
A FRAMEWORK FOR MANAGING COMPONENTS USING
NON-FUNCTIONAL PROPERTIES∗

Jean-Michel Hufflen
LIFC (EA CNRS 4269). University of Franche-Comté. 16, route de Gray. 25030 BESANÇON CEDEX, FRANCE

jmhufflen@lifc.univ-fcomte.fr

Keywords: Non-functional properties, component-based approach, component configuration, TACOS project, XML.

Abstract: As part of a component-based approach, we propose a framework to group specifications of component hi-
erarchies, possibly including the specification of non-functional properties. We show how we are able to
choose a particular implementation of a component—or change an implementation to another—regarding
non-functional properties, and how we are able to express configurations of component-based architectures.
Our approach uses programs related to XML, and non-functional properties are managed by means of a termi-
nology originating from the metadata used by the Dublin Core.

0 INTRODUCTION

It is known that functional requirements spec-
ify what a system is supposed to do whereas non-
functional requirements express what a system is sup-
posed to be. Non-functional requirements include
constraints and quality factors (Sommerville, 2006,
Ch. 2). Examples are time-constrained response or
requested services’ availability. Presently, there is
no consensus about classifying these properties, as
reported in (Glinz, 2007). In this article, we pro-
pose a framework to handle some hierarchies of com-
ponents, within a component-based approach, suit-
able for systems with high-safety requirements. By
‘some hierarchies’, we mean that several implemen-
tations may be associated with a component’s spec-
ification. The choice among such implementations
of a same specification can be guided by considering
non-functional properties. We assume that prelimi-
nary steps of designing some versions about compo-
nents and interactions among them have already been
done. We aim to assist designers when they wish to
compare different configurations of the same service.
For example, they can study what is induced by the
replacement of a component by another one.

∗This work is supported by the French agency for re-
search (TACOS ANR-06-SETI-017-03).

At first glance, our approach may be compared
with using Makefiles, in order to build executable files
from source ones by means of the make command2.
But it is well-known that such files contain informa-
tion redundancy since dependences have to be put ex-
plicitly. As an example, such a specification is related
to files written using the C programming language:

f.o: f.c dep1.h ... depn.h

expresses that the f.o object file has to be rebuild
if a file belonging to f.c, dep1.h, . . . , depn.h is
newer than the present f.o file, or if this last file does
not exist. But this information must be put even if it
is already expressed within files. Since we consider
source files written in C, the dependence of the f.o
file on the dep1.h file has probably been expressed
within the f.c source file by the macro-instruction:

#include "dep1.h"

In particular, that is why some additional programs—
e.g., automake (Vaughn et al., 2000) or (cmake,
2009)—have been developed to supply this informa-
tion from source files. The same drawback related to
information redundancy exists with the configuration
files used by the Ant program3: a target element in-
cludes a depends attribute, even if this information
can be deduced from source files.

2See (Oram and Talbott, 1991) for more details.
3See (Tilly and Burke, 2002) for more details.

Our configuration files use XML4-like syntax. We
also use the terminology originating from (Dublin
Core Metadata Initiative, 2008) for metadata related
to non-functional properties. In addition, types qual-
ifying the possible values for non-functional proper-
ties can be specified by the rigorous approach of XML
Schema (W3C, 2008). We explain all these points in
§ 1. Then § 2 gives the different steps of the use of
our framework. § 3 discusses our modus operandi,
and § 4 sketches which ways are open. Reading this
article only requires basic knowledge of XML.

1 BASIS

We consider a basic notion of component: a unit
of construction implementing some services via in-
terfaces. If a component is built from other subcom-
ponents, it is said to be composite. Otherwise, it is
simple. Such a simple component can be specified by
the tacos:component element5 (several successive
tacos:implements elements are allowed):
<tacos:component id="id-0" path="path-to-id-0">

<tacos:implements ref="interface-0"
role="server" name="..."/>

<tacos:nonfunctional-properties>
<tacos:nf-property name="nfp:complexity"

as="nfp:performance"
value="linear"/>

<tacos:nf-property
name="nfp:reliability" as="nfp:specific"
check-up="http://tacos.loria.fr/..."/>

...
</tacos:nonfunctional-properties>

</tacos:component>

The id attribute is unique—of type xsd:ID—
whereas path is used to localise the component. Then
non-functional properties are grouped. For each of
them, if the check-up attribute is present, its value
is a URI6 denoting a program that applies to what is
located at path’s value and reports about this prop-
erty. For example, if the reliability is expressed as the
mean time between failures, it can be computed by a
tool and the result—the value attribute—is the type
xsd:decimal. Likewise, a non-functional property
related to efficiency can be reported by a tool running
the component with benchmarks. If a non-functional
property is supposed to be not checkable by means of
a program, the value attribute is to be supplied by
designers. Most non-functional properties are prede-
fined, they belong to the namespace identified by the

4eXtensible Markup Language.
5The prefix originates from the TACOS project, cf. § 3.
6Uniform Resource Identifier (Network Working

Group, 2002).

