | feb | ... | dec)>
<!ELEMENT jan EMPTY>
<!ELEMENT feb EMPTY>
...
<!ELEMENT dec EMPTY>
by using a dtd14, the function given in Figure 5
returns the number of a month and can be used
throughout an XPath expression, as follows:
<xsl:sort

select="add:month-position(month)"/>
Since this function returns 13 when the optional ele-
ment month is not found, items without month infor-
mation are ranked at the end. When such a function
is called, formal parameters—given by successive
xsl:param elements—are bound to actual values
regarding positions: the first parameter is bound to
the first actual value, and so on. An actual value is
required for each parameter of a function, so default
values are not allowed for such parameters15. The

13 xml trees generated by MlBibTEX—our reimplementa-
tion of the BibTEX bibliography processor [18]—are confor-
mant to this definition [9].

14 Document Type Definition. A dtd defines a document
markup model, see [19, pp. 148–155] for more details.

15 Concerning a parameter of a xsl:template element, a
required attribute set to yes forces it to be passed explicitly
when the template is invoked. In this case, default values are
not allowed, either. This required attribute did not exist in
xslt 1.1 and defaults to no.

1006 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

xslt 2.0 vs xslt 1.0

override attribute controls what happens if a user-
written function and a vendor-supplied one have the
same name. If it is set to yes (resp. no), the former
(resp. latter) wins. It defaults to no.

5 Datatype binding

A complete description of this feature would be too
long and outside the scope of this article, because
it requires good knwoledge of the way used in XML
Schema to define types. However, we can mention
some simple cases showing that the type information
is widely used in xslt 2.0.

When a node set is to be sorted in xslt 1.0, the
data-type attribute defaults to text, that is, for a
lexicographical sort [26, § 14]. So you have to set it
to number for a numerical sort. When the key sort
has been recognised as a number in xslt 2.0, the
sort is numerical by default [35, § 13.1]: an example
is given in Figure 4. Another example is provided
by the function given at Figure 5. If this function
is used as a sort key, as shown in Section 4, we do
not have to make precise the data-type attribute of
the xsl:sort element, either, since our function in-
cludes the declaration as="xsd:integer". The as
attribute provides type information and can be asso-
ciated with the elements xsl:function, xsl:param,
xsl:variable, and xsl:with-param. Even if as
attributes are not always needed, we recommend to
use them as far as possible, as we do in our examples.
Besides, this choice allows us to show the expressive
power of the language of types: e.g., the use of ‘?’,
‘*’, ‘+’, related to regular expressions16. If there is
no as attribute, any value of any type is acceptable,
that is equivalent to specifying ‘ as="item()*" ’. Of
course, type-checking may result in significant loss
of efficiency, but it can help develop a stylesheet; it
allows you to control what happens when data are
passed by functions, variables or parameters. In ad-
dition, the specification of some operations may be
made easier, as abovementioned about sorting.

Let X be an XPath expression and T be a type
expression, the following operators, described in [11,
Ch. 9], are usable inside XPath expressions:
X cast as T coerces X into an expression being

type T (see Figure 4), if this operation fails, an
error is signalled;

X castable as T returns true if the correspond-
ing coercion operation would succeed, false
otherwise;

X instance of T returns true if X is of type T ,
false otherwise;

16 A complete specification of this language is given in [12,
pp. 74–79].

X treat as T returns X if it is of type T , otherwise
an error is signalled.

6 Character maps

Another new feature introduced by xslt 2.0 is given
by character maps, especially interesting if you de-
rive source texts for the LATEX word processor [15]
from xml texts.

In xslt 1.0, all the characters belonging to a
constant string or the contents of an xsl:text el-
ement are copied verbatim into the result, except
if the disable-output-escaping attribute—which
defaults to no—is set to yes, in which case the en-
tities specifying special characters used throughout
xml texts [19, pp. 48–49] are replaced by the char-
acters themselves [26, § 16.4]. For example:
<xsl:text disable-output-escaping="yes">

... Mickey & Mallory...
</xsl:text>
will generate ‘... Mickey & Mallory...’. If we
are interested in deriving texts suitable for LATEX,
we have to pay attention to LATEX’s special char-
acters, that is, we have to produce ‘... Mickey
\& Mallory...’ for this example. The translate
function [25, § 4.2] allows us to replace a charac-
ter by another, or to remove a character17. But it
cannot be used to replace a single character by a se-
quence of several characters. So processing LATEX’s
special characters by means of XPath 1.0’s functions
is tedious18.

