
Algorithm for Term Linearizations

of Aggregate Queries with Comparisons

Victor Felea1 and Violeta Felea2

1 CS Department, Al.I. Cuza University, Iasi, Romania
felea@infoiasi.ro

2 FEMTO-ST, Franche-Comté University, Besançon, France
violeta.felea@femto-st.fr

Abstract. We consider the problem of rewriting queries based exclu-
sively on views. Both queries and views can contain aggregate functions
and include arithmetic comparisons. To study the equivalence of a query
with its rewriting query, the so called ”linearizations of a query” need to
be computed. To find the linearizations of a query, the linearizations of
terms from the query need to be generated. We propose an algorithm to
find these term linearizations and give a bound for its time-complexity.

1 Introduction

The problem of rewriting queries using views (RQV) is expressed, informally, as
follows: given Q a query over a database schema, and V a set of view definitions,
is it possible to answer the query Q using only the answers to the views from V?
One of the application fields of RQV concerns extracting and gathering informa-
tion on the environment, based on sensor networks. Small inexpensive devices,
namely sensors, communicate information to collecting points, called sinks or
base stations. In this context, of information collection out of several sources
(stored in views), located on sensor nodes, expressing queries using views. In [7],
the authors apply the notions of query interface for data integration to sensor
networks.

In case of finding a query Q′, corresponding to a given query Q, and expressed
by the views from V , such that Q is equivalent to Q′, the problem of (RQV) for
the query Q has a solution. This query Q′ is called a rewriting query of Q.

The equivalence problem of two aggregate queries with comparisons was inves-
tigated in [4], [1], [2], [5]. The equivalence problem of the two queries is achieved
using the equivalence of their reduced queries. A reduced query associated to a
query Q uses the so-called ”linearizations” (or complete ordering) of the set of
all terms from Q.

In [3], query equivalence between view-based query and schema query, using
linearizations, is proven; no linearization computation has been given. This is
the main aim of this work: to propose an algorithm to compute linearizations.
By our best knowledge, an algorithm to obtain all linearizations of terms from
a query has not been proposed in the literature.

S.W. Liddle et al. (Eds.): DEXA 2012, Part II, LNCS 7447, pp. 408–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Algorithm for Term Linearizations of Aggregate Queries with Comparisons 409

In the paper, we consider the problem of generating all linearizations corre-
sponding to a query that uses arithmetic comparisons and aggregate functions;
we consider a motivated example (see section 2) and give an algorithm that com-
putes these linearizations, and its time complexity in section 3.We finally conclude.

2 Motivating Example

Let us give an example about a schema regarding sensor networks used in sta-
tistical applications concerning the weather. The network nodes are organized
in clusters [6], one common architecture used in sensor networks.

Example 1. We assume there exist sensors for the following type of data: hu-
midity, mist and temperature. One sensor can retrieve unique or multiple en-
vironmental data, e.g. temperature and humidity, or only temperature values.
Sensors are placed in several locations, and have an identifier, a type, and they
are grouped by regions. The type of a sensor characterizes the set of data types
that it senses. A location is identified by two coordinates lat, long, where lat is
the latitude and long is the longitude. A region has an identifier and a unique
name. Let us consider the relational schema S consisting of {REG, POINT,
SENSOR, DATA}, where REG represents regions and has idReg as region iden-
tifier, and regName as region name; POINT represents the locations from the
regions, and uses the idReg attribute as the region identifier, and the lat, long
attributes as the coordinates of a location from the region identified by idReg;
SENSOR represents information about sensors with idS the sensor identifier,
lat, long - the sensor coordinates, typeS its type related to the sensing capacity
(e.g. typeS equals 1 for temperature and humidity, 2 for temperature and mist, 3
for humidity and mist, and so on), and chS designs if the sensor is a cluster head
(its value equals 1 or 2). We assume here that the type of the sensors that can
sense temperature equals either 1 or 2; DATA represents the values registered by
sensors, and has the following attributes: idS - the sensor identifier, year, month,
day, period - the date of the sensed information, the daily frequency of sensed
data, expressed in seconds, and temp, humid, mist - the temperature, humidity,
and mist values, respectively.