nfp prefix. A designer can add new properties by re-
fining our XML schema. The as attribute is used to
group non-functional properties into several families:
it allows us to retrieve information concerning non-
functional properties belonging to a same class. A
composite component can be specified as follows:

<tacos:composite-component id="id-2"
path="...">

<tacos:implements .../>
<tacos:refers-to ref="id-0" nb="2"/>
<tacos:refers-to ref="id-1"/>
<tacos:nonfunctional-properties>...</...>

</tacos:composite-component>

There are three subcomponents of this last com-
ponent: two instances of the id-0 component (the nb
attribute gives the number of replications), and one
instance of id-1 (nb defaults to 1). Non-functional
properties specified for this composite component
hold for the whole of it, without reference to its sub-
components’ properties. The general layout is:

<tacos:components ... (Namespace definitions.) >
<tacos:general-metadata>
<dc:title>Example</dc:title>
<dc:creator>H., J.-M. (...)</dc:creator>
...

</tacos:general-metadata>
<tacos:component-specifications>
<tacos:component id="id-0">...</...>
<tacos:composite-component id="id-2">

...
</...>

</tacos:component-specifications>
</tacos:components>

The elements introducing metadata use the ba-
sic elements of the Dublin Core, prefixed by dc.
The specification of all the components is flatten,
in the sense that no component is defined inside
the specification of a composite component. A ref-
erence to another component is expressed by an
tacos:refers-to element, as shown above.

2 STEPS

Here are the five successive steps of our method.

1. This step is sketched at § 1, it just states the result
of the conception of a hierarchy of components.
This result is close has been shown, but without
the specification of non-functional properties.

2. Elements of non-functional properties are added
by designers, with accurate values associated with
the check-up or value attributes.

3. We consider all the tacos:nf-property ele-
ments of our configuration file. If the check-up

attribute is used, the corresponding program is
called, and the result is given as a new or updated
value attribute. So each tacos:nf-property
element is given a value attribute. In addition,
some metadata elements are computed, e.g., the
following element is put at the specification’s end
of the id-0 component:

<tacos:technical-metadata>
<dcterms:isReferencedBy>id-1</...>

</tacos:technical-metadata>

The dcterms prefix is used for the elements be-
longing to the Qualified Dublin Core: such ele-
ments refine the semantics of Dublin Core’s basic
elements. This step is performed by applying an
XSLT7 program (W3C, 2007c). The result is given
in a new configuration file, extending the original
one, and so-called complete.

4. Several complete configuration files modelling hi-
erarchies can be merged into one, in order to share
the common parts—interfaces or components. In
addition, metadata about alternatives and refine-
ments are added, e.g., if another configuration file
contains another component id-3, implementing
the same interface than id-0, the technical meta-
data of the specification of id-0 will include:

<dcterms:alternative>id-3</...>

an analogous information being added to the spec-
ification of id-3. This step is also performed by
applying an XSLT program.

5. Using a configuration file as a data base, we can
ask for information about components, including
non-functional properties. As a simple example,
the following fragment, written in the XQuery lan-
guage (W3C, 2007b), yields all the paths of the
components such that the non-functional proper-
ties classified as nfp:performance are ‘good’,
the result being an XML text.

<answers>{
for $component in

(doc("...")/tacos:components/
tacos:component-specifications/*)

return
if (some $nf-property in

$component/
tacos:nonfunctional-properties/
tacos:nf-property satisfies
$nf-property/@as eq
"nfp:performance" and
check-good($nf-property/@value))
then <a>{$component/@path}
else ()

}
</answers>

7eXtensible Stylesheet Language Transformations.

We can also assembly components in order to
build complete software, using selection criteria
based on non-functional properties. If this opera-
tion succeeds, a version name is chosen and con-
cerned components’ metadata are updated:

<dcterms:isVersionOf>version-0</...>

this step being performed by an XSLT program.

6. We should be able to derive files usable by make—
or Makefile.in files, used by the configure
program (Vaughn et al., 2000)—or Ant.

3 CRITICISM

This approach has been put into action as part
of the TACOS8 project, proposing a component-based
approach suitable for land transportation systems.
These systems, which are both distributed and em-
bedded, require to express functional properties, as
well as non-functional ones. As a good example of
our method, there are several versions and variants of
the localisation component of a vehicle. These ver-
sions use the same basic components but the com-
posite components grouping them are organised dif-
ferently. There are much debate within the working
group about these versions. Our approach allows us to
make easier these comparisons, in particular regard-
ing non-functional properties. More precisely, Steps 1
to 5 have been implemented using the Saxon program
(Kay, 2008), providing an XQuery and XSLT proces-
sor; Step 6 is almost finished.

A close approach exists within the SCA framework
(Service Component Architecture, 2007), that pro-
vides a programming model for building applications
based on a service-oriented architecture. SCA also
uses files written using XML-like syntax, and similar
notions exist: interfaces, simple and composite com-
ponents. But this approach is more restrictive: inter-
faces can be Java or WSDL9 interfaces. Likewise, SCA
allows a limited choice among several implementa-
tion types for a component’s implementation. The
most used is Java, but other languages, such as C++ or
C, are also allowed. That is, we are not wholly inde-
pendent of the language chosen, even if a wide variety
is available. Properties can be specified, and may be
deduced from programs’ texts, e.g., implementations
written in Java can use annotations. The main differ-
ence with our approach is that an SCA text describes

8Trustworthy Assembling of Components: frOm re-
quirements to Specification. See this project home page
http://tacos.loria.fr for more details.

