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Abstract

We present a theorem-proving experiment performed with a computer algebra system. It proves a
conjecture about the general pattern of the generating functions counting rooted maps of given genus.
These functions are characterized by a complex non-linear differential system between generating
functions of multi-rooted maps. Establishing a pattern for these functions requires a sophisticated
inductive proof. Up to now these proofs were made by hand. This work is the first computer proof of
this kind of theorem. Symbolic computations are performed at the same abstraction level as the hand-
made proofs, but with a computer algebra system. Generalizing this first success may significantly
help solving algebraic problems in enumerative combinatorics.

1 Introduction

This work shows how a computer algebra system can help establishing new results in enumerative com-
binatorics. It is illustrated by the example of a recent conjecture about the general pattern of generating
functions counting rooted maps by genus.

The general context is Problem 6 identified by Bender [2] in his list of ten unsolved problems in map
enumeration. This problem is to find a “simple formula” defining the generating function Mg(z) counting
rooted maps of genus g by number of edges (exponent of z) for each positive genus. Rooted maps are
combinatorial objects that were first enumerated by Tutte [7, 8] in the 1960’s. A common pattern for all
the Mg(z), where g ranges over the positive integers, was first proposed in [3]. Each Mg(z) was proved to
be expressible as a rational function of ρ =

√
1−12z. However there is an unknown polynomial of ρ in

the numerator of this function. An upper bound for its degree was conjectured but not proved. In [1] we
provide the first proof of a more precise pattern, with a maximal degree for each unknown polynomial,
when counting by number of vertices and faces. Focusing back on counting by number of edges, we [9]
prove from it that a general pattern for the generating function Mg(z) is

Mg(z) = m2g(1−2m)4−5g(1−3m)2g−2(1−6m)3−5gPg(m), (1)

where m =
1−
√

1−12z
6

and Pg(m) is a polynomial of degree 6g− 6. After computing the explicit

formulas for g = 1 to g = 6, we [9] conjecture that this polynomial is divisible by (1− 2m)2g−2 for all
g≥ 1. The proof is obvious for g = 1. The present work proves this conjecture for g≥ 2.

All the formerly mentioned proofs of general patterns were made by hand or with minimal computer
assistance. These proofs are long, tedious and subject to errors. We expect to avoid errors and to reduce
the proof construction effort by assisting it with a computer. The proof difficulty does not come from the
underlying logical theory but from the size of the recursive definition of the polynomials Pg(m). They
indeed depend on two other families of polynomials. A challenge is to generalize the initial conjecture
by guessing a more general conjecture for all the involved polynomials. Symbolic computations help
to discover this generalized conjecture. Then three proofs by induction are constructed by substitution
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and algebraic computations. Difficulties are reduced by replacing the exact system of equations by an
abstraction of it that preserves the property to be proved.

The price to pay for computer assistance is to encode the problem and strategies for its resolution
in a computer language. In the present case the problem is essentially algebraic. The definition of the
polynomials Pg(m) is composed of sums and products of polynomials (and anecdotally of some rational
functions). This is a good reason for choosing a computer algebra system rather than a theorem prover.
Certain unknown powers of (1−2m) are conjectured to depend linearly on certain parameters. This idea
comes from previous experience but is also motivated by the hope of obtaining a linear system to solve
the generalized conjecture. Here again a theorem prover is not needed. The linear systems to be solved
are of small size. Linear systems of equalities are solved by Gaussian elimination [6]. Linear systems
of inequalities are solved by Fourier-Motzkin elimination [6] or with the simplex method [6] when it is
possible to add an optimization goal. All these procedures are available in computer algebra systems.

Our contribution is to provide the first computer proof of an algebraic conjecture from enumerative
combinatorics. The Maple code produces a trace of the conjectures discovered and of the three proofs
by induction performed.

A definition of the polynomials Pg(m) is given in Section 2. Section 3 presents the keys of an ab-
straction that simplifies this definition whilst preserving the divisibility property to be proved. Section 4
explains how symbolic computations help to guess a maximal power of (1− 2m) dividing each kind
of polynomials appearing in the definition of the polynomial Pg(m). Section 5 presents other symbolic
computations performing proofs by induction of a divisibility property for each kind of polynomials.

2 Algebraic Problem

This section presents the large system of equations defining the polynomial Pg(m). Since all the poly-
nomials and rational functions defined hereafter are in the single indeterminate m, this indeterminate is
omitted. For instance we write Pg instead of Pg(m).

