
Introduction to XQuery∗

Jean-Michel HUFFLEN
LIFC (EA CNRS 4157)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
jmhufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/home/~jmhufflen

Abstract

XQuery is a query language for data stored in xml form. It can be used to search
such documents and arrange the result, as an xml structure or a simple text
(possibly suitable for a TEX engine). Like xslt 2.0, it is based on XPath 2.0.
We propose an introduction to XQuery, and some comparisons with xslt allow
readers to discern the applications XQuery is suitable for.
Keywords xml, XQuery (1.0 & 1.1), XPath 2.0, xslt 2.0, generating (LA)TEX
source texts.

Streszczenie

XQuery jest językiem zapytań dla danych przechowywanych w formacie xml.
Może on być używany do wyszukiwania dokumentów w takim formacie albo w
płaskich plikach tekstowych (potencjalnie użyteczne dla maszyny TEXowej). Po-
dobnie jak xslt 2.0, jest on oparty na XPath 2.0. Proponujemy wprowadzenie
do XQuery oraz pewne porównanie z xslt aby umożliwić czytelnikom podjęcie
decyzji o tym, do jakich zastosowań XQuery jest przydatny.
Słowa kluczowe xml, XQuery (1.0 & 1.1), XPath 2.0, xslt 2.0, generowanie
tekstów źródłowych dla TEXa i LATEXa.

0 Introduction

This article continues a series of introductions to
some languages and tools related to xml1, presented
at BachoTEX conferences [5, 6, 9]. As the language
of transformations used for xml texts, xslt2 has al-
ready been presented, more precisely in its two ver-
sions: 1.0 [5, 6] and 2.0 [9]. In particular, we showed
that xslt was able to generate (LA)TEX source texts.
Initially, XQuery was designed as a query language
for collections of xml documents, as sql3 does for
relational data bases. Even if our short introduc-
tion to this language does not aim to replace official
documents [26, 31], we will show that this functional
language is powerful and is able to build new xml or
simple text documents, in particular (LA)TEX source
texts.

∗ Title in Polish: Wprowadzenie do XQuery .
1 eXtensible Markup Language. Readers interested in a

general introductory book to this formalism can refer to [18].
2 eXtensible Stylesheet Language Transformations.
3 Structured Query Language. A good introductory book

about it is [16].

XQuery is based on XPath, the language used to
address parts of xml documents. More precisely, it
uses XPath’s new version (2.0) [24], like xslt 2.0 [27].
Let us recall that every value handled within this
data model is a sequence. An atomic value is a par-
ticular case of a sequence: a one-element sequence.
For example, (29,4,2009) is a three-element se-
quence. Items being different types can be mixed
in a sequence, e.g., ("Bachotek",2009,true()). If
a sequence is inserted into another one, the items of
the inserted sequence become full-fledged items in
the flattened resulting sequence, e.g.:

(("tu","Bachotek"),2009,("piwo","dobrze"))

is equivalent to:

("tu","Bachotek",2009,"piwo","dobrze")

XQuery’s ‘official’ version is 1.0 [26] and a new
one is in preparation, as a working draft presently
[31]. As far as we know, zorba [34] is presently the
only XQuery 1.1 processor. Our demonstrations will
use saxon [13]. Other XQuery processors are Galax

16 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Introduction to XQuery

<?xml version="1.0" encoding="ISO-8859-1"?>

<books>
<omnibus series="Doc Savage">

<author> <!-- The organisation of author elements is the same than in [8]. -->
<name><personname><first>Kenneth</first><last>Robeson</last></personname></name>

</author>
<booktitle>Doc Savage Omnibus #9</booktitle>
<year>1989</year>
<story><title>The Invisible-Box Murders</title><year>1941</year></story>
<story><title>Birds of Death</title><year>1941</year></story>
<story><title>The Wee Ones</title><year>1945</year></story>
<story><title>Terror Takes 7</title><year>1945</year></story>

</omnibus>
<omnibus>

<author>
<name><personname><first>Kenneth</first><last>Robeson</last></personname></name>

</author>
<booktitle>Doc Savage Omnibus #10</booktitle>
<year>1989</year>
<story><title>The Devil’s Black Rock</title><year>1942</year></story>
<story><title>Waves of Death</title><year>1943</year></story>
<story><title>The Too-Wise Owl</title><year>1942</year></story>
<story><title>Terror and the Lonely Widow</title><year>1945</year></story>

</omnibus>
</books>

Figure 1: File omnibuses.xml: specification of some stories collected in omnibus volumes.

[3] and AltovaXML [1], the latter is interesting if you
work on a Windows operating system.

In the first section, we introduce XQuery’s basic
features. Section 2 makes precises XQuery’s place
within the world and tools of xml. Then we give a
personal point of view in Section 3.

