
When Typography Meets Programming∗

Jean-Michel HUFFLEN
LIFC (EA CNRS 4157)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
jmhufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/home/~jmhufflen

Abstract

TEX’s language is a wonderful tool to customise (LA)TEX’s behaviour. However,
some applications related to ‘pure’ programming are difficult to put into action,
as shown by LuaTEX, where some tasks can be delegated to Lua procedures.
We show some examples directly related to typesetting, and demonstrate some
solutions using ‘more classical’ programming languages.
Keywords (LA)TEX, Scheme, programming workarounds.

Streszczenie

Makrojęzyk TEXa jest cudownym narzędziem do modyfikowania zachowania
(LA)TEXa. Jednak niektóre zastosowania związane z „czystym“ programowaniem
są w nim trudne do zrealizowania, co demonstruje LuaTEX, w którym niektóre
zadania mogą być delegowane do procedur Lua. Pokażemy kilka przykładów bez-
pośrednio związanych z typografią i zaprezentujemy ich rozwiązania przy użyciu
„bardziej klasycznych“ języków programowania.
Słowa kluczowe (LA)TEX, Scheme, rozwiązanie zastępcze.

0 Introduction

TEX’s language is known as a wonderful tool to type-
set texts nicely. However there are some examples
related to typography, where using a ‘more classi-
cal’ programming language can be judicious. The
purpose of this talk is to show some examples of
that. Hereafter, a particular case is given in ex-
tenso, other examples will be demonstrated at the
BachoTEX conference. Reading this article only re-
quires basic knowledge of TEX, the commands we
mention are documented in [14].

1 Dealing with ‘false’ small capitals

Let us assume that you want to typeset ‘Bachotek’
using small capitals, that is, ‘Bachotek’. Unluck-
ily you are using an ‘exotic’ font that does not pro-
vide small capitals directly1,so a workaround is to
use smaller-sized capital letters. That is—even if
the result may seem to be ugly—you can replace
‘\textsc{Bachotek}’ by ‘B\fake{ACHOTEK}’, using

∗ Title in Polish: Gdy typografia spotyka się z programo-
waniem.

1 . . . or your publisher forces you to use such a font.

the \fake command defined in Fig. 1. Let us notice
that putting:

\fake{BACHOTEK}
—or ‘\fake{\uppercase{Bachotek}}’— is incor-
rect, because the initial ‘B’ must be an ‘actual’ cap-
ital letter, in normal size. In addition, a command
such as \TeX would remain untouched in:

\textsc{Bacho\TeX}

(‘BachoTEX’), so our workaround should apply to
this last example as ‘B\fake{ACHO}\TeX’.

Some solutions to this problem have already
been proposed—e.g., in [13, § 103]—but as far as
we know, all these solutions are not robust: they
yield incorrect results if they are applied to texts
containing uppercase letters or nested commands,
that is, cases such as:

\textsc{\textbf{Bacho\TeX}}2

If we would like to define an alternative command
for \textsc, the solution is to examine each letter of

2 In this last case, a font substitution may also be ordered
by means of the \DeclareFontShape command [16]. We do
not go thoroughly into this way.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1001

Jean-Michel HUFFLEN

\def\fake#1{{\small#1}}

\def\alttextsc#1{%
\def\iter{%
\afterassignment\testcase\let\next= %

}%
\def\testcase{%
\expandafter\ifx\next\enditer\else%
\ifcat\noexpand\next\relax\noexpand\next%
\else%
\if\next a\fake{A}\else%
\if\next b\fake{B}\else%
...

\fi%
\fi%

\fi\let\next=\relax%
\fi\next\iter}%

\def\enditer##1{\relax}%
\iter#1\enditer%

}

Figure 1: Using ‘false’ small capitals.

the argument of this command, so the result would
look like:

\textbf{%
B\fake{A}\fake{C}\fake{H}\fake{O}\TeX%

}

for our last example. It is not difficult for a TEXpert
to write a loop iterating on a string, but quite te-
dious. We need a marker for the end of this string,
and a macro using the \afterassignment command
puts this modus operandi into action3, as shown in
Fig. 1 by our \alttextsc command.