The polynomial Pg is defined in terms of another polynomial Ug by

Pg = Ug(1−m)4−4g. (2)

That polynomial is itself defined from a family of polynomials Sg(n1, . . . ,nr) in the indeterminate m by

Ug = Sg−1(0,0)+m(1−2m)(1−m)2
g−1

∑
j=1

S j(0)Sg− j(0). (3)

The goal is to construct a proof that Pg(m) is divisible by (1− 2m)2g−2 for all g ≥ 1. The proof
difficulty comes from the size of the recursive definition of the polynomials Sg(n1, . . . ,nr), called the
S-polynomials. For any sequence n1, . . . ,nr of non-negative integers, any non-negative integer g and any
positive integer r such that (g,r) 6= (0,1), the polynomial Sg(n1, . . . ,nr) is indeed recursively defined in
terms of some polynomials S j(p1, . . . , ph) with j less than or equal to g. When j equals g the number
h of parameters is less than or equal to r. When h equals r, the sum p1 + . . .+ ph is strictly less than
n1 + . . . + nr. It is also known [9] that the polynomials Sg(n1, . . . ,nr) are symmetric in n1,. . . , nr.

Before giving the recursive definition of the S-polynomials in Section 2.2 some convenient notations
are introduced in Section 2.1.

2.1 Notations

For any positive integer r, [r] denotes the sequence (2, . . . ,r) if r ≥ 2 and the empty sequence if r = 1.
For any subsequence X of [r], [r]−X denotes the subsequence of the elements of [r] that are not in X .
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For any sequence (n2, . . . ,nr) of integers, NX denotes the sequence of those ni such that i is in X and N j

denotes the sequence (n2, . . . ,n j−1,n j+1, . . . ,nr). The polynomials Ki are defined for i≥ 0 by K0 =−m,
K1 = −1−m, K2 = −1 and Ki = 0 if i ≥ 3. The polynomials Lk are defined for k ≥ 0 by L0 = −m,
L1 = −1− 2m, L2 = −2−m, L3 = −1 and Lk = 0 if k ≥ 4. Finally we introduce an infinite family
(Ek)k≥1 of rational functions of m, all but the first two of which are polynomials, defined recursively by

E1 =
1

2m(1−2m)(1−m)2 , E2 =
−5

2(1−m)2 , E3 =−1, (4)

and

Ek =−m(1−2m)(1−m)2
i=k−1

∑
i=2

EiEk+1−i for all k ≥ 4. (5)

2.2 Recursive definition

The polynomials S0(n1) are not defined. The recursive definition of the polynomials Sg(n1, . . . ,nr) starts
with g = 0 and r = 2. We have

S0(n1,n2) = −n2(1−6m)(1−2m)En1+n2+2− (n2 +1)En1+n2+3

+2m(1−2m)(1−m)2
∑

i+ j+k=n1+1
i>0,k<n1

(−1) j+1 (1−6m) j(1−2m) jEiS0(k,n2). (6)

If (g,r) 6= (0,2), then Sg(n1, . . . ,nr) = term1 + term2 + term3 + term4, where

term1 = 2m(1−2m)(1−m)2
∑

i+ j+k=n1+1
i>0,k<n1

(−1) j+1 (1−6m) j(1−2m) jEiSg(k,n2, . . . ,nr), (7)

term2 = m(1−2m)(1−m)2
∑

k+l+i=n1+1
0≤ j≤g
X⊆[r]

( j,X)6=(0, /0)
( j,X)6=(g,[r])

Ki(1−6m)i(1−2m)iS j(k,NX)Sg− j(l,N[r]−X), (8)

term3 = ∑
i+ j+k=n1+1

Ki(1−6m)i(1−2m)iSg−1(k, j,N[r]) (9)

and

term4 =
r

∑
j=2

(
n j ∑k+l=n1+n j+2 Lk(1−6m)k+1(1−2m)k+1Sg(l,N j)
+(n j +1)∑k+l=n1+n j+3 Lk(1−6m)k(1−2m)kSg(l,N j)

)
. (10)

Formulas (2)-(10) are derived from formulas in [9] by replacing two parameters p and q by the
parameter m. See [9] for details.

3 Abstraction

It is obvious from (2) that Pg is divisible by (1− 2m)2g−2 if and only if the same property holds for
Ug. Each polynomial Ug (for g ≥ 1) is defined by (3) as a sum of g terms. Proving that Ug is divisible
by (1− 2m)2g−2 is easy if each of these terms is itself divisible by (1− 2m)2g−2. This sufficient but
obviously not necessary condition is called the term-by-term divisibility property of (3). We conjecture
that this property holds for (3) and try to prove it. Since each term in the right-hand side (RHS) of (3)
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involves one or two S-polynomials, we conjecture that these S-polynomials are divisible by some power
of (1−2m) which is high enough for the initial conjecture to be provable.