1 XQuery’s features

As a progressive example’s framework, let us con-
sider the omnibuses.xml file given in Figure 1, al-
ready used in [9]. This xml text specifies the con-
tents of some omnibus volumes; for each story in-
cluded into such a book, we make precise its title
and the year of its first publication.

1.1 Getting started

If we are searching the omnibuses.xml file given in
Figure 1 and are looking for the title of the omnibus
book containing the story entitled Waves of Death,
we can use the following XPath expression4:
books/
omnibus[story/title = "Waves of Death"]/
booktitle

4 The following expression is suitable w.r.t. XPath 1.0 [22]
and can be tested with the xmllint program [20], as shown
in [5].

If saxon processes the following XQuery program:
doc("omnibuses.xml")/books/
omnibus[story/title = "Waves of Death"]/
booktitle

the result will look like:
<?xml version="1.0" encoding="UTF-8"?>
<booktitle>

Doc Savage Omnibus #10
</booktitle>

Now let us assume the existence of a $the-title
variable, bound to the string "Waves of Death".
Our query can become:
doc("omnibuses.xml")/books/
omnibus[story/title = $the-title]/booktitle

If we want the result to be stripped of the opening
and closing tags, we use XPath 2.0’s data function,
returning the contents of a node-set’s members [11,
pp. 330–322]. In addition, the result is now sur-
rounded by opening and closing answer tags, the
curly braces force the embedded expression to be
evaluated5:
<answer>{

5 This ‘{...}’ notation generalises the attribute value
templates used in xslt [12, pp.116–119].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 17

Jean-Michel HUFFLEN

declare namespace xsd =
"http://www.w3.org/2001/XMLSchema" ;

declare variable $the-title as xsd:string
external ;

for $omnibus-0 as element(omnibus) in
doc("omnibuses.xml")/books/omnibus,

$title-0 as element(title) at $index in
$omnibus-0/story/title

where $title-0 eq $the-title
return <answer index="{$index}">{

data($omnibus-0/booktitle)
}</answer>

Figure 2: Searching omnibuses for a story’s title.

data(doc("omnibuses.xml")/books/
omnibus[story/title = $the-title]/
booktitle)

}</answer>
The same result can be reached by using a for ex-
pression that allows us to go along the node set of
all the omnibus elements of this file. The where
clause retains the omnibus elements such that the
test yields true:
for $omnibus-0 in

doc("omnibuses.xml")/books/omnibus
where $omnibus-0/story/title = $the-title
return <answer>{

data($omnibus-0/booktitle)
}</answer>
We can nest two loop expressions: the outer one
goes along all the omnibus elements, the inner one
goes explores the successive title elements of each
story6:
for $omnibus-0 in

doc("omnibuses.xml")/books/omnibus,
$title-0 in $omnibus-0/story/title

where $title-0 eq $the-title
return <answer>{

data($omnibus-0/booktitle)
}</answer>
We can improve this search: the iteration number
of the inner loop—starting at 1— is now caught by

6 In addition, this reformulation allows the use of a value
comparison operator. The ‘=’ operator is used for general
sequence comparisons and:

$omnibus-0/story/title = $the-title

reads ‘is there an element common to the two sequences
$omnibus-0/story/title and $the-title?’ i.e., ‘is there a
title element whose contents is equal to $the-title’s value?
The eq operator can be used only for atomic values such as
strings, numbers, booleans, nodes. See [11, pp. 181–196] for
more details.

<items>
<by-year year="1941">

<title>The Invisible-Box Murders</title>
<title>Birds of Death</title>

</by-year>
<by-year year="1942">

<title>The Devil’s Black Rock</title>
<title>The Too-Wise Owl</title>

</by-year>
<by-year year="1943">

<title>Waves of Death</title>
</by-year>
<by-year year="1945">

<title>The Wee Ones</title>
<title>Terror Takes 7</title>
<title>Terror and the Lonely Widow</title>

</by-year>
</items>

Figure 3: Grouping elements of Fig. 1’s text.

means of a variable following the at keyword. We
use this iteration number to give the rank—within
the omnibus book—of the story we are looking for.

for $omnibus-0 in
doc("omnibuses.xml")/books/omnibus,

$title-0 at $index in
$omnibus-0/story/title

where $title-0 eq $the-title
return <answer index="{$index}">{

data($omnibus-0/booktitle)
}</answer>

The result looks like:

<?xml version="1.0" encoding="UTF-8"?>
<answer index="2">

Doc Savage Omnibus #10
</answer>

Finally, the $the-title variable may be declared
as follows:

declare variable $the-title :=
"Waves of Death" ;

or declared as ‘external’ as we do in Figure 2. In this
case, this variable’s value must be supplied when
the query is invoked7, there is no default value for
an external variable [26, § 2.1.2]. Figure 2 gives a
definitive version of our first XQuery program. We
add some type annotations [11, Ch. 9] to variables,
by means of the as keyword. That allows a XQuery
processor to perform type-checking. The type dec-
laration for a general string is provided by XML

7 See how to do that with saxon in Appendix A.

18 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Introduction to XQuery

declare namespace xsd =
"http://www.w3.org/2001/XMLSchema" ;

declare variable $filename as xsd:string
external ;

if (doc-available($filename)) then
<items>{

let $stories as element(story)* :=
doc($filename)/books/omnibus/story

for $year-e0 as xsd:untypedAtomic in
distinct-values(data($stories/year))

order by xsd:integer($year-e0)
return <by-year year="{$year-e0}">{

$stories[year eq $year-e0]/title
}</by-year>

}</items> else
()

Figure 4: Grouping stories’ title by year in XQuery.

Schema’s library8 [23], so we use a prefix— ‘xsd’—
to get access to this library’s namespace9 and show
how to declare it.

1.2 A more ambitious example

The general expressions used in XQuery are flwor
expressions. ‘flwor’ stands for ‘For, Let, Where,
Order by, Return’, the keywords used throughout
such expressions. We already know the for, where,
and return clauses. To discover the other clauses,
let us consider again the xml text given in Fig-
ure 1 and group the titles of included stories by year,
sorted increasingly. More precisely, we aim to get
the xml text given in Figure 3.

The XQuery program of Figure 4, applied to the
omnibuses.xml file, yields this result. A let clause
binds variables to associated expressions without it-
eration, unlike a for clause. Practically, the vari-
ables of such a let clause are used to ‘factorise’ com-
mon subexpressions occurring in several places. An
‘order by’ clause specifies how to sort the results
of successive iterations. If this clause is absent, the
global declaration:

declare ordering ordered ;

sorts such subresults according to the document or-
der, whereas the declaration:

declare ordering unordered ;

8 Schemas allow users to define document types, such a
document type can be viewed as taxonomy common to some
xml texts. There exist several schema languages, but only
XML Schema [30] is interfaced with xslt 2.0 and XQuery.

9 Basic details about xml namespaces are given in [18,
pp. 41–45].

xquery version "1.1" ;

declare namespace xsd =
"http://www.w3.org/2001/XMLSchema" ;

declare variable $filename as xsd:string
external ;

if (doc-available($filename)) then
<items>{

for $story-0 as element(story) in
doc($filename)/books/omnibus/story

let $year-0 as xsd:integer :=
xsd:integer(data($story-0/year))

group by $year-0
order by $year-0
return <by-year year="{$year-0}">{

(: This is a comment. Here the following
XPath expression concatenates all the titles
of stories published the same year.

:)
$story-0/title

}</by-year>
}</items> else
()

Figure 5: Using a ‘group by’ clause in XQuery 1.1.

leaves unspecified the order of appearance of results
of a for clause’s successive iterations. Such a dec-
laration:

declare default order empty least ;
causes the empty sequence () to be ranked first—
or last if ‘greatest’ is put instead of ‘least’. De-
fault conventions for such global declarations are
implementation-dependent. Let us come back to
‘order by’ clauses, here is a more complicated ex-
ample:
stable order by last descending,

first ascending empty least ;
which might be used to sort personname elements
(cf. Fig. 1). It specifies a stable sort10; last names
are sorted decreasingly, and person names left un-
sorted regarding last names are sorted increasingly11

w.r.t. first names, an empty first name taking prece-
dence over non-empty ones. XQuery allows the speci-
fication of precise language-dependent lexicographic
orders for strings by means of collations [33, Ch. 17],
identified by uris12. The years of omnibus books’
stories are sorted numerically since this ‘order by’

10 A stable sort keeps the original order of items with
equal sort keys.

11 Of course, an order defaults to ‘ascending’, but users
can put this keyword down.

12 Uniform Resource Identifier. The syntax is close to
urls’ (Uniform Resource Locators) of the Web, but an uri

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 19

Jean-Michel HUFFLEN

declare namespace saxon = "http://saxon.sf.net/" ;
declare namespace tu = "http://www.bachotex.pl/" ;
declare namespace xsd = "http://www.w3.org/2001/XMLSchema" ;

declare option saxon:output "omit-xml-declaration=yes" ;
(: Tells saxon to omit the processing declaration <?xml ...?> at the output’s beginning. Such an order is

implementation-dependent.
:)

declare variable $eol as xsd:string := "
" ;
declare variable $filename as xsd:string external ;

declare function tu:escape-special-chars($y0 as element()) as xsd:string {
replace(data($y0),"(#|%)","\\$1")

} ;

if (doc-available($filename)) then
for $omnibus-0 as element(omnibus) in doc($filename)/books/omnibus return

("\item{\bullet}", tu:escape-special-chars($omnibus-0/booktitle), $eol,
for $story-0 as element(story) in $omnibus-0/story return

(" \itemitem{\star}", tu:escape-special-chars($story-0/title), $eol)),
concat($eol, "\end", $eol) else
()

Figure 6: Generating a source text for Plain TEX.

clause uses information coerced into expressions of
type xsd:integer13 (cf. Fig. 4).

