
B Model Abstraction Combining Syntactic and

Semantic Methods

J. Julliand1, N. Stouls2, P.-C. Bué1, and P.-A. Masson1

1 LIFC, Université de Franche-Comté
16, route de Gray F-25030 Besançon Cedex

{bue, julliand, masson}@lifc.univ-fcomte.fr
2 Université de Lyon, INRIA

INSA-Lyon, CITI, F-69621, Villeurbanne, France
nicolas.stouls@insa-lyon.fr

Abstract. In a model-based testing approach as well as for the verifi-
cation of properties by model-checking, B models provide an interesting
solution. But for industrial applications, the size of their state space often
makes them hard to handle. To reduce the amount of states, an abstrac-
tion function can be used, often combining state variable elimination and
domain abstractions of the remaining variables. This paper illustrates a
computer aided abstraction process that combines syntactic and seman-
tic abstraction functions. The first function syntactically transforms a B
event system M into an abstract one A, and the second one transforms a
B event system into a Symbolic Labelled Transition System (SLTS). The
syntactic transformation suppresses some variables in M. This function
is correct in the sense that A is refined by M. A process that combines
the syntactic and semantic abstractions has been experimented. It sig-
nificantly reduces the time cost of semantic abstraction computation.
This abstraction process allows for verifying safety properties by model-
checking or for generating abstract tests. These tests are generated by a
coverage criteria such as all states or all transitions of an SLTS.

Keywords: Model Abstraction, Syntactic Abstraction, Refinement.

The full version of this short paper is available as a research report: [JSBM09].

1 Introduction

B models are well suited for producing tests of an implementation by means
of a model-based testing approach [BJK+05,UL06] and to verify dynamic prop-
erties by model-checking [LB08]. But model-checking as well as test generation
requires the models to be finite, and of tractable size. This usually is not the case
with industrial applications, and the search for executions instantiated from the
model frequently comes up against combinatorial explosion problems. Abstrac-
tion techniques allow for projecting the (possibly infinite or very large) state
space of a system onto a small finite set of symbolic states. Abstract models



make test generation or model-checking possible in practice. We have proposed
and experimented in [BBJM09] an approach of test generation from abstract
models, that computes in finite time a Symbolic Labelled Transition System
(SLTS) of all the behaviors of a model (with possibly an infinite concrete state
space). However, it appeared that the computation time of the abstraction could
be very expensive. We had replaced a problem of search time in a state graph
with a problem of proof time. Indeed, computing an abstraction is performed by
proving enabledness and reachability conditions on symbolic states [BPS05].

This short paper illustrates on an example our contribution [JSBM09] to
reduce this proof time problem, by means of a proof free syntactic abstraction
function. It works by suppressing some state variables of a model. When there
are domain abstractions on the remaining state variables, a semantic abstraction
that requires proof obligation checking is also performed. But it applies to a
model that has been syntactically simplified.

2 Electrical System Example

Fig. 1. Electrical System

A device D is powered by one of three batteries B1, B2, B3 as shown in Fig. 1.
A switch connects a battery Bi to the device D. A clock H periodically sends
a signal that causes a commutation of the switches, i.e. a change of the battery
that powers D. The system satisfies the three following requirements:

– Req1: only one switch is closed at a time (i.e. there is no short-circuit),
– Req2: there is always one switch closed, connected to a working battery,
– Req3: a signal from the clock always changes the switch that is closed.

If a failure occurs to the battery that is powering D, the system triggers an
exceptional commutation to satisfy Req2. We assume that there are never more
than two batteries down at the same time. When two batteries are down, Req3

is relaxed and the clock signal leaves unchanged the switch that is closed.
This system is modeled by means of three variables H , Sw and Bat. H ∈

{tic, tac} models the clock: tic means asking for a commutation and tac that
the commutation has occurred. Sw models the switches: Sw = i indicates that
the switch i is closed while the others are opened. This modelling makes that
requirements Req1 and Req2 necessarily hold. Bat ∈ 1..3 → {ok, ko} models the
batteries, with ko meaning that a battery is down. The invariant I expresses the



assumption that at least one battery is not down by stating that Bat(Sw) = ok:
I =̂ H ∈ {tic, tac} ∧ Sw ∈ 1..3 ∧ (Bat ∈ 1..3 → {ok, ko}) ∧ Bat(Sw) = ok.

The initial state is defined by Init in Fig. 2. The behavior of the system
is described by four events, modeled in Fig. 2 with the primitive forms of sub-
stitutions: Tic sends a commutation command, Com performs a commutation,
Fail simulates the failure of a battery, and Rep simulates the replacement of a
battery.

Init b= H, Bat, Sw := tac, {1 7→ ok, 2 7→ ok, 3 7→ ok}, 1
Tic b= H = tac ⇒ H := tic

Com b= card(Bat ⊲ {ok}) > 1 ∧ H = tic ⇒
@ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ∧ ns 6= Sw ⇒ H, Sw := tac, ns)

Fail b= card(Bat ⊲ {ok}) > 1 ⇒
@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ok}) ⇒

nb = Sw ⇒
@ns.(ns ∈ 1..3 ∧ ns 6= Sw ∧ Bat(ns) = ok ⇒

Sw, Bat := ns, Bat <+ {nb 7→ ko})
[]nb 6= Sw ⇒ Bat := Bat <+ {nb 7→ ko}))

Rep b= @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ko}) ⇒ Bat := Bat <+ {nb 7→ ok})

Fig. 2. B Specification of the Electrical System

3 Syntactic Abstraction

We consider abstractions obtained by observing only a subset of variables, de-
fined as being relevant variables. This set is built as a fixpoint, starting with
chosen variables from the property to test, and growing by addition of the vari-
ables required for computing the values assigned to the relevant variables.