The exact system of equations (6)-(10) defining the S-polynomials, called the S system, is large and
complex. It is replaced by a simpler one by performing the following transformations. All of them
preserve the term-by-term divisibility property.

3.1 Reasoning about indefinite sums

The sum of the last g− 1 terms in (3) is an indefinite sum, i.e. a generalized summation, expressed
with the mathematical sign ∑. The complexity of the S system mainly comes from the indefinite sums it
contains.

An indefinite sum is a formal expression of the form

∑
F

E

also written ∑F E. It denotes the summation of the expression E for all the models of the formula F ,
or 0 is F is not satisfiable. Technically, the ∑ sign is called a binder, the formula F is called the sum
constraint and the expression E is called the summed term. The (∑ sign of the) indefinite sum binds all
the variables that appear in F and that are not bound or defined earlier in the formal expression where
the indefinite sum appears.

In the S system, the variables defined earlier are g, r and the nis for 1 ≤ i ≤ r. Thus the set of
variables bound by the indefinite sums in the expressions (6), (7), (8) and (9) is respectively {i, j,k},
{i, j,k}, {k, l, i, j,X} and {i, j,k}. In (10) the external ∑ sign binds j and the two internal ∑ signs bind
k and l. The bound variables i, j, k and l are non-negative integers, whereas X is a finite set of positive
integers, or equivalently a strictly increasing sequence of such numbers.

To prove divisibility, we essentially need the factorization property that

∑
...

AB = A∑
...

B (11)

when no variable bound by the indefinite sum appears in expression A, formally meaning that A is
independent of these variables.

We plan to apply this property to all the indefinite sums of the S system, when A is (1− 2m)d and
d is an expression whose variables are not bound by the indefinite sum. If an algebraic expression E
is divisible by (1− 2m)d , i.e. can be factorized as (1− 2m)dB, then by Property (11) any indefinite
sum ∑F E, where the variables in d are not bound in F , can also be factorized as (1− 2m)d

∑F B, i.e.
is divisible by (1− 2m)d . This sufficient condition of term-by-term divisibility allows the proof to be
established on an abstract version of the S system where each indefinite sum is replaced by its summed
term. At the same time, its sum constraint is transformed as described in the sext section.

3.2 Sum constraints

The sum constraint of an indefinite sum in the S system is composed of inequalities (in the large sense,
including set inclusions), disequalities and exactly one equality. In (8) the inequalities are 0 ≤ j, j ≤ g
and X ⊆ [r], the disequalities are ( j,X) 6= (0, /0) and ( j,X) 6= (g, [r]), and the equality is k+ l + i = n1 +1.

The equality is used to eliminate one of the bound variables in the summed term and in the sum
constraint. For instance the summed term in (6) is

(−1) j+1 (1−6m) j(1−2m) jEiS0(n1 +1− (i+ j),n2) (12)
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and the sum constraint is i > 0∧ n1 + 1− (i + j) < n1 whose simplification is i > 0∧ 1 < i + j. This
transformation also eliminates n1 from the other inequality (7) where it appeared.

Then all the inequalities and disequalities are turned into global hypotheses where their variables
have been renamed for unicity in the whole system. The implicit constraints that all the bound integer
variables are non-negative is made explicit. For instance, the inequalities in (6) are turned into the global
hypotheses i0 > 0, j0 ≥ 0 and 1 < i0 + j0. The constraints i0 ≤ n1 + 1 and j0 ≤ n1 + 1 are thrown away
because n1 can be arbitrarly large. The other global hypotheses are i1 > 0, j1 ≥ 0 and 1 < i1 + j1 from
(7), 0 ≤ j2, j2 ≤ g, X2 ⊆ [r], ( j2,X2) 6= (0, /0) and ( j2,X2) 6= (g, [r]) from (8), i3 ≥ 0 and j3 ≥ 0 for (9),
2≤ j4, j4 ≤ r and 0≤ k from (10).