XQuery 1.1 [31] allows an additional ‘group by’
clause partitioning an iteration’s results. Let us
compare Figures 4 & 5: in the first version, the
iteration is done on the different years of publica-
tion and then we retain the story element whose
year child element matches the current year; in the
second case, all the story elements are grouped by
year, and for each group, we put a by-year element
surrounding the titles of all the elements of a group.

1.3 Deriving a Plain TEX source text

As shown in Figure 6, XQuery may be used to pro-
duce (LA)TEX source texts, even if it was not its ini-
tial purpose. When the successive atomic values of
a sequence are displayed or copied onto an output
file, they are separated by a space character. If you
want to drop out this separator, just use XPath’s
concat function [11, pp. 312–313] as we did to build
the last line: the \end command without preced-
ing space character. Applying this XQuery program
to the omnibuses.xml file results in the Plain TEX
source text given in Figure 7. Two TEX’s special
characters— ‘#’ and ‘%’—are escaped by a ‘\’: we

only serves as a name and does not have to point to any
resource [18, Ch. 3].

13 The generic type xsd:untypedAtomic applies to all
the atomic values that have no specific type [33, p. 438].
The results of XPath’s data function [11, Ch. 10] are of
xsd:untypedAtomic type.

can see how to define a function to do that. XPath’s
replace function [11, pp. 400–403] uses regular ex-
pressions [11, Ch. 11] whose syntax originates from
Perl14.

1.4 More features

We have showed XQuery’s basis. In addition, XQuery
allows the creation of elements and attributes whose
names are known at run-time [33, Ch. 5]. Modules
allow definitions and queries to be reused in other
contexts [33, Ch. 12]. Special processing based on
the type of an expression is provided by typeswitch
expressions [26, § 3.12.2]. XQuery 1.1 introduces
window iterations, grouping consecutive items of an
input sequence [31, § 3.8.4], and try/catch expres-
sions, providing error handling [31, § 3.12], analo-
gous to namesake statements in C++15 [19].

In ‘basic’ XQuery, an expression never modifies
the state of a document. XQuery Update Facility [28]
is an extension that allows node insertions, modifica-
tions, or deletions. Another extension, XQuery and
XPath Full-Text 1.0 [29], provides tools for full-text
search, as well as structured search, against xml
documents. Full-text search is different from sub-
string search: the former searches for tokens and
phrases rather than just substrings. Support for

14 Practical Extraction Report Language. A good intro-
ductory book to this language is [32].

15 But there is no ‘finally’ clause, as in Java [10] and C#
[17].

20 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Introduction to XQuery

\item{\bullet} Doc Savage Omnibus \#9
\itemitem{\star} The Invisible-Box Murders
\itemitem{\star} Birds of Death
\itemitem{\star} The Wee Ones
\itemitem{\star} Terror Takes 7

\item{\bullet} Doc Savage Omnibus \#10
\itemitem{\star} The Devil’s Black Rock
\itemitem{\star} Waves of Death
\itemitem{\star} The Too-Wise Owl
\itemitem{\star} Terror and the Lonely Widow

\end

Figure 7: Applying Fig. 6’s query to Fig. 1’s text.

language-based search is provided, too. There is an
implementation of this standard proposal: GalaTeX
[2], built on top of the Galax processor [3].

2 XQuery within xml’s world

At first glance, queries have the same look than
XPath 2.0 expressions and XQuery programs seems
to be able to perform document transformations, as
xslt does. The following subsections go throughly
into these two points.

2.1 XQuery vs XPath

XPath 2.0 only provides ‘simple’ for expressions and
does not allow end users to make precise variables’
types16, introducing index variables by means of the
‘at’ keyword is not allowed, either:

for $story-0 in
doc(...)/books/omnibus/story

return ...

It does not provide let expressions, the equivalent
in ‘pure’ XPath 2.0 is a ‘for’ expression along a one-
element sequence:

for $story-0 in
doc(...)/books/omnibus/story,

$year-e0 in data($story-0/year)
return ...