As shown by Figure 6, the character maps of
xslt 2.0 allows the replacement of a single character
by a string, by means of xsl:output-character el-
ements. You can use several character maps for an
output stream, given by the use-character-maps
attribute19. We think that the best method con-
sists of putting characters down as they must appear
within the result. Control characters—e.g., ‘{’ and
‘}’ in LATEX—are represented by positions belong-
ing to a private use area of Unicode encoding [22].
Then the character map is used for characters that
must be escaped or belong to the private use area.

17 To remove a character, call the translate function with
a source character with no corresponding position within the
third argument. For example, translate(s0,"$&","£") re-
turns a string in which all the occurrences of the ‘$’ character
(resp. the ‘&’ character) in the s0 string are replaced by the
‘£’ character (resp. removed).

18 This problem is solved in MlBibTEX, which uses the nbst
language, close to xslt 1.0, for specifying bibliography styles.
We have added the value LaTeX to the possible values for
the mode attribute of the nbst:output element [4, App. A],
analogous to the xsl:output element.

19 What to do if several xsl:output-character declara-
tions conflict is unspecified: an xslt processor may report an
error, or use the one that occurs last in the stylesheet.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1007

Jean-Michel HUFFLEN

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE stylesheet [<!ENTITY start-command "">
<!ENTITY start-group "">
<!ENTITY end-group "">
<!ENTITY start-math-mode "">
<!ENTITY end-math-mode "">]>

<xsl:stylesheet version="2.0" id="using-tex-map" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text" encoding="ISO-8859-1" use-character-maps="TeX-map"/>

<xsl:strip-space elements="*"/>
<!-- Rules blank nodes out from the source text: cf. [6] & [35, § 4.4]. -->

<xsl:character-map name="TeX-map">
<xsl:output-character character="#" string="\#"/>
<xsl:output-character character="%" string="\%"/>
<xsl:output-character character="$" string="\$"/>
<xsl:output-character character="&" string="\&"/>
<xsl:output-character character="\" string="\backslash"/>
<xsl:output-character character="^" string="{\char"5E}"/> <!-- Using hexadecimal -->
<xsl:output-character character="_" string="_"/> <!-- code. In Plain TEX, -->
<xsl:output-character character="{" string="$\{$"/> <!-- the commands ‘\{’ and ‘\{’ are -->
<xsl:output-character character="|" string="$|$"/> <!-- only usable in mathematical mode -->
<xsl:output-character character="}" string="$\}$"/> <!-- (cf. [14, Exercise 16.12]). -->
<xsl:output-character character="~" string="{\char"7E}"/>
<xsl:output-character character="£" string="{\it\char"24}"/>
<xsl:output-character character="&start-command;" string="\"/>
<xsl:output-character character="&start-group;" string="{"/>
<xsl:output-character character="&end-group;" string="}"/>
<xsl:output-character character="&start-math-mode;" string="$"/>
<xsl:output-character character="&end-math-mode;" string="$"/>

</xsl:character-map>

<xsl:variable name="eol" select="’
’" as="xsd:string"/>
<!-- Convenient way to write the end-of-line character: cf. [6]. -->

<xsl:template match="books">
<xsl:apply-templates/>
<xsl:value-of select="concat($eol,’&start-command;end’,$eol)"/> <!-- Yields ‘¶\end¶’. -->

</xsl:template>

<xsl:template match="omnibus">
<xsl:apply-templates select="booktitle,story/title"/> <!-- Process them in turn. -->

</xsl:template>

<xsl:template match="booktitle"> <!-- First-level enumeration: omnibuses’ titles. -->
<xsl:text>&start-command;item&start-group;&start-math-mode;&start-command;bullet</xsl:text>
<xsl:text>&end-math-mode;&end-group; </xsl:text>
<xsl:value-of select="concat(.,$eol)"/>

</xsl:template>

<xsl:template match="title"> <!-- Second level: titles of each story. -->
<xsl:text> &start-command;itemitem&start-group;&start-math-mode;&start-command;star</xsl:text>
<xsl:text>&end-math-mode;&end-group; </xsl:text>
<xsl:value-of select="concat(.,$eol)"/>

</xsl:template>

</xsl:stylesheet>

Figure 6: Using a character map when a source text for Plain TEX is generated.