3.3 Length and sum of a sequence of parameters

The second simplification comes from the fact that all the polynomials Sg(n1, . . . , nr) are symmetric in
n1, . . . , nr. The sequence n1, . . . ,nr is abstracted by its length r and its sum n = n1 + . . .+ nr. In the S
system the expression Sg(n1, . . . , nr) is replaced by the expression S̃(g,r,n) such that n = n1 + . . .+ nr.
For instance the term (12) is replaced by

(−1) j+1 (1−6m) j(1−2m) jEiS̃(0,2,n+1− (i+ j)). (13)

Simultaneously, any set Y of integers is replaced by its cardinality cY and the sum nY of its elements. For
instance the global hypothesis X2 ⊆ [r] coming from (8) is replaced by the global hypothesis cX2 ≤ r−1.
The constraint nX2 ≤ n[r] is thrown away because n[r] = n−n1 can be arbitrarly large.

After these simplifications, there remain two occurrences of n2 in (6) and two occurrences of n j in
(10) as multiplicative factors. They are considered as new formal symbols.

It is planned to automate all these transformations from a symbolic representation of the S system.
At the current stage of this research the simplified system is directly written by hand in a Maple file. It
is claimed that this Maple code is the correct definition of the simplified system. We do not reproduce
this definition here on purpose, because writing it by hand presents a risk of typographical error and
translating it from the Maple code into LATEX syntax is not yet fully automatized.

3.4 Property preservation

Property preservation does not claim for an equivalence, but only for the following entailment: if the
divisibility property of S̃(g,r,n) is proved on the simplified system, then the same divisibility property
holds for all the polynomials Sg(n1,. . . , nr) such that n = ∑1≤i≤r ni and the simplified proof can be lifted
up on the S system.

In a near future we expect to derive from a formal specification of all the simplifications a formal
proof that they preserve the term-by-term divisibility property. For the moment we can only justify this
fact informally. Preservation by replacement of indefinite sums by their summed term has already been
justified in Section 3.1. Once the sequences of integers have been replaced by their length and sum it
cannot be conjectured anymore that the polynomials Sg(n1,. . . , nr) are divisible by a power of (1−2m)
which directly depends on the nis but only on their sum and cardinality. Finally, the integers n2 and n j

replaced by formal symbols are all multiplicative factors of products where divisibility by a power of
(1−2m) has to be observed; so divisibility after replacement entails divisibility before it, with the same
power.

Altogether these simplifications lead to a proof of a stronger conjecture than the initial one. In case
of failure, some of them will have to be relaxed in order to find a more subtle proof argument.
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4 Conjecture Synthesis

The goal in this proof step is to guess a function of g, r, and n that computes a non-negative integer
d such that (i) all the polynomials S̃(g,r,n) are divisible by (1− 2m)d , (ii) this divisibility property is
provable (term by term) by induction from the equations defining these polynomials, and (iii) the degree
d is high enough to prove the divisibility conjecture for Ug. We try to synthetize d as a linear function of
g, r and n by translating (i) into the property that there exists four integers cg, cr, cn, c1 and a polynomial
T (g,r,n) such that the equality

S̃(g,r,n) = (1−2m)cgg+crr+cnn+c1T (g,r,n) (14)

always holds.
But the polynomials S̃(g,r,n) are also computed from expressions Ek which probably contribute to

the total degree of (1−2m). We also have to conjecture this contribution and prove it.
The first two expressions E1 and E2 are not polynomials but rational functions. The factor (1−2m)

appears in the denominator of E1. For sake of simplicity we prefer to consider only polynomials and
non-negative powers of (1−2m). Thus we introduce the polynomial Dk related to the polynomial Ek by

Dk =−2m(1−2m)(1−m)2 Ek (15)

for all k ≥ 1. From (4), (5) and (15) the computer easily yields the following recursive definition

D1 =−1, D2 = 5m(1−2m) , D3 = 2m(1−2m)(1−m)2 (16)

and

Dk =
1
2

i=k−1

∑
i=2

DiDk+1−i for all k ≥ 4 (17)

of the infinite family (Dk)k≥1.
It is again expected that (iv) there exists two integers ek, e1 and a polynomial F(k) such that

Dk = (1−2m)ekk+e1F(k) (18)

always holds, (v) there is a term-by-term divisibility proof by induction of this conjecture, and (vi) the
degree ekk + e1 is high enough to contribute to the proof of conditions (i)-(iii) about S̃(g,r,n). Note
that conditions (iv), (v) and (vi) are respectively similar to conditions (i), (ii) and (iii), showing that the
approach can be generalized.

The next two sections translate conditions (v) and (iii) into two equivalent systems of inequalities.
Then they show how conjectures are elaborated by interpretation of values extracted from these systems.