A constant string is a valid XPath expression but the
‘{...}’ notation does not belong to XPath.

2.2 XQuery vs xslt

Here is what we can learn by reading and summaris-
ing w3c17 documents. See [33, Ch. 25] for a ‘more
technical’ view.

16 But xslt 2.0 allows variables and parameters of func-
tions and templates to be typed by end users by means of the
as attribute [12, pp. 73–76].

17 World Wide Web Consortium.

The standards for xslt 2.0 and XQuery were
developed by separate working groups within w3c,
operating together to ensure a common approach
where appropriate. These two languages share the
same data model, type system, and function library;
both include XPath 2.0 as a sublanguage. However,
they are rooted in different traditions and serve dif-
ferent communities’ needs. xslt was initially con-
ceived as a stylesheet language whose primary goal
is to render xml documents for human readers on
screen, on the Web, or on paper. So, xslt is stronger
in its handling of narrative documents with more
flexible structure, whilst XQuery is stronger in its
data handling.

3 A personal synthesis

In the previous section, we tried to be as objective
as possible; in this one, we give a personal point of
view. The difference between xslt and XQuery is
close to the nuance between programming by con-
struction and programming with templates. To il-
lustrate that, let us consider the two following ex-
pressions in Scheme:
(let ((here ’Bachotek))

(list ’staying ’at here ’Poland))
(let ((here ’Bachotek))

‘(staying at ,here Poland))
Both yield the same result:

(staying at Bachotek Poland)
In the first version, a function— list—is applied
to arguments, possibly constant. In the second ver-
sion, the “ ‘ ” character abbreviates a form that re-
turns the following template, except when a comma
appears, in which case the subexpression is evalu-
ated and inserted at this place18. This second style
is particularly useful when most of the desired struc-
ture is known in advance. The ‘<...>{...}</...>’
notation may be viewed as programming with tem-
plates. So XQuery seems to us to be a good choice
whenever this style is suitable. On the contrary,
xslt emphasises different processing w.r.t. elements
and attributes of an input document.

This article is intentionally based on the same
examples than [9]. So it can be noticed that XQuery
programs are more compact and easier to under-
stand. XQuery’s main weakness is that many exten-
sions are implementation-dependent, e.g., the use
of character maps19, interesting in xslt 2.0 when
we derive source texts for formats or engines built
out of TEX, as shown in [9, § 6]. Using XPath’s
replace function is sufficient for simple texts, as we

18 See [14, § 4.2.6] for more details.
19 . . . mentioned in [33, Table 22.1] about XQuery.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 21

Jean-Michel HUFFLEN

did in Figure 6, but may be more tedious if the input
document contains non-alphanumerical characters,
in particular, mathematical ones. In such a case,
a solution might be to derive texts for a Unicode-
compliant engine based on TEX20, e.g., X ETEX [15]
or LuaTEX [4]. Another implementation-dependent
feature is the separator between a sequence’s consec-
utive items. In xslt 2.0, this point is controlled by
the xsl:value-of element’s separator attribute
[12, pp. 465–471]. In practice, the default rule—
putting a space character—often suits us, as shown
in Figures 6 & 7. Otherwise, it may result in many
calls of XPath’s concat function. To sum up about
the derivation of source texts for TEX-based engines
from xml documents, we think that XQuery is very
suitable for such a task, except if the use of character
maps is really needed.

4 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
translated the abstract and keywords in Polish very
quickly.

A Giving a file name at run-time

As you can see whenever an xslt processor is used,
an xslt stylesheet is applied to an xml document,
the name of it being given at run-time21. For exam-
ple, if you use the xsltproc processor [21], the com-
mand line that causes the grouping.xsl stylesheet [9,
Fig. 3] to be applied to the omnibuses.xml file is:

xsltproc grouping.xsl omnibuses.xml

If this file does not exist, the error is signalled by
the operating system in use. On the contrary, the
name of the xml file processed by an XQuery request
is hard-wired in most of examples given in official
references [26, 30] or introductory books [33], as we
did in Figure 2. In fact, there is no standard way to
set it up outside XQuery programs [33, pp. 54 & 290].
Some implementations can start the execution of an
XQuery program from a context node, so the request
given in Figure 2 could be rewritten as:
for $omnibus-0 as ... in ./books/omnibus,

...