1008 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

xslt 2.0 vs xslt 1.0

\item{\bullet} Doc Savage Omnibus \#9
\itemitem{\star} The Invisible-Box Murders
\itemitem{\star} Birds of Death
\itemitem{\star} The Wee Ones
\itemitem{\star} Terror Takes 7
\item{\bullet} Doc Savage Omnibus \#10
\itemitem{\star} The Devil’s Black Rock
\itemitem{\star} Waves of Death
\itemitem{\star} The Too-Wise Owl
\itemitem{\star} Terror and the Lonely Widow

\end

Figure 7: Applying Fig. 6’s stylesheet to Fig. 1’s text.

The xslt stylesheet given in Figure 6 generates an
output suitable for Plain TEX [14]: applying it to the
xml text given in Figure 1 yields Figure 7’s text.
We use the first positions of the range U+E000–
U+F8FF—which is a private use area of Unicode’s
basic multilingual plane— for the character opening
a command name, for the beginning and end of an
argument of a TEX command, and for on-off switch
to the mathematical mode. We define some char-
acter entities by using a ‘trick’ already described in
[7]. Such technique is used in the example given in
[12, pp. 234–235], although additional characters be-
longing to the private area could also be defined as
global variables, i.e., by means of xsl:variable ele-
ments that are children of the xsl:stylesheet root
element. The character codes given in the TeX-map
character map have been established according to
the tables of [14, App. F].

As another example, Figure 8 shows how the
Polish letters that do not belong to the Latin 1 en-
coding20 can be replaced by the LATEX commands
producing them21.

7 Other features

Let us consider the month element defined in Sec-
tion 4, Figure 9 shows a function returning the En-
glish name corresponding to such an element. When
this element is absent, an empty string is returned.
As shown in this figure, a temporary tree is created
by using an xsl:variable element with no as at-
tribute. Parts of such a tree can be accessed by
means of XPath expressions.

20 The encoding encompassing all the Polish letters is
Latin 2.

21 As we explain in [8], MlBibTEX is presently based on the
Latin 1 encoding, and letters belonging to other encodings are
replaced by LATEX commands. In fact, tables analogous to
this character map are used internally.

In addition to the XPath functions mentioned
in Section 1 about analysing a string w.r.t. regular
expressions, let us notice the elements:
xsl:analyze-string xsl:matching-substring

xsl:non-matching-substring
and the regex-group function [12, Ch. 5 & 7], which
also serve this purpose.

8 Going further

A more didatic introduction to the differences be-
tween Versions 1.0 and 2.0 is [16]. More details
about the xsl:sort element are given in [9]. Style-
sheets using xslt 1.0 are roughly compatible if they
are run by an xslt 2.0 processor, except for the
points signalled in [11, App. C] and [12, pp. 123–
128]. Here is a short overview.
• The main incompatibility between XPath 1.0

and 2.0 concerns numbers: as an example, let
us consider the test "10" > "2". In XPath 1.0,
the two strings are dynamically converted into
numbers and this test yields false. In Ver-
sion 2.0, if the two operands have not been
recognised as numbers by means of a type an-
notation, they are considered as strings, so the
test uses the lexicographical order and yields
true. Likewise, comparisons with a boolean
value may yield different values.

• In xslt 1.0, if a single item is expected and
the supplied value contains more than one item,
the first item is returned and the rest is ignored.
This rule concerns the parameters of a function,
and the values of the select attribute of the el-
ements xsl:sort, xsl:value-of. In xslt 2.0,
the xsl:sort element signals an error; in the
other cases, all the items are processed: the
results are separated by space characters, ex-
cept if the separator attribute is set when the
xsl:value-of element is used.

• If an xsl:call-template element supplies a
parameter undefined in the called template, it
is ignored in xslt 1.0. In xslt 2.0, an error is
signalled.

