
How MlBibTEX’s Documentation Is Organised∗

Jean-Michel HUFFLEN
LIFC (EA CNRS 4157)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
jmhufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/home/~jmhufflen

Abstract

MlBibTEX’s documentation is planned to be multilingual— that is, written in sev-
eral languages—and to be able to share as many examples as possible. Different
people can write translations of the original English documentation in parallel.
Besides, we show how the translations of this documentation can be updated
if need be. This documentation can be used as a printed text or as an on-line
document. The functionalities managing this documentation can be reused by
another program. In a first part, we explain in detail what our requirements are.
Then we show how they are implemented.
Keywords MlBibTEX, LATEX, mlbdoc package, Scheme, multilingual documen-
tation, configuration management.

Streszczenie

Planujemy, aby dokumentacja MlBibTEXa była wielojęzyczna, tj. napisana w
wielu językach i aby można było współdzielić możliwie wiele przykładów. Różni
tłumacze mogą jednocześnie pisać tłumaczenia oryginalnej dokumentacji anglo-
języcznej. Oprócz tego chcemy pokazać, jak można w razie potrzeby tę dokumen-
tację aktualizować. Dokumentacja ta będzie mogła być używana albo w postaci
drukowanej albo on-line. Mechanizmy zarządzania nią mogą zostać użyte do
innych zastowań. W pierwszej części wyjaśnimy w szczegółach jakie stawiamy
wymagania, a następnie omówimy sposób, w jaki zostały one zaimplementowane.
Słowa kluczowe MlBibTEX, LATEX, pakiet mlbdoc, Scheme, dokumentacja
wielojęzyczna, zarządzanie konfiguracją.

0 Introduction

Software documentation is an important part, and
it is well-known that maintaining such documenta-
tion causes some difficulty [20], especially if the pro-
gram evolves in successive versions. Updating a doc-
umentation is often done late, in comparison with
program update. There are different kinds of doc-
umentation: requirements, source code documen-
tation, installation manual, documentation about
tests, user manual, . . . In this article, we will only
focus on installation and user manuals. In addi-
tion, that is good for such manuals to be provided
in different natural languages, but may complicate
updates, if precise conventions have not been de-

∗ Title in Polish: Jak jest zorganizowana dokumentacja
MlBibTEXa.

fined. Here we will explain our conventions for the
documentation of MlBibTEX

1. Let us recall that this
programs aims to be a ‘better and extended BibTEX’
[18]— the bibliography processor usually associated
with the LATEX word processor [12]—with particu-
lar focus on multilingual features [6]. As explained
in [7], MlBibTEX allows BibTEX’s bibliography styles
to be run in a compatibility mode, but its new fea-
tures are based on paradigms related to xml2. Last
but not least, MlBibTEX has been written in Scheme
[10], as we explained in [8]. We have begun to
write MlBibTEX’s documentation in both English
and French. This led us to the definition of a pre-

1 MultiLingual BibTEX.
2 eXtensible Markup Language. Readers interested in a

general introductory book to this formalism can refer to [19].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1001

Jean-Michel HUFFLEN

cise framework for a multilingual documentation.
Later, we also plan to give a documentation in Ger-
man. Anyway, we think that other people could
write other translations of this documentation. In a
first section, we list our requirements about a good
multilingual documentation. Then Section 2 shows
that the tools used to install and maintain software
do not exactly meet our requirements. Section 3
explains how our documentation system is imple-
mented. Reading this article only requires basic kn-
woledge about programming as well as software in-
stallation and maintenance, as described in [20] from
a general point of view, or more specifically in [13],
that introduces the languages and programs doing
such tasks within the gnu3 project.