Let us consider the following views:

V1: Compute all pairs of the form (idReg, regName), where idReg is the region
identifier, and regName is the name of the region identified by idReg, such that
in the region idReg at least a cluster head exists.
V2: Compute the maximum temperature for each region, each network location,
and for every year.

Let us consider the following queries:

Q1: Find the maximum of temperature values for the ”NORTH” region, between
2003 and 2010, considering data sensed only by cluster head sensors.
Q2: Find the maximum temperature corresponding to the ”NORTH” region, on
September 22nd, 2009.

410 V. Felea and V.A. Felea

Example 2. Let us consider the schema, queries, and views from Example 1.
We denote the attributes idReg, regName from REG by x, y1, respectively,
idReg, lat, long from POINT by y2, y3, y4, and idS, lat, long, typeS, chS from
SENSOR by z1, z2, z3, t1, t2, and the attributes from the schema DATA by
z5, z6, z7, z8, z9, t,z11, z12. To be short, we denote by D, R, S, P the relational
symbols DATA, REG, SENSOR, POINT, respectively. Let c1 =”NORTH”,
c2 = 2003 and c3 = 2010. To obtain a condition associated to Q1, we replace
the variables y1, t2 by c1, 1, respectively. Since y2 = x, z2 = y3, z3 = y4, and
z5 = z1, the query Q1 is expressed as the following condition:
Q1 : h(x,max(t))← D(z1, z6, z7, z8, z9, t, z11, z12)∧R(x, c1)∧S(z1, y3, y4, t1, 1)∧
P (x, y3, y4) ∧ C, where C ≡ ((t1 = 1) ∨ (t1 = 2)) ∧ (z6 ≥ c2) ∧ (z6 ≤ c3).

The query Q2, and the views V1, V2 defined in Example 1, have similar ex-
pressions.

3 Term Linearizations of Aggregate Queries

In this section we specify some notions about the term linearizations and give
an algorithm to compute these linearizations constructed by the terms from the
conditions contained in the aggregate query. For other notions, see [3].

Two aggregate queries Q1 and Q2 having identical heads are said equivalent,
if their answers are equal, i.e. Q1(D) = Q2(D), for any database D defined on
Dom. Let fi be the body of Qi. Since each fi is a disjunction of relational atoms
and of an expression constructed from comparison atoms using the conjunction
and the disjunction operators, it can contain comparisons of terms. The compar-
isons of an expression fi induce, in general, a partial order among the constants
and variables of the query. To study the equivalence of two queries, we need to
consider linear orderings such that a given partial ordering of the set of terms is
compatible with a set of linear orderings of the same set of terms.

The set of all terms from a query can be considered as a set of groups, where
all attributes of a group correspond to the same value domain. Let C be a set
of comparison atoms, and t1 < t2 be a comparison atom. We say that C implies
t1 < t2, denoted C |= t1 < t2, if for each substitution τ , the statement (τδ=
true for each δ ∈ C) implies τt1 < τt2. For a comparison atom having the form
t1 = t2 or t1 > t2 the implication relation of a comparison atom from a set of
comparison atoms is similar. Let T be a set of terms (variables or constants)
that are semantically equivalent. A linearization of T is a set of comparisons
L having the terms in T such that for any two different elements t1, t2 from
T , exactly one of the following comparisons: t1 < t2, t2 < t1, or t1 = t2 is
implied by L. If T has t1, . . . , tp as elements, let (t′1, . . . , t′p) be a permutation
of the elements tj , 1 ≤ j ≤ p. Then we can represent a linearization L of T
as t′1ρ1t

′
2ρ2 . . . t

′
p−1ρp−1t

′
p, where the operators ρi are ’<’ or ’=’. We say that a

substitution τ from {t′1, . . . , t′p} into Dom, that preserves constants, satisfies the
linearization L, denoted τ(L) = true, if for each i, 1 ≤ i < p, τt′i = τt′i+1, when
ρi is ’=’, and τt′i < τt′i+1, when ρi is ’<’. We denote by t1 = t2 = . . . = th, the
set of comparisons ti = ti+1 contained in L, for any i, 1 ≤ i < h. Intuitively,

Algorithm for Term Linearizations of Aggregate Queries with Comparisons 411

a linearization is a list of different variables and constants such that between
two elements of the list there exists one of the ’=’ or ’<’ operators. In this
way, a linearization produces a partition of all terms into equivalence classes ; an
equivalence class contains all terms t1, . . . , th such that t1 = t2 = . . . = th.