• Most of other incompatibilities are related to
datatype management, more dynamic in Ver-
sion 1.0: see above about XPath’s two versions.
At the present time, there are only a few pro-

cessors for xslt 2.0. The most known, Saxon, ex-
ists in two versions [13]: an open-source version im-
plementing the basic conformance to xslt 2.0, and
a full commercial product, schema-aware. Another
choice is AltovaXMLTM 2008 [1]. All the examples
given throughout this article have been tested with
Saxon’s open-source version.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1009

Jean-Michel HUFFLEN

<xsl:character-map name="polish-letters-nlatin1">
<xsl:output-character character="Ą" string="{\Aob}"/> <!-- ‘Ą’ -->
<xsl:output-character character="ą" string="{\aob}"/> <!-- ‘ą’ -->
<xsl:output-character character="Ć" string="\’{C}"/> <!-- ‘Ć’ -->
<xsl:output-character character="ć" string="\’{c}"/> <!-- ‘ć’ -->
<xsl:output-character character="Ę" string="{\Eob}"/> <!-- ‘Ę’ -->
<xsl:output-character character="ę" string="{\eob}"/> <!-- ‘ę’ -->
<xsl:output-character character="Ł" string="{\L}"/> <!-- ‘Ł’ -->
<xsl:output-character character="ł" string="{\l}"/> <!-- ‘ł’ -->
<xsl:output-character character="Ń" string="\’{N}"/> <!-- ‘Ń’ -->
<xsl:output-character character="ń" string="\’{n}"/> <!-- ‘ń’ -->
<xsl:output-character character="Ś" string="\’{S}"/> <!-- ‘Ś’ -->
<xsl:output-character character="ś" string="\’{s}"/> <!-- ‘ś’ -->
<xsl:output-character character="Ż" string="\.{Z}"/> <!-- ‘Ż’ -->
<xsl:output-character character="ż" string="\.{z}"/> <!-- ‘ż’ -->

</xsl:character-map>

Figure 8: Character map for the Polish letters not included in the Latin 1 encoding.

<xsl:variable name="months">
<!-- This declaration is allowed in xslt 1.0, but the contents of this variable, containing xml elements that do

not come from the source text, would be viewed as a whole, that is, an XPath expression such as
$months/month-abbr[. = "feb"] would result in an error.

-->
<month-abbr english-name="January">jan</month-abbr>
<month-abbr english-name="February">feb</month-abbr>
...
<month-abbr english-name="December">dec</month-abbr>

</xsl:variable>

<xsl:function name="add:english-month-name" as="xsd:string">
<xsl:param name="the-month" as="element(month)?"/>
<xsl:variable

name="the-position"
select="index-of(for $node in $months return $node/month-abbr,name($the-month/*[1]))"
as="xsd:integer?"/>

<xsl:value-of
select="if (empty($the-position)) then ” else $months/*[$the-position]/@english-name"/>

</xsl:function>

Figure 9: Using a temporary tree.

9 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
written the Polish translation of the abstract. To-
masz Przechlewski has helped translate keywords,
thanks to him, too.

References

[1] AltovaXML. 2008. http://www.altova.com/
altovaxml.html.

[2] The Apache Xalan project. 2005. http://
xalan.apache.org.

[3] David Flanagan: JavaScript. The Definitive
Guide. 5th edition. O’Reilly. August 2006.

[4] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. tugboat, Vol. 24, no. 2, pp. 249–262. July
2003.

[5] Jean-Michel Hufflen: “Introduction to xslt”.
Biuletyn gust, Vol. 22, pp. 64. In BachoTEX
2005 conference. April 2005.

[6] Jean-Michel Hufflen: “Advanced Techniques
in xslt”. Biuletyn gust, Vol. 23, pp. 69–75. In
BachoTEX 2006 conference. April 2006.

[7] Jean-Michel Hufflen: “Introducing LATEX
users to xsl-fo”. tugboat, Vol. 29, no. 1,
pp. 118–124. EuroBachoTEX 2007 proceedings.
2007.

1010 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

xslt 2.0 vs xslt 1.0

[8] Jean-Michel Hufflen: “Managing Order Rela-
tions in MlBibTEX”. tugboat, Vol. 29, no. 1,
pp. 101–108. EuroBachoTEX 2007 proceedings.
2007.

[9] Jean-Michel Hufflen: “Revisiting Lexico-
graphic Order Relations on Person Names”. In:
this volume. BachoTEX. April 2008.