1 Requirements

Here are our requirements for MlBibTEX’s installa-
tion and user manual. Of course, the word ‘require-
ments’ is too strong, since there is no ‘official’ con-
tract between a developer and a customer. However,
the list above clearly explains what our framework
is, what we aim to do, and why.
• The basis of MlBibTEX’s installation and user

manual is the English version. Some transla-
tions may be provided, but any change related
to the services provided—as well as any error
fixing—must be applied to the English version
at first, and then translations can be updated.
• MlBibTEX’s original installation and user man-

ual—as well as all its translations—must be
processed by LATEX or pdfLATEX. Some transla-
tions or additional parts may be typeset by an-
other TEX-based engine—e.g., LuaTEX—but
the word processor must be a TEX-based engine
or format. This last point holds for languages
using a special TEX engine, e.g., pTEX [16] for
Japanese.
• On-line versions of MlBibTEX’s installation and

user manual can be available, they must be
build by means of converters from source texts
for TEX-based engines to (x)html4, such as
TEX4ht or LATEX2HTML [4, Ch. 3–4].
• Each translation may be written and updated

by different people, possibly working at differ-
ent sites. Of course, a team cannot be in charge
of all the translations, but error-fixing should
be supported by the people that have realised
previous versions.

3 Recursive acronym for ‘Gnu’s Not Unix’.
4 (eXtensible) HyperText Markup Language. xhtml

is a reformulation of html—the original language of Web
pages—using xml conventions. [15] is a good introduction
to these languages.

• If some points are added in a translation, that
should be clearly stated within the source text.
• If some parts are missing within a translation,

they must be replaced by a text in another lan-
guage, preferably the original English version.
• Examples illustrating manuals should be shared

among versions, as far as possible. If an exam-
ple is replaced within a translation, each update
of the original example must cause the changed
example to be re-examined. In other words,
examples could be translated for better under-
standing, but examples’ translations should be
updated as soon as original examples are.
• A translation should be done from the original

English text, as far as possible. If a translation
has been done from another translation, this in-
formation must be kept. In other words, trans-
lating a translation into a close language might
be easier, but if any source text of a transla-
tion is updated, the translation’s target must
be updated, too.

2 State of the art

2.1 Using LATEX documentation tools?

The items of our requirements related to TEX-based
engines are easy to put into action. However, the
packages described in [14, Ch. 14] seem to us to be
unsuitable for our purpose. First, they have been
developed to document new functionalities added to
LATEX; if you use MlBibTEX, only few macros are to
be defined in LATEX, in comparison with other points
of the documentation: installing MlBibTEX, calling
it with suitable options, extended syntax for bibliog-
raphy (.bib files), use of bibliography styles written
in nbst5 [6]. Second, the only way to build multi-
lingual documentation by means of these packages
seems the use of tags [14, § 14. 1.5] such as:
%<*english>

... (A text in English.)
%</english>
%<*polish>

... (This text’s translation in Polish.)
%</polish>
%<*english|polish>

... (An example, given verbatim, common to
both the English and Polish versions.)

%</english|polish>
Concerning our purpose, this tag system has severe
drawbacks. First, even if we can order the inser-
tion of a file between a pair of opening and closing

5 New Bibliography STyles. This language is close to
xslt (eXtensible Stylesheet Language Transformations), the
language of transformations used for xml texts [25].

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

How MlBibTEX’s Documentation Is Organised

tags, this complicates the parallel writing of trans-
lated documentations6. Second, if the master file
is changed, it is up to users to generate only files
impacted by this change. In other words, the only
‘sure’ solution it to generate again all the files of all
the versions, what is exaggerated after just fixing a
typographical mistake. This second point is related
to dependency management, as we will show now.

2.2 Dependency management

The points of our requirements not related to the
use of TEX-based engines concern dependency man-
agement. In Software Engineering, there are utility
tools that automatically rebuild executable files to
be updated after some change of source code files.
The most well-known program to do that is make,
present since Unix’s first versions. The configura-
tion is described in a file called Makefile, e.g.:

example.o: example.c macros.h
gcc -c -o example.o example.c

expresses that if the example.o file is either non-
existing, or older7 than the example.c or macros.h
file, this example.c file is compiled by means of the
gcc8 compiler. In other words, if a source file has
been modified since the last compilation order, this
source file has to be compiled again. So, the com-
mand ‘make example.o’ may or may not issue a
compilation order. In practice, this make program
is used both in maintenance and installation. In
the first case, we can rebuild only executable files
impacted by changing source files. In the second
case, the whole process of installing a software is
launched by compilation orders issued by the make
command. More details about this program can be
found in [17]. However, this make program has three
main drawbacks. First, Makefile’s syntax is not user-
friendly. A partial solution to this problem is the
use of a generator of Makefiles, e.g., imake [3], this
preprocessor being particularly useful for software
using graphical capabilities. Second, the specifica-
tion of the commands launched by the make pro-
gram assumes that some tools and libraries—e.g.,
a C compiler or some graphical libraries—are avail-
able. The imake program may localise such tools
and libraries, but most often a configure command
is provided in the distribution of the software to be

6 Of course, there are version management tools that can
perform a merge operation among several releases developed
in parallel from the same files— the most recent and efficient
being undoubtedly Subversion [2]—but this merge operation
is still difficult and error-prone. Besides, it has to be guided
by users.