If saxon [13] is used, this new program, stored in a
file named find-saxon.xq, can be invoked by setting

20 Likewise, Polish texts built by means of XQuery should
be processed by an engine accepting a suitable input encod-
ing. The encoding of an XQuery program can be declared
with the version used (cf. Fig. 5):

xquery version "1.0" encoding "ISO-8859-2" ;

21 More exactly, an xslt stylesheet is applied to a main
document, other additional xml documents can be accessed
by means of XPath’s doc function [11, pp. 329–332].

the context node—given by the XPath expression
‘.’— to the root of an xml document by means of
the ‘-s:...’ option:

java net.sf.saxon.Query -s:omnibuses.xml \
find-saxon.xq the-title="Waves of Death"

Similar methods can be used with AltovaXML [1]
and Galax [3]. However, this modus operandi is not
portable22. From our point of view, the best solution
is to pass the file name by means of an external
variable and return an empty sequence if the file is
not processable. We can check that by means of the
doc-available function [26, § 15.5.5]. So did we in
Figures 2, 4 & 5.

B XQueryX

As shown by all the examples above, XQuery pro-
grams are not xml texts. XQuery’s syntax is related
to a ‘classical’ programming language’s. XQueryX23

[25] allows an xml representation of XQuery. The
two syntaxes are merely different, but they express
the same query semantics; in other words, the ex-
pressive power is the same. The main advantage for
XQueryX texts is that they can be embedded directly
in xml documents. On the contrary, XQuery’s texts
are more convenient for humans to read and write.

Figures 8 & 9 are a rewriting of our first exam-
ple (cf. Fig. 2) using XQueryX’s syntax. As you can
see, the result, rooted by the xqx:module element, is
very verbose24 (!) but closely reflects XQuery state-
ments’ structure. We put this text only to give a rep-
resentative idea about XQueryX’s look. At the time
of writing, there is no processor that directly deals
with XQueryX texts. In fact, the normative docu-
ment [25, App. B] includes an xslt stylesheet con-
verting XQueryX’s syntax into ‘classical’ XQuery’s
syntax. Applying this stylesheet to the text of Fig-
ures 8 & 9 results in the program given in Figure 2.

References
[1] AltovaXML. 2008. http://www.altova.com/

altovaxml.html.

[2] GalaTex: an xml Full-Text Search Engine. Au-
gust 2005. http://www.galaxquery.org/galatex/
index.html.

[3] Galax: the XQuery Implementation for Discrim-
inating Hackers. March 2009. http://www.
galaxquery.org.

22 As a counter-example, another technique is used within
Zorba [34].

23 XQuery’s Xml syntax.
24 Some entities [18, pp. 45–53], introduced by means of

a dummy DOCTYPE tag, as we did already in [7], allow us to
enlighten this text.

22 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Introduction to XQuery

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE module [<!ENTITY child "<xqx:xpathAxis>child</xqx:xpathAxis>">
<!ENTITY xsd "<xqx:uri>http://www.w3.org/2001/XMLSchema</xqx:uri>">]>

<xqx:module xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xqx="http://www.w3.org/2005/XQueryX"
xsi:schemaLocation="http://www.w3.org/2005/XQueryX http://www.w3.org/2005/XQueryX/xqueryx.xsd">

<xqx:mainModule>
<xqx:prolog>

<xqx:namespaceDecl><xqx:prefix>xsd</xqx:prefix>&xsd;</xqx:namespaceDecl>
<xqx:varDecl>

<xqx:varName>the-title</xqx:varName>
<xqx:typeDeclaration><xqx:atomicType xqx:prefix="xsd">string</xqx:atomicType></xqx:typeDeclaration>
<xqx:external/>

</xqx:varDecl>
</xqx:prolog>
<xqx:queryBody>

<xqx:flworExpr>
<xqx:forClause>

<xqx:forClauseItem>
<xqx:typedVariableBinding>

<xqx:varName>omnibus-0</xqx:varName>
<xqx:typeDeclaration>

<xqx:elementTest>
<xqx:elementName><xqx:QName>omnibus</xqx:QName></xqx:elementName>

</xqx:elementTest>
</xqx:typeDeclaration>

</xqx:typedVariableBinding>
<xqx:forExpr>

<xqx:pathExpr>
<xqx:stepExpr>

<xqx:filterExpr>
<xqx:functionCallExpr>

<xqx:functionName>doc</xqx:functionName>
<xqx:arguments>

<xqx:stringConstantExpr><xqx:value>omnibuses.xml</xqx:value></xqx:stringConstantExpr>
</xqx:arguments>

</xqx:functionCallExpr>
</xqx:filterExpr>

</xqx:stepExpr>
<xqx:stepExpr>&child;<xqx:nameTest>books</xqx:nameTest></xqx:stepExpr>
<xqx:stepExpr>&child;<xqx:nameTest>omnibus</xqx:nameTest></xqx:stepExpr>

</xqx:pathExpr>
</xqx:forExpr>

</xqx:forClauseItem>
<xqx:forClauseItem>

<xqx:typedVariableBinding>
<xqx:varName>title-0</xqx:varName>
<xqx:typeDeclaration>