4.1 Guessing a pattern for the polynomials Dk

The Maple code translates condition (v) into the equivalent system of four inequalities

{ek + e1 ≤ 0, 2ek + e1 ≤ 1, 3ek + e1 ≤ 1, 0≤ ek + e1} . (19)

The first three inequalities come from the three base cases k = 1,2,3 and the last one comes from the
induction step of the proof by induction of term-by-term divisibility of Dk by (1−2m)ekk+e1 . The Maple
function solve() decomposes this system into two systems, depending on the sign of ek. Because we
want to maximize the degree ekk + e1 of (1−2m) we choose the reduced system{

ek ≤
1
2
, 0≤ ek, e1 =−ek

}
, (20)
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where ek is not negative. Unfortunately its unique solution with integral coefficients ek = e1 = 0 provides
no contribution of the expressions Ek to the factorization of the polynomials S̃(g,r,n).

We relax the condition that the coefficients should be integers and obtain a solution ek = 1
2 ,e1 =−1

2
which maximizes the degree ekk + e1 of (1− 2m) at the value k−1

2 . When k is even this degree is not
an integer but a half-integer and condition (iv) is not established. We shall see in the next section that
half-integers also arise from the same method applied to the polynomials Ug. We jointly discuss their
interpretation and possible treatments in Section 4.3.

4.2 Guessing a pattern for the polynomials Ug and S̃(g,r,n)

We now apply the same method to condition (iii). We try to factorize the polynomials S̃(g,r,n) with a
power of (1−2m) that is sufficiently high to make Ug divisible by (1−2m)2g−2 for any g≥ 2.

The method proceeds as follows. Three instances of (14) are generated by setting the triple of vari-
ables (g,r,n) to the values (g−1,2,0), ( j,1,0) and (g− j,1,0). The three instances are then introduced
in the RHS of the abstraction of (3) to eliminate the polynomials S̃(g−1,2,0), S̃( j,1,0) and S̃(g− j,1,0).
The result is simplified and then divided term by term by (1− 2m)2g−2. Condition (iii) is equivalent to
the condition that the remaining degree of (1− 2m) in each term should not be negative. Due to the
indefinite sum in (3) only two terms are considered: one coming from Sg−1(0,0) and one coming from
the term under the ∑ summation sign. The corresponding conditions respectively are

∀g .g≥ 2⇒ cg(g−1)+2cr + c1−2g+2≥ 0 (21)

and
∀g .g≥ 2⇒ cgg+2cr +2c1−2g+3≥ 0. (22)

For g = 2 and g = 3 we know from explicit values that the divisibility property of the polynomials
S̃(g,r,n) is just sufficient for the corresponding property of the polynomials Ug to be true. In other words
the corresponding inequalities in these conditions are equalities. The system of these four equalities for
the cases g = 2 and g = 3 is over-constrained because there are only three unknowns but it admits the
solution cg = 2, cr = 3

2 and c1 = −3, provided by the Maple function solve(). With this solution the
two general conditions (21) and (22) are satisfied.

Condition (iii) does not determine cn because all the nis are 0 in (3). A value for cn can be derived
from a known S-polynomial with a non-null sum of ni parameters. The polynomials

S0(0,1) = (1−2m)(4m+1) (23)

and
S1(1,1) = (1−m)(1−2m)(16m3−38m2 +21m−4) (24)

respectively provide the constraint cn ≤ 1 and cn ≤ 1
2 . We retain cn = 1

2 to complete the conjecture about
the polynomials S̃(g,r,n).

4.3 How to deal with half degrees?

Our best effort to guess a maximal power of (1−2m) dividing the polynomials Dk and S̃(g,r,n) has lead
to the strange conjecture that this power is sometimes not an integer but a half-integer. How can this
result be interpretated?

An accurate observation of the first values suggests that it should be possible to prove a divisibility
by an integral power of (1− 2m). For instance a stronger conjecture for the polynomials Dk would be
that D2k and D2k−1 are divisible by (1−2m)k for k ≥ 1. But this obversation and the previously guessed
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conjecture also indicate that this proof should distinguish odd and even values of the parameters k, r and
n. Taking the parity of the parameters k, r and n into account would multiplying by two the size of the
proof by induction for the polynomials Dk and by four the one for the polynomials S̃(g,r,n). Even if this
multiplication of cases can be delegated to the computer, we prefer the more compact but more abstract
approach exposed in the next section.

5 Proof synthesis

Let H(E) by the property that E belongs to the ring Q[m]+ (1− 2m)
1
2 Q[m], where Q[m] is the ring of

polynomials in the indeterminate m. This means that the algebraic expression E is either a polynomial
in the indeterminate m or the product by (1−2m)

1
2 of a polynomial in the indeterminate m. We denote

by the theory of H the axioms that the property H is satisfied by all the polynomials in the indeterminate
m and by the expression (1−2m)

1
2 and is preserved by addition and multiplication.