We say that a set of comparisons C is satisfiable, if there exists a substitution
τ from terms into Dom such that τ satisfies all comparisons from C. We say
that τ satisfies C or τ(C) = true, if τt1 < τt2 if C ≡ t1 < t2, and τt1 = τt2 if
C ≡ t1 = t2. The value of τ(C) is extended naturally to expressions C obtained
from basic comparisons using the conjunction and disjunction operators. We say
that a linearization L of T , and a set of comparisons C are compatible, if L∪C
is satisfiable.

In the following we give a method to obtain all linearizations of T , compatible
with C. Let C be the conjunction of the comparisons tiσit

′
i, i.e. C = (t1σ1t

′
1) ∧

. . . ∧ (thσht
′
h), where the operators σi are relational operators. Let C′ be the

formula obtained from C, by replacing (ti ≤ tj) with (ti < tj) ∨ (ti = tj), and
(ti ≥ tj) with (tj < ti)∨ (ti = tj). Using for the expression C′, the distributivity
of the conjunction versus the disjunction, we obtain a formula C′′ having the
form: C′′ = E1∨E2∨. . .∨Ep (1), where Ej is a conjunction of comparisons of the
form ti < tj or ti = tj . In this disjunction, we take only consistent conjunctions
by eliminating those conjunctions that are inconsistent, i.e. which contain at least
two comparisons of the form: t1 < t2 and t1 = t2, or two comparisons of the form
t1 < t2 and t2 < t1. Let E be an arbitrary conjunction from C′′. Associated to
E, we construct a forest, denoted GE . Firstly, for the set of all comparisons SE

of the form ti = tj from E, we take the transitive and symmetrical closure of SE .
This closure produces a set of equivalence classes Cl1, . . . , Clq. Let us denote by
Term1 = {t1, . . . , tp}, the remainder of the variables and the constants from E.
The forest GE associated to E is defined as follows: its nodes are labeled with
Clj , 1 ≤ j ≤ q and ti, 1 ≤ i ≤ p. Let V ar(C) be the set of variables from C and
Const(C) the set of constants from C.

The edge set N of the forest GE is specified as follows:

- Let t1 and t2 be variables or constants. If t1 < t2 appears in E, and t1 and t2
occur in Term1, then (t1, t2) ∈ N .
- Let Clj be a class and t2 from Term1. If there exists t′ ∈ Clj such that t′ < t2
occurs in E, then (Clj , t2) ∈ N .
- Let t1 be from Term1, and Clh a class. If there exists t′ ∈ Clh such that t1 < t′

occurs in E, then (t1, Clh) ∈ N .
- Let Clj , Clh be two different classes. If there exist the terms t1, t2, where
t1 ∈ Clj and t2 ∈ Clh such that t1 < t2 appears in E, then (Clj , Clh) ∈ N .

Since the labels associated to different nodes contain disjoint sets of terms, we
identify the nodes with their labels. If a class Clj consists of the elements t1, . . .,
ts, we denote it as {t1, . . . , ts} or {t1 = . . . = ts}.

Example 3. Let C ≡ (x1 ≤ x2) ∧ (x2 > x3) ∧ (y1 ≤ x2). The formula corre-
sponding to C has the form: C′ = [(x1 < x2) ∨ ((x1 = x2)] ∧ (x3 < x2) ∧ [(y1 <
x2)∨(y1 = x2)]. The expression C′′ has the form: C′′ = E1∨E2∨E3∨E4, where

412 V. Felea and V.A. Felea

E1 = (x1 < x2)∧ (x3 < x2)∧ (y1 < x2), E2 = (x1 < x2)∧ (x3 < x2)∧ (y1 = x2),
E3 = (x1 = x2)∧ (x3 < x2)∧ (y1 < x2), E4 = (x1 = x2)∧ (x3 < x2)∧ (y1 = x2).