<xqx:elementTest>
<xqx:elementName><xqx:QName>title</xqx:QName></xqx:elementName>

</xqx:elementTest>
</xqx:typeDeclaration>

</xqx:typedVariableBinding>
<xqx:positionalVariableBinding>index</xqx:positionalVariableBinding>
<xqx:forExpr>

<xqx:pathExpr>
<xqx:stepExpr>

<xqx:filterExpr><xqx:varRef><xqx:name>omnibus-0</xqx:name></xqx:varRef></xqx:filterExpr>
</xqx:stepExpr>
<xqx:stepExpr>&child;<xqx:nameTest>story</xqx:nameTest></xqx:stepExpr>
<xqx:stepExpr>&child;<xqx:nameTest>title</xqx:nameTest></xqx:stepExpr>

</xqx:pathExpr>
</xqx:forExpr>

Figure 8: Searching omnibuses for a story’s title—version using XQueryX.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 23

Jean-Michel HUFFLEN

</xqx:forClauseItem>
</xqx:forClause>
<xqx:whereClause>

<xqx:eqOp>
<xqx:firstOperand>

<xqx:pathExpr>
<xqx:stepExpr>

<xqx:filterExpr><xqx:varRef><xqx:name>title-0</xqx:name></xqx:varRef></xqx:filterExpr>
</xqx:stepExpr>

</xqx:pathExpr>
</xqx:firstOperand>
<xqx:secondOperand>

<xqx:pathExpr>
<xqx:stepExpr>

<xqx:filterExpr><xqx:varRef><xqx:name>the-title</xqx:name></xqx:varRef></xqx:filterExpr>
</xqx:stepExpr>

</xqx:pathExpr>
</xqx:secondOperand>

</xqx:eqOp>
</xqx:whereClause>
<xqx:returnClause>

<xqx:elementConstructor>
<xqx:tagName>answer</xqx:tagName>
<xqx:attributeList>

<xqx:attributeConstructor>
<xqx:attributeName>index</xqx:attributeName>
<xqx:attributeValueExpr>

<xqx:pathExpr>
<xqx:stepExpr>

<xqx:filterExpr><xqx:varRef><xqx:name>index</xqx:name></xqx:varRef></xqx:filterExpr>
</xqx:stepExpr>

</xqx:pathExpr>
</xqx:attributeValueExpr>

</xqx:attributeConstructor>
</xqx:attributeList>
<xqx:elementContent>

<xqx:pathExpr>
<xqx:stepExpr>

<xqx:filterExpr>
<xqx:functionCallExpr>

<xqx:functionName>data</xqx:functionName>
<xqx:arguments>

<xqx:pathExpr>
<xqx:stepExpr>

<xqx:filterExpr>
<xqx:varRef><xqx:name>omnibus-0</xqx:name></xqx:varRef>

</xqx:filterExpr>
</xqx:stepExpr>
<xqx:stepExpr>&child;<xqx:nameTest>booktitle</xqx:nameTest></xqx:stepExpr>

</xqx:pathExpr>
</xqx:arguments>

</xqx:functionCallExpr>
</xqx:filterExpr>

</xqx:stepExpr>
</xqx:pathExpr>

</xqx:elementContent>
</xqx:elementConstructor>

</xqx:returnClause>
</xqx:flworExpr>

</xqx:queryBody>
</xqx:mainModule>

</xqx:module>

Figure 9: Searching omnibuses for a story’s title—version using XQueryX (Fig. 8 continued).

24 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Introduction to XQuery

[4] Hans Hagen: “The Luafication of TEX and
ConTEXt”. In: Proc. BachoTEX 2008 Conference,
pp. 114–123. April 2008.

[5] Jean-Michel Hufflen: “Introduction to xslt”. Bi-
uletyn gust, Vol. 22, pp. 64. In BachoTEX 2005
conference. April 2005.

[6] Jean-Michel Hufflen: “Advanced Techniques in
xslt”. Biuletyn gust, Vol. 23, pp. 69–75. In Ba-
choTEX 2006 conference. April 2006.

[7] Jean-Michel Hufflen: “Introducing LATEX users to
xsl-fo”. tugboat, Vol. 29, no. 1, pp. 118–124. Eu-
roBachoTEX 2007 proceedings. 2007.

[8] Jean-Michel Hufflen: “Revisiting Lexicographic
Order Relations on Person Names”. In: Proc. Ba-
choTEX 2008 Conference, pp. 82–90. April 2008.

[9] Jean-Michel Hufflen: “xslt 2.0 vs xslt 1.0”. In:
Proc. BachoTEX 2008 Conference, pp. 67–77. April
2008.

[10] Java Technology. March 2008. http://java.sun.
com.

