STV 2012 Li, Bourdellés, Acebedo, Botella, Peureux

Experiment on Using Model-Based Testing for Automact Tests
Generation on a Software Radio Protocol

Shuai Li, Michel Bourdellés, Alexandre Acebedo
THALES Communications & Security
160 Boulevard de Valmy
92700 Colombes, France
Telephone: +33 (0)1 46 13 21 65
E-mail: {shuai.li, michel.bourdelles, alexandre laedo}@fr.thalesgroup.com

Julien Botella, Fabien Peureux*
Smartesting R&D Center
18 rue Alain Savary
25000 Besancgon, France
Telephone: +33 (0)3 81 25 53 63
E-mail: {julien.botella, fabien.peureux}@smartesgtioom

Abstract: In this paper we present an industrial experimeport on the use of automatic tests generation
integrated to Model-Based Testing solutions. Waiti¢he different necessary steps to integrateatitematic
tests generation in a model-driven design flow. Thee-study is an embedded software radio protatdL

has been used to model the system with a compdreesatd approach. The experimented automatic tests
generation tool is provided by Smartesting.

Key words: Model-Based Testing; UML; Software Radio; Embeati@ystem; Automatic Tests Generation
1. INTRODUCTION

In this paper we explore software testing for at8afe Radio Protocol (SRP) with models. A SRP is an
embedded system in the telecommunication domai. B&&e become more and more complex through time,
with more and more components interacting to aehibe desired functionalities. Requirements onststem

are growing, as possible scenarios explode, artd/aaf testing is an essential step in the developmisuch
systems. When done manually, this task is time wwitsg. Using Model-Based Testing (MBT) [12] is one
solution to automate the tests.

Previous experiments on MBT use have been apphdddustrial test cases. One such experiment onIHSA
Airborne System object-oriented models is expose6]i. The authors suggest formalizing existingctices in

the industry instead of pushing formal methods istich domains. Test cases are generated from sse-ca
contracts and use-case scenarios, improved byntheduction of contracts. Collaborative projectvéalso
been established in the past in order to develod MBls suitable for the industry. AGEDIS [3] usas UML-
based language to model applications to be testéh an integrated tests generation and execution
environment, experimented on case-studies prowgd@8M, France Telecom and Intrasoft.

In this paper we present an experiment report donaatically generating test suites for a SoftwaediR
Protocol through MBT. The SRP use-case is providedHALES Communications & Security, specialized in
radio equipments. We show how we model the SRP esnmgponent-based model and how we integrate the
Smartesting Certifylt [11] tests generation todbithe SRP’s design.

The rest of the paper is organized as follows.i8e@ details our SRP use-case and its model. dtiose3 we
show how we integrated the Smartesting Certifyll taiith our design method. Experimental results on
generating tests are exposed in section 4. Inasebtiwe evaluate our work and we list the metriigally we
conclude in section 6 with some future works.

2. THE SOFTWARE RADIO PROTOCOL CASE-STUDY

In the following sections the Software Radio Protaystem is first presented. We then show how weehit
in UML.

*Also affiliated with FEMTO-ST Institute - UMR CNR6174, Besancon, France

1/6

STV 2012 Li, Bourdellés, Acebedo, Botella, Peureux

2-1 Software Radio Protocol Application

Software Radio Protocols (SRP) are communicationotggopls embedded in radio equipment. A SRP
development is related to the software design fayethe OSI [13] model. A SRP is composed of onseveral
applications called waveforms. A waveform is congabsf different software components that managerad
channel access technologies, radio protocol antingpuThe waveform design may be separated intersév
functional layers following coarsely the OSI model:

= PHY: Synchronization, data transmission/reception

= LINK: Protocol management

= NET: User packet Handling

The SRP we have experimented with, is used in ahoadnetwork. The protocol uses Time Division
Multiplexing Access (TDMA) [1] as a method to shaecess to the radio channel. In TDMA, time is didd
into several time slots. At each slot, a radio dmasction to perform (e.g. transmit, receive opignoperations).
Verifying that the correct operation is performedeach slot is thus necessary, as well as corget autput
according to input data.