7 Last modification times are compared.
8 Gnu C Compiler. See [21] for details about it.

installed and performs such checks [13, App. B]. So,
the ‘standard’ way to install software on Unix-based
systems,—e.g., Linux—is:
./configure # Looking for tools needed for

software installation. Absolute paths to
reach them are put in Makefiles files.

make # Building the software.
make install # Installing it in public places.
In such a case, the distribution includes template
files, called Makefile.in. They are processed by the
configure command to create final outputs, as ‘defini-
tive’ Makefile. Most often, configure files are gener-
ated by means of the autoconf program [24]. The
third drawback of make also exists withinMakefile.in
files and is related to information redundancy. If we
consider programs written using the C programming
language [11], the fact that an example.c program re-
lies upon a macros.h file—see the example above—
is put at the beginning of the example.c file:

#include "macros.h"

because the macros.h file contains preprocessing di-
rectives and type definitions that must be known by
the C compiler when it operates on the example.c file.
As a consequence, this information related to depen-
dency is put twice: a first time within the source file,
a second one within Makefile. The same drawback
holds with the Ant program [23]: it can be viewed as
a ‘modern’ version of make, using xml-like syntax
for its configuration files9, but end users have to put
down dependency relations in these files. To cope
with this problem, a workaround consists of using
an option of the gcc compiler:
gcc -MM example.c
(answers:) example.o: example.c macros.h

and adding dependency information to Makefiles dy-
namically. Another solution is provided by some
tools usable above the make command, the most
well-known tool being automake [24], an alternative
one being CMake10 [1]. However, these tools are
language-dependent. The make program can deal
with source files written in any programming lan-
guage, provided that the tool used to compile them
is identified. On the contrary, automake and CMake
only deal with some programming languages, such
as C or C++ [22]—or Lua [9] for CMake—but are
presently unusable with (LA)TEX source files. Last
but not least, our dependency relation may be se-
mantic: if an example file e is replaced by another,
say e0, we want e0’s author to be warned if e has
changed, but e0 may or may not have to be updated:

9 . . . generally called build.xml.
10 Cross platform MAKE.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1003

Jean-Michel HUFFLEN

this relation is called weak dependency, that is, this
relation can be ignored. To sum up, the existing
tools do not meet our requirements, that is why we
have developed our own system.

3 MlBibTEX’s documentation system

3.1 Package and commands

The documentation’s files use the mlbdoc package,
that will be added to MlBibTEX’s distribution. This
package requires the fancyvrb package [14, § 3.4.3],
used to insert example files verbatim. To avoid name
conflicts, all the names of the command provided by
this package are prefixed by ‘mlbdoc’. Table 1 gives
them. In this table, ‘cf ’ is for the current file be-
ing processed by LATEX, ‘f ’ and ‘f0’ are for any file
names, ‘f ← f0’ (resp. ‘f ↼ f0’) denotes that f
depends (resp. weakly depends) on f0. When cf is
processed, an additional auxiliary file, cf.dep.scm, is
built. Such a file is devoted to be read by a Scheme
interpreter. More precisely, all the .dep.scm files
are supposed to be stored in the same directory,
and the dependency graph should be acyclic. Ta-
ble 2 gives all the Scheme functions used to manage
MlBibTEX’s documentation. In this table, ‘d ’ is a
string denoting a directory name—use "." for the
current directory.