With the help of the property H the divisibility properties to be proved are expressed in terms of
powers k−1

2 and 2g + 3
2 r + 1

2 n− 3 that can be half-integers. The proofs proceed by application of the
theory of H.

There is no divisibility proof to construct for the polynomials Ug because the coefficients cg, cr and
c1 have been guessed so that Ug is divisible by (1− 2m)2g−2 for all g ≥ 1, as explained in Section 4.2.
The three proofs to construct concern the expressions Ek (through the polynomials Dk for simplicity),
the polynomials S̃(0,2,n) and the polynomials S̃(g,r,n) for (g,r) 6= (0,2).

5.1 Polynomials Dk

We now prove by induction on k that there exists an expression F(k) such that H(F(k)) holds and

Dk = (1−2m)
k−1

2 F(k) (25)

for all k ≥ 1. The base cases k = 1,2,3 are checked from (16) by instantiation of (25) and extraction of
F(1), F(2) and F(3).

The induction step consists of fixing k and assuming that there exists an expression F(h) such that
H(F(h)) holds and Dh = (1− 2m)

h−1
2 F(h) for all 1 ≤ h < k. This induction step is computer-assisted

as follows. With the Maple function subs three substitutions replace the three expressions Dk, Di and
Dk+1−i in (17) by the corresponding RHS of (25). The result after simplification is the equality

F(k) =
1
2

F(i)F(k +1− i) (26)

for k ≥ 4. The theory of H is applied to this equality to state that H(F(i)) and H(F(k + 1− i)) imply
H(F(k)). This step ends the proof for the polynomials Dk.

The polynomials Dk are intermediate expressions to obtain a general pattern for the expressions Ek.
The following lemma required for the next proofs is established by elimination of Dk according to (15).

Lemma 1. For all k ≥ 1 there exists an expression F(k) such that H(F(k)) holds and

Ek =
−(1−2m)

k−3
2

2m(1−m)2 F(k). (27)
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5.2 Polynomials S̃(0,2,n) and S̃(g,r,n)

It remains to prove the following lemma by induction on g, r and n.

Lemma 2. For any g ≥ 0, r > 0 and n ≥ 0 such that (g,r) 6= (0,1) there exists an expression T (g,r,n)
such that H(T (g,r,n)) holds and

S̃(g,r,n) = (1−2m)2g+ 3
2 r+ 1

2 n−3T (g,r,n). (28)

The goal of this section is not to sketch this proof but to explain how it is produced by Maple
code. The proof construction is divided into two cases, because the polynomials S̃(0,2,n) are defined an
equation different from the polynomials S̃(g,r,n) when (g,r) 6= (0,2). The two proof cases are treated
the same way as in Section 5.1.

Let A be the simplified system of equations defining S̃(g,r,n) and obtained from the S system by
the abstraction defined in Section 3 (where the sequences n1, . . . ,nr are abstracted by their sum n and
their length r, some sets of integers are replaced by their cardinality and the sum of their elements, some
multiplicative factors are abstracted by uninterpreted symbols, and indefinite sums are replaced by their
summed term).

The induction hypotheses and lemma 1 are used to replace all the occurrences of polynomials
S̃(. . . , . . . , . . .) and expressions E... in the RHS of the equations in A by their factorized forms. Then
an iterative process considers each monomial in these RHS one by one. For each monomial the simpli-
fication functions of Maple are called to sum up the total power of (1− 2m). This power is divided by
(1−2m)2g+ 3

2 r+ 1
2 n−3 and it is observed whether the result satisfies property H.

5.3 Final remark

There remains a final deductive step from the relaxed proofs to proofs of divisibility by an integral
power of (1− 2m). From Lemma 2 and the fact that S̃(g,r,n) is a polynomial we deduce more about
T (g,r,n) than H(T (g,r,n)), namely that T (g,r,n) is a polynomial when 2g + 3

2 r + 1
2 n−3 is even and is

the product of a polynomial by (1−2m)
1
2 when 2g+ 3

2 r + 1
2 n−3 is odd. A similar argument is required

for the polynomials Dk to complete the mathematical proofs. These final arguments are not supported by
the actual symbolic computations.