However, we can observe the huge number of
‘\if...\fi’ constructs. Unfortunately, TEX does
not provide any construct to check if a letter is
upper-case (or down-case). First, the tables used by
the commands \uppercase and \downcase are not
directly readable; second, changing these tables by
means of the commands \lccode or \uccode may
affect other commands’ behaviour. The second re-
mark holds on for the table controlling character cat-
egory (changeable by means of the \catcode com-
mand). Infact,inthislastcase,TEX provides the con-
struct ‘\ifcat...\fi’ in order to check a charac-
ter’s category. . . but uppercase and downcase letters
default to the same category. In addition, let us no-
tice that even if the best solution induced changes
in a table (by \catcode, \lccode, or \uccode) for
26 letters—uppercase or downcase letters— such a

3 We gave a similar example in [5]: a macro computing
the numbers of characters of a string.

way would result in a lengthy source text for our
new \alttextsc command.

If we decide to use a ‘more classical’ program-
ming language in order to implement the replace-
ment of the string ‘\textsc{Bachotek}’ by a quite
equivalent string using our \fake command—that
is, doing ‘macro’-replacement before applying TEX’s
macros— the advantage is that most modern lan-
guages provide efficient constructs to iterate a func-
tion along a string. More precisely, they allow a
function to be iterated on each character of a string,
and then all these subresults can be collected into
a structure, most often into another string4. Un-
fortunately, processing each character separately in
the case of the \textsc command’s argument fails
for ‘\textsc{Bacho\TeX}’. Another solution us-
ing a ‘mini’ TEX parser is given in Fig. 2, using
the Scheme programming language5 [11]. The com-
ments we put in this figure should make clear the
broad outlines of our method. In addition to some
predefined functions and special forms of Scheme,
our alttextsc function uses some additional defi-
nitions provided by srfis6: the let*-values macro
is defined in [3], the cons* function in [17], the
string-concatenate-reverse/shared function in
[18]. This alttextsc function also uses definitions
belonging to MlBibTEX

7 source files [4]:
• (mk-r-string-thunk s) may be viewed as a

character-generator: this expression returns a
thunk8; successive calls of this thunk return the
successive characters of the s string, in turn;
when the end of s is reached, all the subsequent
calls return the false value ‘#f’;

• (t-next-token thunk char x) where thunk
is a character-generator, char the last character
read within the string or the false value ‘#f’
if the end has been reached, and x an escape
function to be called in case of an error, returns
two values: the next token parsed according to
TEX’s conventions, and the character after; the
resulted token may be a single character, or a
command’s name given as a string if this token

4 Good examples are Scheme functions string-map and
string-for-each [18]. So are the iterators of the stl
(Standard Template Library), part of the C++ language [10].

5 Readers interested in an introductory book to this func-
tional programming language can refer to [19].

6 Scheme Requests For Implementation. That is an ef-
fort to coordinate libraries and other additions to the Scheme
language between implementations.

7 MultiLingual BibTEX. The functions we mention here-
after are used by MlBibTEX to parse a LATEX document’s
preambule, in order to know which multilingual packages are
used [7].

8 That is, a zero-argument function, w.r.t. Scheme’s ter-
minology.

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

When Typography Meets Programming

(define alttextsc
(let ((backslash-as-string "\\") ; This escape character must be escaped itself.

(fake-open-string "\\fake{")
(fake-close-string "}"))

(lambda (string-0)
(let ((r-thunk (mk-r-string-thunk string-0)) ; Builds a character-generator along string-0.

(x (lambda (y) #f))) ; This function will be called by t-next-token in case
; of an error. y is supposed to be an error label.

(let loop ((char (r-thunk)) ; Launches the parsing of the string.
(acc ’()))

(let*-values (((ttoken char-0) (t-next-token r-thunk char x))) ; 2 values returned: the next
; token— #f, a character, or a string—and the character after.