[11] Michael H. Kay: XPathTM 2.0 Programmer’s Ref-
erence. Wiley Publishing, Inc. 2004.

[12] Michael H. Kay: xslt 2.0 Programmer’s Reference.
3rd edition. Wiley Publishing, Inc. 2004.

[13] Michael H. Kay: Saxon. The xslt and XQuery Pro-
cessor. March 2009. http://saxon.sourceforge.
net.

[14] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson, Nor-
man I. Adams iv, David H. Bartley, Gary
Brooks, R. Kent Dybvig, Daniel P. Friedman,
Robert Halstead, Chris Hanson, Christopher T.
Haynes, Eugene Edmund Kohlbecker, Jr,
Donald Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay Suss-
man and Mitchell Wand: “Revised5 Report on the
Algorithmic Language Scheme”. hosc, Vol. 11,
no. 1, pp. 7–105. August 1998.

[15] Jonathan Kew: “X ETEX in TEX Live and beyond”.
tugboat, Vol. 29, no. 1, pp. 146–150. EuroBa-
choTEX 2007 proceedings. 2007.

[16] Jim Melton and Alan R. Simon: Understanding
the new sql. Morgan Kaufmann. 1993.

[17] Microsoft Corporation: Microsoft C# Specifi-
cations. Microsoft Press. 2001.

[18] Erik T. Ray: Learning xml. O’Reilly & Associates,
Inc. January 2001.

[19] Bjarne Stroustrup: The C++ Programming Lan-
guage. 2nd edition. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts. 1991.

[20] Daniel Veillard: The xml C Parser and Toolkit of
Gnome. libxml2. http://xmlsoft.org. March 2003.

[21] Daniel Veillard: The xslt C Library for Gnome.
http://xmlsoft.org/XSLT. March 2003.

[22] W3C: xml Path Language (XPath). Version 1.0.
w3c Recommendation. Edited by James Clark and
Steve DeRose. November 1999. http://www.w3.
org/TR/1999/REC-xpath-19991116.

[23] W3C: xml Schema Part 2: Datatypes. w3c Rec-
ommendation. Edited by Paul V. Biron, Ashok
Malhotra. October 2004. http://www.w3.org/TR/
2004/REC-xmlschema-2-20041028/.

[24] W3C: xml Path Language (XPath) 2.0. w3c Rec-
ommendation Draft. Edited by Anders Berglund,
Scott Boag, Don Chamberlin, Mary F. Fernán-
dez, Michael H. Kay, Jonathan Robie and Jérôme
Siméon. January 2007. http://www.w3.org/TR/
2007/WD-xpath20-20070123.

[25] W3C: xml Syntax for XQuery 1.0 (XQueryX). w3c
Recommendation. Edited by Jim Melton and Sub-
ramanian Muralidhar. January 2007. http://www.
w3.org/TR/2007/REC-xqueryx-20070123.

[26] W3C: XQuery 1.0: an xml Query Language.
w3c Recommendation. Edited by Scott Boag, Don
Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie and Jérôme Siméon. January 2007.
http://www.w3.org/TR/xquery.

[27] W3C: xsl Transformations (xslt). Version 2.0.
w3c Recommendation. Edited by Michael H.
Kay. January 2007. http://www.w3.org/TR/2007/
WD-xslt20-20070123.

[28] W3C: XQuery Update Facility 1.0. w3c Candi-
date Recommendation. Edited by Don Chamberlin,
Daniela Florescu, Jim Melton, Jonathan Robie, and
Jérôme Siméon. January 2008. http://www.w3.
org/TR/2008/CR-xquery-update-10-20080801/.

[29] W3C: XQuery and XPath Full Text 1.0. w3c
Candidate Recommendation. Edited by Sihem
Amer-Yahia, Chavdar Botev, Stephen Buxton,
Pat Case, Jochen Doerre, Mary Holstege, Jim
Melton, Michael Rys, and Jayavel Shanmugasun-
daram. May 2008. http://www.w3.org/TR/2008/
CR-xpath-full-text-10-20080516/.

[30] W3C: xml Schema. December 2008. http://www.
w3.org/XML/Schema.

[31] W3C: XQuery 1.1. w3c Working Draft. Edited
by Don Chamberlin and Jonathan Siméon.
December 2008. http://www.w3.org/TR/
xquery-11-20081203.

[32] Larry Wall, Tom Christiansen and Jon Or-
want: Programming Perl. 3rd edition. O’Reilly
& Associates, Inc. July 2000.

[33] Priscilla Walmsley: XQuery. O’Reilly. April 2007.
[34] Zorba: the XQuery Processor. 2009. http://www.

zorba-xquery.com.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 25