The forests associated to each of the four expressions are given in the following
figure, where nodes are labeled βi.

3.1 A Method to Obtain the Linearizations of C

In this subsection, we specify a method to obtain all linearizations of V ar(C) ∪
Const(C) compatible with C and corresponding to a forest GE associated to an
expression E from C′′. The construction of this set of linearizations will be done
recursively in function of the number of edges from GE .

– The base step: Let GE having zero edges, and β1, . . . , βp its nodes. Let
i1, . . . , ip be a permutation of the indexes 1, 2, . . . , p. Let us denote byML

GE

the set of linearizations defined by GE . For this base step, we take:
ML

GE
= {βi1σ1βi2σ2 . . . βip−1σp−1βip |(i1, . . . , ip) is a permutation of {1, 2,

. . . , p}, σi ∈ {′<′,′ =′}}.
We make the following convention: {t1 = t2 = . . . = ts} = {t′1 = t′2 = . . . =
t′r} becomes: {t1=t2=. . .=ts=t′1=t′2=. . .=t′r}.

– The inductive step: Assume that we have computed the set of linearizations
corresponding to any forest G having at most n edges, where n is a natural
number. Let G be a forest having n+1 edges. Let t0 be an initial node
from G, and γ1, . . . , γk the immediate successors of t0. Let G

′ be the forest
obtained from G by deleting the edges (t0, γj), 1 ≤ j ≤ k, and deleting
the node t0. Since G′ has at most n edges, by induction we have computed
ML

G′ . Using the linearizations of G′, we compute the linearizations for G. Let
L ≡ s1 < s2 < . . . < sm be an element ofML

G′ , where m is the number of the
nodes of G′. An element si contains a set of terms from V ar(C)∪Const(C).
The label γj belongs to a unique si, for each j, 1 ≤ j ≤ k (γj ⊆ si). Let us
denote by ind(j) this natural number i. Let i0 be the minimum of ind(j), for
each j, 1 ≤ j ≤ k. Now, we define a set of linearizations for G corresponding
to L by inserting t0 in L before si0 . Let us denote by Insert(t0, L, l) the
linearizations obtained from L by inserting t0 between the positions l and
l + 1. There are two linearizations in Insert(t0, L, l) in case l ≥ 1, denoted
L1, L2, where L1 ≡ s1 < s2 < . . . < sl < t0 < sl+1 < . . . < sm, and
L2 ≡ s1 < s2 < . . . < {sl = t0} < sl+1 < . . . < sm. If l = 0 the insertion
takes place before s1 and Insert(t0, L, l) consists of one sequence, namely L1,
where L1 ≡ t0 < s1 < s2 < . . . < sm. For the linearization L and the node
t0, we consider the union of the sets Insert(t0, L, l), for each l, 0 ≤ l < i0.
Let us denote this set byM(t0, L).

Algorithm for Term Linearizations of Aggregate Queries with Comparisons 413

Now, we define the set of linearizations corresponding to G as follows: ML
G =

{L′|(∃L)(L ∈ ML
G′) such that L′ ∈M(t0, L)}.

Let Ej be an expression from relation (1), 1 ≤ j ≤ p. Let GEj be the forest
corresponding to Ej . Let ML

GEj
be the set of linearizations computed for the

forest GEj . Let M(C) be the union of the ML
GEj

sets, for each j, 1 ≤ j ≤ p.

Regarding these notations, we have the following results.

Lemma 1. Let E be a consistent conjunction of comparisons of the form ti <
tj or ti = tj. Let L be a linearization compatible with E, and GE the forest
associated to E. Then, we have L ∈ML

GE
.

Proof. Using the induction on the number of the comparisons of the form ’<’
from E (this number is equal to the number of the edges from GE).

Theorem 1. Let L be a linearization of V ar(C)∪Const(C) andM(C) the set
of linearizations computed for C as above. Then, we have: L is compatible with
C iff L ∈ M(C).