(if ttoken ; W.r.t. MlBibTEX’s terminology, ‘ttoken’ is for ‘TEX token.
(loop char-0

(if (char? ttoken)
(if (char-lower-case+? ttoken)

(cons* fake-close-string (string (char-upcase+ ttoken))
fake-open-string acc)

(cons (string ttoken) acc))
;; Otherwise, ttoken is a command’s name, given as a string. We restore the ‘\’
;; character before this name.
(cons* ttoken backslash-as-string acc)))

;; If ttoken is the ‘false’ value #f, this means that we have reached the string’s end. To get the
;; final result, all the strings of the accumulator acc are concatenated by using reverse order.
(string-concatenate-reverse/shared acc))))))))

Figure 2: Generating a source text typeset using ‘false’ small capitals.

begins with the ‘\’ character; if the end of the
input or string port has been reached, the two
values are equal to #f;

• the char-lower-case+? (resp. char-upcase+)
function extends the char-lower-case? (resp.
char-upcase) function—dealing to the ‘basic‘
ascii9 encoding—to the Latin 1 encoding10;
they should be replaced by Unicode-compliant
functions in Scheme’s future versions.

This implementation of the alttextsc command—
as pre-processing in Scheme, the result being pro-
cessed by LATEX—could be improved by putting as
few occurrences of the \fake as possible. Of course,
it requires some knowledge of Scheme, but it seems
to us to be not as heavy as TEX’s. Moreover, we
think this point holds on with most modern pro-
gramming languages, provided that they can use a
TEX-like parser.

2 Requirements for an interface

Roughly speaking, if we are interested in doing some
pre-processing about a fragment of a TEX document,
we do not have to pay attention to some subtleties
related to the application of macros and commands

9 American Standard Code for Information Interchange.
10 In [6], we explain why this encoding is internally used

by MlBibTEX’s present version.

by TEX, we do not have to be careful with com-
mands related to control features like \expandafter
[14]. We do not have to be careful with the space
characters ending a command’s name and gobbled
by this command, either11. But let us recall that
such a ‘mini’ TEX parser must rule out comments.
More precisely, it must skip the characters located
between a ‘%’ sign and the end of the current line,
these two delimiter characters belonging to the se-
quence to be skipped. Space characters at the be-
ginning of a line must be skipped, too.

Values returned by a TEX-like tokeniser may be
three types: the character type12 for ‘simple’ char-
acters— in particular, contents of paragraphs to be
typese—the type implementing commands’ names,
and a one-valued type for the parsing process’ end.
To do that, our ‘mini’ TEX parser respectively uses
characters in Scheme, strings in Scheme, and the
false value ‘#f’. As an alternative implementation,

11 So does the ‘mini’ TEX parser developed as part of
MlBibTEX (cf. Footnote 7, p. 1002). On the contrary, the
parser of bibliography data (.bib) files, built by means of anal-
ogous methods, expands some (LA)TEX commands. Examples
are given by accent commands whose result belongs to the
Latin 1 encoding: ‘ \’{e} ’ is expanded into the ‘é’ character
within internal forms used by MlBibTEX.

12 Possibly Latin 1, Latin 2, . . . or Unicode-compliant, ac-
cording to what you would like to parse.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1003

Jean-Michel HUFFLEN

let us mention that we have written another TEX-
like tokeniser, only experimental, using the object-
oriented Ruby programming language [15].

3 Conclusion

In the past, some programming languages were de-
signed to be universal, that is, to serve all purposes.
All of these languages pl/1 [8], Ada [1] have failed
to be accepted as filling this role. Nowadays, only
the C programming language [12] is still used for a
very range of applications. But this language can be
viewed as a high-level assembly language. In partic-
ular, handling strings in C may be quite tedious. On
the contrary, TEX’s language, like most specialised
languages, is very efficient inside its domain, quite
unsuitable outside. It offers efficient primitives for
advanced typesetting (\ifcat, \ifmmode, . . .) [14]
but programming a sort procedure is nightmare.