For example, to test the electrical system in the particular cases where two
batteries are down, observing the variable Bat is sufficient. In [JSBM09] we define
a set of transformation rules that produce a simplified model A. We prove that
A is, by construction, refined by the source model M, so that it is sufficient to
verify safety properties on A for them to hold on M. It is also easier to compute
test cases from A than from M.

The electrical system is transformed as shown in Fig. 3 for the set of observed
variables {Bat}. It is a correct B event system. The initialization only assigns
the observed variable. Its value is the same as in the source model. The event
Tic is abstracted by skip because its guard and its action do not refer to the
observed variable. The guard of the events Com and Fail, that are in the shape of
p(Bat)∧p′(H), are transformed in the shape of p(Bat) because the approximation
of a proposition p(x) is true, when x is a set of non observed variables. The bound
variables are considered as observed variables. The action of an event (such as
Com for example) becomes skip if it only assigns non observed variables. For the
Fail event, we only keep the assignment of the variable Bat. Finally, the event
Rep is unchanged because its guard and its action only assigns the variable Bat

and depends on the value of the bound variable nb.



Init b= Bat := {1 7→ ok, 2 7→ ok, 3 7→ ok}
Tic b= skip

Com b= card(Bat ⊲ {ok}) > 1 ⇒ @ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ⇒ skip)
Fail b= card(Bat ⊲ {ok}) > 1 ⇒

@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ok}) ⇒ Bat := Bat <+ {nb 7→ ko})
Rep b= @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat ⊲ {ko}) ⇒ Bat := Bat <+ {nb 7→ ok})

Fig. 3. B Syntactically Abstracted Specification of the Electrical System

4 Abstraction Process

In [BBJM09] we have introduced a test generation method based on a semantic
abstraction of a B model (see Fig. 4/Process A). The abstraction is computed as
an SLTS according to a test purpose. The idea is to observe the state variables
that are modified by the operations activated by the test purpose. The domain
of the observed variables can be abstracted into a few subdomains. For example,
a natural integer n can be abstracted into subdomains n = 0 and n > 0.

The two main drawbacks of this process are its time cost and the propor-
tion of proof obligations (POs) not automatically proved. Indeed, the semantic
abstraction is based on a theorem proving process [BC00]. Each unproved PO
adds a transition to the SLTS that is possibly unfeasible. Hence we propose to
use a syntactic abstraction in addition to the semantic one. In Fig. 4/Process
B, we describe a complete abstraction process in which we combine a syntactic
abstraction that eliminates some variables (see Sec. 3), with a semantic abstrac-
tion computed by GeneSyst [BPS05] that projects the domain of the observed
variables onto abstract domains.

Fig. 4. Abstraction Process

5 Conclusion, Related Works and Further works

We have illustrated a method for abstracting an event system by elimination of
some state variables. The abstraction is refined by the source model. It is useful
for verifying properties and generating tests. The main advantage of our method
is that it first performs syntactic transformations, which reduces the number of



POs generated and facilitates the proof of the remaining POs. This results in a
gain of computation time. We believe that the bigger the ratio of the number of
state variables to the number of observed variables is, the bigger the gain is. This
conjecture needs to be confirmed by experiments on industrial size applications.

Many other works define model abstraction methods to verify properties. The
methods of [GS97,BLO98,CU98] use theorem proving to compute the abstract
model, which is defined over boolean variables that correspond to a set of a

priori fixed predicates. In contrast, our method firstly introduces a syntactical
abstraction computation from a set of observed variables, and further abstracts
it by theorem proving. [CABN97] also performs a syntactic transformation, but
requires the use of a constraint solver during a model checking process.

References

[BBJM09] F. Bouquet, P.-C. Bué, J. Julliand, and P.-A. Masson. Test generation based
on abstraction and dynamic selection criteria. Research Report RR2009-02,
Laboratoire d’Informatique de l’Université de Franche Comté, September
2009.

[BC00] D. Bert and F. Cave. Construction of Finite Labelled Transition Systems
from B Abstract Systems. In W. Grieskamp, T. Santen, and B. Stoddart,
editors, Integrated Formal Methods, volume 1945 of Lecture Notes in Com-

puter Science. Springer-Verlag, 2000.
[BJK+05] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors.

Model-Based Testing of Reactive Systems, volume 3472 of LNCS. 2005.
[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite

state systems compositionally and automatically. In CAV’98, volume 1427
of LNCS. Springer, 1998.

[BPS05] D. Bert, M.-L. Potet, and N. Stouls. GeneSyst: a Tool to Reason about
Behavioral Aspects of B Event Specifications. In ZB’05, volume 3455 of
LNCS, 2005.

[CABN97] W. Chan, R. Anderson, P. Beame, and D. Notkin. Combining constraint
solving and symbolic model checking for a class of systems with non-linear
constraints. In CAV’97, volume 1254 of LNCS. Springer, 1997.

[CU98] M.A. Colon and T.E. Uribe. Generating fnite-state abstractions of reactive
systems using decision procedures. In CAV’98, volume 1427 of LNCS, 1998.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
CAV’97, volume 1254 of LNCS, 1997.

[JSBM09] J. Julliand, N. Stouls, P.-C. Bué, and P.-A. Masson. B model abstraction
combining syntactic and semantics methods. Research Report RR2009-
04, LIFC - Laboratoire d’Informatique de l’Université de Franche Comté,
November 2009. 15 pages.

[LB08] M. Leuschel and M. Butler. ProB: An automated analysis toolset for the B
method. Software Tools for Technology Transfer, 10(2):185–203, 2008.

[UL06] M. Utting and B. Legeard. Practical Model-Based Testing - A tools approach.
Elsevier Science, 2006.