6 Discussion

After the coefficients have been guessed from a part of the problem in Section 4, these coefficients
are checked to satisfy the remaining conditions of the problem in Section 5. We could think that it is
possible to remove the checking step by converting the whole problem into a system of inequalities.
This approach of full guessing is attractive but failed during the present experiment, because some of
the generated inequalities are not linear. The resulting problem is to satisfy a first-order formula of
elementary number theory (first-order arithmetic over integers) and we know from Gödel’s theorem [5]
that there is no decision procedure for this theory. We expect that this formula belongs to a decidable
fragment of this theory but we have not identified it yet. This is why the present proof construction is not
fully automated, but only computer-assisted.

Some human decisions are required. The most difficult one was to select the subproblem to submit
to the guessing method. This choice was guided by the layered structure of the recursive definition of
the polynomials Pg. The problem has been successfully divided into smaller sub-problems that have

9
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been solved one after the other. Some remaining non linearities required doing extra assumptions before
finding a solution. Finally nonintegral powers appeared that required relaxing the conjectures. All these
difficulties indicate that the initial problem was difficult.

6.1 Maple code

The conjecture and proof syntheses respectively described in Section 4 and 5 are implemented in the
Maple program abstrac.mpl. They both start from a Maple encoding of the abstract system described
in Section 3. At the present time the abstraction is performed by hand from the equations in [9] but an
automation is planned.

The Maple code produces a trace in a LATEX file. The result of its compilation is presented in Ap-
pendix A. Its first part explains the conjecture guessing process. Its second part contains the synthetized
mathematical proofs by induction. All the equalities and inequalities shown in this trace are Maple ex-
pressions handled by the program to produce subsequent results. Many computed expressions are too
large to be reproduced here. The Maple code writes them in another text file. It is envisaged to extend
the function outputting LATEX with line-breaking in order to fit a document width requested by the user.

6.2 Related work

The problem complexity mainly comes from the indefinite sums in the equalities composing the S system.
We need a theory for reasoning about these indefinite sums. An idea could have been to define these

∑ signs as a special kind of “big operators” specified in [4] for the Coq proof assistant. They indeed
generalize the sum operator (+) of two polynomials of m. The properties required during the proof
search can certainly be found within the rich theory defined in [4]. The advantage of this theory is its
generality, but it is a drawback in the present proof construction, because of the numerous prerequisites
before applying it. We first have to define the ring of polynomials in m. We then have to reduce the
multivariate summations to the univariate ones that are the only ones supported by this package. After
all these preparations, we would have observed that the proof most often uses the lemmas gathered in
the factorization property (11) that has inspired the abstraction of indefinite sums by their summed term
in Section 3.1. Our approach is clearly less general but much lighter.

7 Conclusion

We have experienced constructing the proof of a conjecture of enumerative combinatorics with the help
of a computer algebra system. To our knowledge it is the first strong computer assistance for this kind of
conjectures.

The divisibility of the polynomials Pg by (1−2m)2g−2 has been easily conjectured by human observa-
tion from the first computed explicit values of these polynomials. But the definition of these polynomials
made it much harder to find a proof of this conjecture by hand. The definition is not complex from a
mathematical point of view. Its complexity mainly comes from the indefinite sums in the equalities com-
posing it and from the numerous parameters of the intermediate expressions introduced to decompose
it. Finding a uniform way to treat all these cases is not only a way to reduce the proof search effort,
but is also a key to assist it with a computer. Our proposal is a strong uniformization because the same
factorization property is applied for all the indefinite sums, independently of the number and nature of
the variables they bind.

The symbolic encoding of computations allows many tries to be repeated and many errors to be
avoided. The symbolic computations in the present experiment are performed at the same abstraction
level as the hand-made proof, but with a computer algebra system that avoids many errors and makes

10
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it possible to fix the remaining ones quickly. The code outputs a mathematical proof of the divisibility
property that looks like a proof by induction written by hand, for instance in [9]. The complete code
represents about 700 lines of Maple code.

Many similar conjectures remain open in this research domain, for which the same approach could
be re-used. The abstraction and conjecture synthesis techniques identified and presented here are general
enough to be applied to these other conjectures. It is a part of our future work in collaboration with
combinatoricians.

In a commented version of [2] published on his web site in 2002, Bender concludes Problem 6 (to
provide a general pattern for the generating functions of rooted maps counted by number of edges) by
writing “Arquès and Giorgetti [1] may have done as much as possible”. This claim leaves implicit the
means that can be employed to do more than has already been done. We agree with this claim if these
means are limited to our human brain faculties (in any case mine). But we disagree if the proof search
can be assisted by a computer. The present computer-assisted proof synthesis justifies this disagrement.
It is a first success whose generalization may significantly contribute to the solution of many algebraic
problems in the mathematical field of map enumeration.
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and S. Tahar, editors, TPHOLs, volume 5170 of Lecture Notes in Computer Science, pages 86–101. Springer,
2008.
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A Synthetized mathematical text

The software outputs the following trace, composed of two parts. The first part explains how the conjec-
tures are guessed. The second part sketches mathematical proofs by induction.