9Web Services Definition Language (W3C, 2007a).

only one assembly; there is no way to specify alterna-
tives in SCA, no possible replacement of a component
by another. Some elements used within SCA can be
viewed as metadata, but they are defined in an ad hoc
way. Likewise, UniFrame (Raje et al., 2001) creates a
comprehensive framework that enables the discovery,
interoperability and collaboration of components via
software generative techniques. Non-functional prop-
erties are handled as quality-of-service parameters,
SQL requests are used to query such a frame about
QoS parameters. The selection of alternative com-
ponenents is possible, too. Nevertheless, our notion
of composite component is more powerful, and the re-
lationships among components we model by means of
Dublin Core elements are more refined. In addition,
as far as we know, UniFrame does not provide tools to
perform the merge of several hierarchies sharing com-
mon components. On the contrary, we do not provide
the automatic generation of glues and wrappers, as
UniFrame does, but as part of the TACOS project, that
can be done by means of Fractal, a modular and ex-
tensible component model that can be used with var-
ious programming languages to design, implement,
deploy and reconfigure various systems and applica-
tions (Bruneton et al., 2004).

4 FURTHER WORK

Many tools are used within TACOS project, e.g.,
Fractal. It does not consider non-functional proper-
ties, but handles XML configuration files. We suc-
ceeded in getting such XML files, transforming them,
and adding specification of non-functional properties.
So we can reuse the conception done by a Fractal
user. An advantage of using elements originating
from Dublin Core: we plan to use some tools related
to the Semantic Web. This idea is promising: as part
of studying services, this connection with the Seman-
tic Web has already been proposed in (Gerede et al.,
2008). Such metadata are also used within the Web
Services Semantics (W3C, 2005; WSMO, 2006).

5 CONCLUSION

We have wanted to show that we follow a rigor-
ous approach, with the advantages and drawbacks of a
general one, without any hypothesis about languages
and paradigms used. Such an approach requires the
development of many additional tools, in particular,
to deal with non-functional properties. But the appli-
cation fields of such a framework is potentially high.
Of course, we need more case studies to experiment

our approach, but we are optimist because of the first
results we got from Fractal configuration files.

REFERENCES

Bruneton, É., Coupaye, Th., and Stefani, J.-B. (2004).
The Fractal Component Model. http://fractal.
objectweb.org/specification/index.html.

cmake (2009). CMake. http://www.cmake.org/.
Dublin Core Metadata Initiative (2008). Dublin Core Meta-

data Initiative. http://dublincore.org.
Gerede, C. E., Ibarra, O. H., Ravikumar, B., and Su, J.

(2008). Minimum-cost delegation in service composi-
tion. Theoretical Computer Science, 409(3):417–431.

Glinz, M. (2007). On non-functional requirements. In Proc.
RE 07, New-Delhi, India.

Kay, M. H. (2008). Saxon. The XSLT and XQuery Proces-
sor. http://saxon.sourceforge.net.

Network Working Group (2002). Uniform Resource Iden-
tifiers (URIs), URNs, and Uniform Resource Names
(URNs): Clarifications and Recommendations. http:
//www.ietf.org/rfc/rfc3305.txt.

Oram, A. and Talbott, S. (1991). Managing Projects with
make. O’Reilly & Associates, Inc., 2 edition.

Raje, R., Bryant, B., Auguston, M., Olson, A., and Burt,
C. (2001). A unified approach for integration of dis-
tributed heterogeneous software components. In Proc.
of the 2001 Monterey Workshop Engineering Automa-
tion for Software Intensive System Integration, pages
109–119.

Service Component Architecture (2007). Assembly Model
Speficiation. http://www.osoa.org/download/
attachments/35/SCA_AssemblyModel_V100.pdf?
%version=1.

Sommerville, I. (2006). Software Engineering. Addison-
Wesley, 8 edition.

Tilly, J. and Burke, E. M. (2002). Ant: the Definitive
Guide. O’Reilly & Associates, Inc.

Vaughn, G. V., Ellison, B., Tromey, T., and Taylor, I. L.
(2000). GNU Autoconf, Automake, and Libtool. Sams.

W3C (2005). HyperText Markup Language Home Page.
http://www.w3.org/MarkUp/.

W3C (2007a). Web Services Description Working Group.
http://www.w3.org/2002/ws/desc/.

W3C (2007b). XQuery 1.0: an XML Query Language.
http://www.w3.org/TR/xquery. W3C Recommen-
dation.

W3C (2007c). XSL Transformations (XSLT). Ver-
sion 2.0. http://www.w3.org/TR/2007/
WD-xslt20-20070123. W3C Recommendation.

W3C (2008). XML Schema. http://www.w3.org/XML/
Schema.

WSMO (2006). Web Service Modelling Ontology. http:
//www.wsmo.org/TR/d2/v1.3/.