[10] Java Technology. March 2008. http://java.
sun.com.

[11] Michael H. Kay: XPathTM 2.0 Programmer’s
Reference. Wiley Publishing, Inc. 2004.

[12] Michael H. Kay: xslt 2.0 Programmer’s Ref-
erence. 3rd edition. Wiley Publishing, Inc.
2004.

[13] Michael H. Kay: Saxon. The xslt and
XQuery Processor. March 2008. http://saxon.
sourceforge.net.

[14] Donald Ervin Knuth: Computers & Typeset-
ting. Vol. A: The TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.
1984.

[15] Leslie Lamport: LATEX: A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[16] Sal Mangano: xslt Cookbook. 2nd edition.
O’Reilly. December 2005.

[17] Chuck Musciano and Bill Kennedy: html
& xhtml: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[18] Oren Patashnik: BibTEXing. February 1988.
Part of the BibTEX distribution.

[19] Erik T. Ray: Learning xml. O’Reilly & Asso-
ciates, Inc. January 2001.

[20] John E. Simpson: XPath and XPointer.
O’Reilly & Associates, Inc. August 2002.

[21] Bjarne Stroustrup: The C++ Programming
Language. 2nd edition. Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts.
1991.

[22] The Unicode Consortium: The Unicode
Standard Version 5.0. Addison-Wesley. Novem-
ber 2006.

[23] Daniel Veillard: The xslt C Library for
Gnome. http://xmlsoft.org/XSLT. March
2003.

[24] Eric van der Vlist: Comparing xml
Schema Languages. http://www.xml.com/
pub/a/2001/12/12/schemacompare.html. De-
cember 2001.

[25] W3C: xml Path Language (XPath). Ver-
sion 1.0. w3c Recommendation. Edited
by James Clark and Steve DeRose. Novem-
ber 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116.

[26] W3C: xsl Transformations (xslt). Ver-
sion 1.0. w3c Recommendation. Edited by
James Clark. November 1999. http://www.w3.
org/TR/1999/REC-xslt-19991116.

[27] W3C: xsl Transformation Requirements. Ver-
sion 1.1. Working draft. Edited by Steve
Muench. August 2000. http://www.w3.org/
TR/2000/WD-xslt11req-20000825.

[28] W3C: xslt Requirements Version 2.0. w3c
Working Draft. Edited by Steve Muench and
Mark Scandina. February 2001. http://www.
w3.org/TR/WD-xslt20req-20010214.

[29] W3C: xsl Transformations (xslt). Ver-
sion 1.1. w3c Working Draft. Edited by James
Clark. August 2001. http://www.w3.org/TR/
2001/WD-xslt11-20010824.

[30] W3C: xml Schema. November 2003. http://
www.w3.org/XML/Schema.

[31] W3C: xml Schema Part 2: Datatypes.
w3c Recommendation. Edited by
Paul V. Biron, Ashok Malhotra. Octo-
ber 2004. http://www.w3.org/TR/2004/
REC-xmlschema-2-20041028/.

[32] W3C: XPath Requirements Version 2.0. w3c
Working Draft. Edited by Mark Scandina and
Mary F. Fernández. June 2005. http://www.
w3.org/TR/2005/WD-xpath20req-20050603.

[33] W3C: xml Path Language (XPath) 2.0. w3c
Working Draft. Edited by Anders Berglund,
Scott Boag, Don Chamberlin, Mary F. Fer-
nández, Michael H. Kay, Jonathan Robie and
Jérôme Siméon. January 2007. http://www.
w3.org/TR/2007/WD-xpath20-20070123.

[34] W3C: XQuery 1.0: an xml Query Lan-
guage. w3c Working Draft. Edited by Scott
Boag, Don Chamberlin, Mary F. Fernández,
Daniela Florescu, Jonathan Robie and Jérôme
Siméon. January 2007. http://www.w3.org/
TR/xquery.

[35] W3C: xsl Transformations (xslt). Ver-
sion 2.0. w3c Recommendation. Edited by
Michael H. Kay. January 2007. http://www.
w3.org/TR/2007/WD-xslt20-20070123.

[36] Priscilla Walmsley: XQuery. O’Reilly. April
2007.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1011