The cooperation among procedures written us-
ing different programming languages is not new: for
example, Ada’s second version [20] provides inter-
faces with other programming languages (e.g., C).
The new typesetting engine LuaTEX [2] belongs to
this framework. Work related to typesetting is done
by TEX, whereas other tasks may be delegated to
procedures written using Lua [9]. But this cooper-
ation is unidirectional: LuaTEX can run procedures
in Lua, but these procedures cannot call TEX’s com-
mands. TEX’s major drawback is that it recognises
only its own formats. We hope that the mini-parsers
we wrote will indirectly make TEX’s features open
to other environments.

4 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
translated the abstract and keywords in Polish.

References
[1] ANSI: The Programming Language Ada Reference

Manual. Technical Report ansi/mil-std-1815A-
1983, American National Standard Institute, Inc.
lncs No. 155, Springer-Verlag. 1983.

[2] Hans Hagen: “The Luafication of TEX and
ConTEXt”. In: Proc. BachoTEX 2008 Conference,
pp. 114–123. April 2008.

[3] Lars T. Hansen: Syntax for Receiving Multiple
Values. March 2000. http://srfi.schemers.org/
srfi-11/.

[4] Jean-Michel Hufflen: “MlBibTEX in Scheme
(First Part)”. Biuletyn gust, Vol. 22, pp. 17–22.
In BachoTEX 2005 conference. April 2005.

[5] Jean-Michel Hufflen: “TEX’s Language within
the History of Programming Languages”. Biuletyn
gust, Vol. 22, pp. 23–32. In BachoTEX 2005 con-
ference. April 2005.

[6] Jean-Michel Hufflen: “Managing Order Relations
in MlBibTEX”. tugboat, Vol. 29, no. 1, pp. 101–108.
EuroBachoTEX 2007 proceedings. 2007.

[7] Jean-Michel Hufflen: “Managing Languages
within MlBibTEX”. tugboat, Vol. 30, no. 1, pp. 49–
57. July 2009.

[8] IBM System 360: pl/1 Reference Manual. March
1968.

[9] Roberto Ierusalimschy: Programming in Lua.
2nd edition. Lua.org. March 2006.

[10] ISO: Programming Languages—C++. Technical
Report ISO/IEC 14882:2003, ISO/IEC. 2003.

[11] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson, Nor-
man I. Adams iv, David H. Bartley, Gary
Brooks, R. Kent Dybvig, Daniel P. Friedman,
Robert Halstead, Chris Hanson, Christopher T.
Haynes, Eugene Edmund Kohlbecker, Jr,
Donald Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay Suss-
man and Mitchell Wand: “Revised5 Report on the
Algorithmic Language Scheme”. hosc, Vol. 11,
no. 1, pp. 7–105. August 1998.

[12] Brian W. Kernighan and Denis M. Ritchie: The
C Programming Language. 2nd edition. Prentice
Hall. 1988.

[13] Marie-Paule Kluth : faq LATEX française pour
débutants et confirmés. Vuibert Informatique,
Paris. Également disponible sur CTAN:help/
LaTeX-FAQ-francaise/. Janvier 1999.

[14] Donald Ervin Knuth: Computers & Typesetting.
Vol. A: The TEXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1984.

[15] Yukihiro Matsumoto: Ruby in a Nutshell.
O’Reilly. English translation by David L. Reynolds,
Jr. November 2001.

[16] Frank Mittelbach and Michel Goossens, with
Johannes Braams, David Carlisle, Chris A.
Rowley, Christine Detig and Joachim Schrod:
The LATEX Companion. 2nd edition. Addison-
Wesley Publishing Company, Reading, Mas-
sachusetts. August 2004.

[17] Olin Shivers: List Library. October 1999. http:
//srfi.schemers.org/srfi-1/.

[18] Olin Shivers: String Library. December 2000.
http://srfi.schemers.org/srfi-13/.

[19] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The mit
Press, McGraw-Hill Book Company. 1989.

[20] S. Tucker Taft and Robert A. Duff, eds.: Ada
95 Reference Manual. Language and Standard Li-
braries. No. 1246 in lncs. Springer-Verlag. Inter-
national Standard iso/iec 8652:1995(E). 1995.

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