3.2 Discussion

Using LATEX to generate files processed by Scheme
might seem strange. Of course, this is related to the
fact that Scheme is MlBibTEX’s implementation lan-
guage. In addition, an important advantage, related
to Lisp11-like languages, is that data and programs
use the same format. We take advantage of this fea-
ture: when .dep.scm files are processed (cf. Fig. 2),
the expressions they include are evaluated. On an-
other point, our functions are portable, we just had
to develop an interface between operating systems
and Scheme interpreters. Besides, our interaction
between LATEX and Scheme cannot be compared by
what is done within LuaTEX [5]. In both cases,
there is some cooperation between a TEX-based en-
gine and a more ‘classical’ programming language.
LuaTEX allows fragments written using Lua to be
called as procedures, whereas our Scheme functions
‘intelligently’ pilots calls of LATEX or pdfLATEX.

4 Conclusion

For other purposes, we built LATEX documents whose
typesetting was controlled by the make program,
and we were not fully satisfied by the result. We
think our system—presently running on Linux—is

11 LISt Processor.Scheme belongs to this language family.

\mlbdocrunswith{s}{s0} expresses that cf is to be
processed with the s (resp. s0) TEX-based engine to
produce a .dvia (resp. .pdfb) file; if s and s0 are not
made precise, they default to LATEX and pdfLATEX;

\mlbdoctranslates{f} expresses that cf is a transla-
tion of f , so cf ↼ f ;

\mlbdocexf{f} inserts the contents of f verbatim and
expresses that cf ← f ;

\mlbdocinput{f} tells LATEX to process f and expresses
that cf ← f ; the \input command is redefined,
too, and has the same effectc;

\mlbdocinclude{f} tells LATEX to process f if it ap-
pears within the \includeonly command’s argu-
mentsd and expresses that cf ← f ; the \include
command is redefined, too, and has the same effect;

\mlbdocreplaces{f}{f0} inserts f by means of the
\mlbdocinput command; expresses that f replaces
f0 within the current translation, that is, cf ← f
and f ↼ f0;

\mlbdocincludegraphics[opt][opt0]{f} if the pack-
age graphics or graphicxe has been loaded, inserts f
as the original \includegraphics would do with
optional arguments opt and opt0 and expresses
that cf ← f ; the \includegraphics command is
redefined and has the same effect;

\mlbdocincludegraphics*[opt][opt0]{f} like above,
but the original command interfaced and redefined
is \includegraphics*.

a DeVice-Independent.
b Portable Document Format.
c However, we think that using the \mlbdocinput com-

mand is better, for sake of clarity. The same remark
holds about the other three commands \mlbdocinclude,
\mldocincludegraphics, and \mlbdocincludegraphics*.

d See [14, § 2.1.2] for more details about this feature of
LATEX.

e See [14, § 10.2.2 & 10.2.3] for more details about these
packages allowing the insertion of graphical files.

Table 1: Commands provided by the mlbdoc package.

better, even if it cannot be used for any documenta-
tion. At the time of writing, we have written alone
all the parts of the present documentation. The
‘baptism of fire’ will arise when other people par-
ticipate in this documentation.

5 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
translated the abstract and keywords in Polish very
quickly.

References
[1] CMake. February 2009. http://www.cmake.org/.

[2] Ben Collins-Sussman, Brian W. Fitzpatrick

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

How MlBibTEX’s Documentation Is Organised

((mlbdoc-dependencies ’get) d) reads and processes all the .dep.scm files present in the d directory; returns #t—
the ‘true’ value— if such files exist and the dependency graph is acyclic, #f—the ‘false’ value—otherwise;

((mlbdoc-dependencies ’display-for) f) displays the names of all the files f depends on, returns #t if f exists,
#f otherwise;

((mlbdoc-dependencies ’display-all)) displays all the dependencies and returns #t;
((mlbdoc-dependencies ’remove-wd) f f0) removes the weak dependency relation f ↼ f0; returns #t except if

there is a non-weak dependency relation between these two files, in which case #f is returned;
((mlbdoc-dependencies ’make) target) causes target to be built if need be; target is a string denoting a .dvi

or .pdf file name; if you want to rebuild the whole, bind target to the all symbol; returns #f if target is an
unsuitable file name, otherwise returns #t;

((mlbdoc-dependencies ’reset-all)) cleans up the dependency graph and returns #t.

Table 2: Using the Scheme functions to manage MlBibTEX’s documentation.

and C. Michael Pilato: Version Control with Sub-
version. O’Reilly. June 2004.