Proof. Let L be a linearization fromM(C). There exists an integer j, 1 ≤ j ≤ p
such that L ∈ ML

GEj
. The linearization L can be represented as Cl(t1) < Cl(t2)

< . . . < Cl(tm), where Cl(ti) are equivalence classes corresponding to L, and
ti is an element from that class. A class Cl(ti) consists of a single variable, a
single constant, or a set of terms {t′1, . . . , t′h}, h ≥ 2, and this set contains at
most one constant. The union of the classes Cl(ti) is V ar(C) ∪ Const(C). Let
us define the substitution τ as follows: if Cl(ti) = {t′1, . . . , t′h}, then τt′j = τt′l,
1 ≤ j < l ≤ h. The substitution τ is extended to classes: τCl(tj) = τtj . For two
classes, we take the values for τ such that if Cl(ti) < Cl(tj), then τti < τtj . In
this manner, we have τ(L) is true. Using the method to construct ML

GEj
, we

obtain τ(Ej) is true, hence τ(C) is true. That means L ∪ C is satisfiable.
Conversely, let L be a linearization compatible with C. It results that there

exists an integer j, 1 ≤ j ≤ p such that L is compatible with Ej . Using Lemma
1, we obtain L ∈ ML

GEj
, hence L ∈M(C).

Using Theorem 1, we obtain an algorithm that computes the set of all lineariza-
tions for a conjunction of comparisons.

3.2 Algorithm to Compute Linearizations of M(C)

Firstly, let us denote by LinearizationsComp(G,L) an algorithm that computes
the set L of all linearizations corresponding to the forest G. Let us consider some
notations used in this algorithm. We denote by h the number of levels from G.
The terminal nodes of G are considered on level 1. Let Nj be the set of all nodes
on level j, 1 ≤ j ≤ h. We denote by Lj the set of all linearizations for nodes
situated on the levels l in G, where l ≤ j. We use the notation M(γ, L) for a
set of linearizations obtained by inserting the node γ into a linearization L, as
specified in subsection 3.1. By Lj,l we denote a set of linearizations of nodes

414 V. Felea and V.A. Felea

from G, that is a subset of Lj . The algorithm proceeds level by level, beginning
with the first level.

Algorithm LinearizationsComp (input G, output L)
compute h the number of levels from G
for all j=1 to h do compute Nj , the set of all nodes on level j endfor
compute L1 the set of linearizations for N1 (see base step from Subsection 3.1)
if h=1 then L = L1 exit endif
for all j=2 to h do
Lj = ∅
let Nj = {γ1, . . . , γk}
Lj,0 = Lj−1

for all l=1 to k do
Lj,l = ∅ let Lj,l−1 = {L1, . . . , Lp}
for all s = 1 to p do
computeM(γl, Ls) (see Subsection 3.1)
Lj,l = Lj,l ∪M(γl, Ls)

endfor
endfor
Lj = Lj,h

endfor
L = Lh

Secondly, we specify the computing of the linearizations corresponding to the
expression C that has comparison atoms as base expressions, and is formed of
base atoms using the conjunction or disjunction operators. The expression C
is equivalent to a disjunction of conjunctions, i.e. E ≡ E1 ∨ . . . ∨ Ep. For each
expression Ej , we construct the forest GEj , and call the algorithm Lineariza-
tionsComp with the parameters GEj and Lj . The set of the linearizations for C,
denotedM(C), is the union of all Lj , i.e.M(C) = ∪pj=1Lj .
Example 4. Let us consider Example 2. Let C be the comparison expression from
Q1. Since z6 ≥ c2 is equivalent to (z6 > c2)∨ (z6 = c2), and z6 ≤ c3 is equivalent

to (z6 < c3)∨(z6 = c3), the expressionC is equivalent to C′′ ≡ ∨3
i=1[(t1 = 1)∧Ei]∨3

i=1[(t1 = 2)∧Ei], where E1 ≡ (c2 < z6)∧(z6 < c3), E2 ≡ (c2 < z6)∧(z6 = c3),
E3 ≡ (z6 = c2)∧ (z6 < c3). The expression (z6 = c2)∧ (z6 = c3) is non satisfiable
because all constants are considered different. Concerning the constants c2 and
c3, we assume c2 < c3, otherwise the expression C is not satisfiable. As we
specified in Section 3, we represent a linearization as a set of groups, where a
group is a linearization of all terms corresponding to the same value domain.
For the group {z6, c2, c3}, and the first conjunction from C′′, we obtain one
linearization: c2 < z6 < c3. Hence, to the first conjunction of C′′, we have two
groups denoted g1, g2, where g1 ≡ (t1 = 1), g2 ≡ c2 < z6 < c3. We consider an
order of linearizations as follows: L1 for the first conjunction of C′′, L2 for the
fourth, L3 for the second, L4 for the fifth, L5 for the third, and L6 for the sixth.
Thus, the linearizations Li have the following forms:

Algorithm for Term Linearizations of Aggregate Queries with Comparisons 415

L1 ≡ (t1 = 1, c2 < z6 < c3), L2 ≡ (t1 = 2, c2 < z6 < c3),
L3 ≡ (t1 = 1, z6 = c3), L4 ≡ (t1 = 2, z6 = c3),
L5 ≡ (t1 = 1, z6 = c2) and L6 ≡ (t1 = 2, z6 = c2).

3.3 Complexity Issues

Let us compute the time complexity of algorithm 1. Let G be a forest, with n
nodes and p edges and h its number of levels (corresponding to the depth of
the forest) with h ≤ p + 1. For every level j, 1 ≤ j ≤ h, let Nj be the number

of nodes on level j. We have
∑h

j=1 Nj = n. The set Lj from the algorithm
gives all the linearizations obtained using nodes from levels 1 to j. The number
of terms for each linearization from Lj is lengthj=

∑j
k=1 Nk. Let us denote by

|Lj| the cardinal of the Lj set. We have |L1|=N1! because there is no edge
between the nodes on the first level. For the other levels, we have: |Lj+1| ≤
Nj+1 ∗ lengthj ∗ |Lj|, 1 ≤ j ≤ h− 1.

We obtain |Lh| ≤ Nh∗Nh−1∗ . . .∗N1∗(Nh−1+ . . .+N1)∗ . . .∗(N2+N1)∗N1!.
The set of terms can be grouped in classes, a class contains all terms having

the same value domain. Ifm is the maximum number of elements in these classes,
then m is the number of the forest nodes in the given algorithm.

4 Conclusion

In the paper, we propose an algorithm to compute linearizations and evaluate its
complexity. These are useful in the process of constructing and proving the query
equivalence between query expressed on the database schema and its rewritings
using views. Queries and views considered here contain aggregate functions and
arithmetic comparisons. Future work will focus on the aspects concerning us-
ing linearizations in the problem of queries equivalence when queries and views
contain negations.

References

1. Afrati, F., Li, C., Mitra, P.: Rewriting queries using views in the presence of arith-
metic comparisons. Theoretical Computer Science 368, 88–123 (2006)

2. Cohen, S.: Containment of aggregate queries. ACM SIGMOD 34(1), 77–85 (2005)
3. Cohen, S., Nutt, W., Serebrenik, A.: Rewriting aggregate queries using views. In:

PODS, pp. 155–166 (1999)
4. Cohen, S., Nutt, W., Sagiv, Y.: Deciding equivalences among conjunctive aggregate

queries. Journal of the ACM 54(2), 1–50 (2007)
5. Grumbach, S., Rafanelli, M., Shurin, S.: On the equivalence and rewriting of aggre-

gate queries. Acta Informatica 4(8) (2004)
6. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient Commu-

nication Protocol for Wireless Microsensor Networks. In: 33rd Annual Hawaii Inter-
national Conference on System Sciences (HICSS-33), pp. 3005–3014 (2000)

7. Madden, S., Szewczyk, R., Franklin, M., Culler, D.: Supporting aggregate queries
over ad-hoc wireless sensor networks. In: Proc. of 4th IEEE Workshop on Mobile
Computing Systems and Applications, pp. 49–58 (2002)

	Algorithm for Term Linearizations of Aggregate Queries with Comparisons
	Introduction
	Motivating Example
	Term Linearizations of Aggregate Queries
	A Method to Obtain the Linearizations of C
	Algorithm to Compute Linearizations of M(C)
	Complexity Issues

	Conclusion
	References