A.1 Conjecture synthesis

The goal is to find six coefficients ek, e1, cg, cr, cn and c1 such that there exists three families V (g),
T (g,r,n) and F(k) of elements of Q[m]+ (1−2m)

1
2 Q[m] such that

Ug = (1−2m)2g−2V (g), (29)

S̃(g,r,n) = (1−2m)cgg+crr+cnn+c1T (g,r,n), (30)

Dk = (1−2m)ekk+e1F(k), (31)

Dk =−2m(1−2m)(1−m)2Ek (32)

and the S system hold.

A.1.1 Polynomials Dk

Base cases

Case k = 1
(1−2m)ek+e1F(1) =−1 (33)

gives the constraint
ek + e1 ≤ 0. (34)

Case k = 2
(1−2m)2ek+e1F(2) =−5m(−1+2m) (35)

gives the constraint
2ek + e1 ≤ 1. (36)

Case k = 3
(1−2m)3ek+e1F(3) = 2m(1−2m)(1−m)2 (37)

gives the constraint
3ek + e1 ≤ 1. (38)

Induction step

(1−2m)ekk+e1F(k) =
1
2
(1−2m)2e1+ekk+ek F(i)F(k +1− i) (39)

gives the constraint
0≤ ek + e1. (40)
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Optimization The solution maximizing ek is e1 = −1
2 and ek = 1

2 . With this solution, the hypothesis
for the polynomials Dk is

Dk = (1−2m)
k−1

2 F(k) (41)

Pattern of the rational functions The hypothesis

Ek =−1
2
(1−2m)

k−3
2 F(k)m−1(−1+m)−2 (42)

is obtained by elimination of Dk.

A.1.2 Polynomials Ug

The constraints
2g−2≤ cgg− cg +2cr + c1 (43)

and
2g≤ 3+2cr +2c1 + cgg (44)

have to be satisfied.
A solution is c1 =−3, cg = 2 and cr = 3

2 . The value cn = 1
2 is guessed from the case

S1(1,1) = (−1+m)(−1+2m)(16m3−38m2 +21m−4) (45)

A.2 Proofs by induction

A.2.1 Induction step for the polynomials Dk

After simplification the equality is

F(k) =
1
2

F(i)F(k +1− i) (46)

A.2.2 Case (g,r) = (0,2)

Base case (g,r,n) = (0,2,0)
(1−2m)2cr+c1T (0,2,0) = 1 (47)

gives the constraint
2cr + c1 ≤ 0 (48)

which evaluates to true.

Induction step for (g,r) = (0,2) Let n≥ 1. The induction hypothesis is

S̃(0,2, p) = (1−2m)2cr+cn p+c1T (0,2, p) (49)

for all 0≤ p < n. The three terms in the RHS are considered one by one. The three resulting inequalities

2cr + cnn+ c1 ≤
n+1

2
(50)

2cr + cnn+ c1 ≤
n
2

(51)
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and

2cr + cnn+ c1 ≤ j− 1
2

+
1
2

i+2cr +ncn + cn− icn− jcn + c1 (52)

are satisfied.

A.2.3 Case (g,r) 6= (0,2)

The induction hypothesis is

S̃( j,h, p) = (1−2m)cg j+crh+cn p+c1T ( j,h, p) (53)

with conditions on j, h and p too long to be reproduced here, but suitable for induction.
For term1 the constraint is

0≤ j− 1
2

+
1
2

i+ cn− cni− cn j (54)

which simplifies to

0≤ 1
2

j (55)

For term2 the constraint is
0≤ 1+ i+ cr + c1 + cn− cni (56)

which simplifies to

0≤ 1
2

i (57)

For term3 the constraint is
0≤ k− cg + cr + cn− cnk (58)

which simplifies to

0≤ 1
2

k (59)

For the first part of term4 the constraint is

0≤ k +1− cr +2cn− cnk (60)

which simplifies to

0≤ 1
2

k +
1
2

(61)

For the second part of term4 the constraint is

0≤ k− cr +3cn− cnk (62)

which simplifies to

0≤ 1
2

k (63)

All these constraints are satisfied, and this ends the proof.
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