[3] Paul DuBois: Software Portability with imake.
2nd edition. O’Reilly & Associates, Inc. September
1996.

[4] Michel Goossens and Sebastian Rahtz, with Ei-
tan M. Gurari, Ross Moore and Robert S.
Sutor: The LATEX Web Companion. Addison-
Wesley Longmann, Inc., Reading, Massachusetts.
May 1999.

[5] Hans Hagen: “The Luafication of TEX and
ConTEXt”. In: Proc. BachoTEX 2008 Conference,
pp. 114–123. April 2008.

[6] Jean-Michel Hufflen: “MlBibTEX’s Version 1.3”.
tugboat, Vol. 24, no. 2, pp. 249–262. July 2003.

[7] Jean-Michel Hufflen: “BibTEX, MlBibTEX and
Bibliography Styles”. Biuletyn gust, Vol. 23,
pp. 76–80. In BachoTEX 2006 conference. April
2006.

[8] Jean-Michel Hufflen: “MlBibTEX: Reporting the
Experience”. tugboat, Vol. 29, no. 1, pp. 157–162.
EuroBachoTEX 2007 proceedings. 2007.

[9] Roberto Ierusalimschy: Programming in Lua.
2nd edition. Lua.org. March 2006.

[10] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson, Nor-
man I. Adams iv, David H. Bartley, Gary
Brooks, R. Kent Dybvig, Daniel P. Friedman,
Robert Halstead, Chris Hanson, Christopher T.
Haynes, Eugene Edmund Kohlbecker, Jr,
Donald Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay Suss-
man and Mitchell Wand: “Revised5 Report on the
Algorithmic Language Scheme”. hosc, Vol. 11,
no. 1, pp. 7–105. August 1998.

[11] Brian W. Kernighan and Denis M. Ritchie: The
C Programming Language. 2nd edition. Prentice
Hall. 1988.

[12] Leslie Lamport: LATEX: A Document Prepara-
tion System. User’s Guide and Reference Man-
ual. Addison-Wesley Publishing Company, Read-
ing, Massachusetts. 1994.

[13] Miki Loukides and Andy Oram: Programming
with gnu Software. O’Reilly & Associates, Inc. De-
cember 1996.

[14] Frank Mittelbach and Michel Goossens, with
Johannes Braams, David Carlisle, Chris A.
Rowley, Christine Detig and Joachim Schrod:
The LATEX Companion. 2nd edition. Addison-
Wesley Publishing Company, Reading, Mas-
sachusetts. August 2004.

[15] Chuck Musciano and Bill Kennedy: html &
xhtml: The Definitive Guide. 5th edition. O’Reilly
& Associates, Inc. August 2002.

[16] Okumura Haruhiko: “pTEX and Japanese Type-
setting”. The Asian Journal of TEX, Vol. 2, no. 1,
pp. 43–51. April 2008.

[17] Andrew Oram and Steve Talbott: Managing
Projects with make. 2nd edition. O’Reilly & As-
sociates, Inc. October 1991.

[18] Oren Patashnik: BibTEXing. February 1988. Part
of the BibTEX distribution.

[19] Erik T. Ray: Learning xml. O’Reilly & Associates,
Inc. January 2001.

[20] Ian Sommerville: Software Engineering. 8th edi-
tion. Addison-Wesley. June 2006.

[21] Richard Matthew Stallman and the gcc de-
veloper community: Using the gnu Compiler
Collection. October 2003. http://gcc.gnu.org/
onlinedocs/gcc.pdf.

[22] Bjarne Stroustrup: The C++ Programming Lan-
guage. 2nd edition. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts. 1991.

[23] Jesse Tilly and Eric M. Burke: Ant: the Defini-
tive Guide. O’Reilly & Associates, Inc. May 2002.

[24] Gary V. Vaughn, Ben Ellison, Tom Tromey and
Ian Lance Taylor: gnu Autoconf, Automake, and
Libtool. Sams. October 2000.

[25] W3C: xsl Transformations (xslt). Version 1.0.
w3c Recommendation. Edited by James Clark.
November 1999. http://www.w3.org/TR/1999/
REC-xslt-19991116.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1005