For our work we decided to focus on the MAC iniydr between the PHY and the LINK layers. The MAC
processes the slots and sends instructions tottier tayers. The different internal componentstia MAC
collaborate to provide functionality such as datmsmission/reception, radio resource allocation (IDMA
allocation) and PHY configuration.

2-2 Software Radio Protocol Model

With respect to current software development pecastat THALES Communications & Security [8], theFSR
modeled in UML as a component-based model. Thisanisdised for wrapper code generation.

The layers have been modeled according to a typicdlitecture description approach [5]. The elesénthe
components model are the following:
= Functional Component: A set of functionalities asdrvices that can be connected with other
components sharing its interfaces.
= Port: A component's port is the entry-point forestbomponents. Through a port a component requires
or provides services. A port is typed with an ifdee.
= Interface: An interface regroups operations. Opematare the services and functionalities implement
by the component.
= Data type and Enumeration: Operations have parasidiat are typed.
= Connector: Connects two components through ports.

In the following section, we show how we generatds automatically from the SRP model.
3. INTEGRATING AUTOMATIC TESTS GENERATION

In order to automatically generate tests for th® Sigstem, we have defined a tests generation fibig. flow is
presented in Table 1.

Table 1. Tests Generation Flow

Step Description
S1 Choose data types to abstract from the sourdelmo
S2 Generate the System Under Test model and cariplet
S3 Add constraints in OCL.
S4 Generate the data pool structure and compleft¢hitest inputs.
S5 Generate the tests.
S6 Publish executable tests as C/C++ source.

In the following sections we detail the steps iis flow.
3-1 Data abstraction (S1)

Before generating the System Under Test (SUT) mdbdeluser has to choose the correct data typalsstoact.
Abstracting a data type limits the possible numifetests generated. For example an integer datargy be

2/6

STV 2012 Li, Bourdellés, Acebedo, Botella, Peureux

abstracted as an enumeration of possible intedaesaa byte sequence may be abstracted as aoratidn-
valid sequence.

3-2 A Component-based Model to an Object-Oriented Mdel (S2)

The current component-based model (CBM) cannot ¢el las an input for the Smartesting Certifylt tests
generation tool, which works with classes and imsta to model the SUT. It is necessary to extrdotination
from the original model and represent it in an obriented model (OOM). We use model transformmafid]

to do this. In our work, the output meta-model Wwaglemented as a UML profile [4].

Figure 1 describes the profile we defined for autpat OOM. The elements of this library are thédwing:
= Primitives imported from UML: Boolean, Integer, linlted Natural, and String
= Meta-classes imported from UML: Class, Propertyl Barameter
= ConnectedClass: ConnectedClasses are Ports imi¢fireab model.
= AbstractedDataType: This stereotype is applied topérties of DataTypes and Parameters of
Operations.

«metaclasss «metaclasss «metaclasss
Class Property Parameter

L\ /

«Stereotypes «Stereatypes
ConnectedClass AbstractedDataType

Figure 1. UML Profile for the Object-Oriented SUTohlel

Table 2. Component-Based Model to Smartesting @igjeiented Model Transformation Rules

Rule | CBM (input model) OOM (output model) Additional details

R1 | Datatype, Enumeration| Class, Enumeration

The output Class contains properties typed by the

R2 | Component Class owned Ports.

The ConnectedClass contains a Property typed
R3 | Port ConnectedClass by the Component Class (in the OOM) to whi¢ch
it belongs.

An association exists between a Component
R4 | Component::Port Association Class and any of the ConnectedClasses it owns
as Ports.

A ConnectedClass is composed by Operatipns,
R5 | Interface::Operation ConnectedClass::Operatiba same that are defined by the Interface typing
the original Port.

A ConnectedClass’ Operations’ Parameters afe

R6 | Operation::Parameter AbstractedDatatype stereotyped << AbstractedDatatype>>.

D

Datatypes with Properties are structures in the
R7 | Datatype::Property AbstractedDatatype CBM. A Datatype Class in the OOM has
properties stereotyped << AbstractedDatatype>>.

We use the transformation rules in Table 2 to fans the CBM into an OOM. Instances for Classes and
Associations are created automatically by the foangation. Data type instances need to be addediatigras
they represent values in the model to be usedsamfmuts.

3-3 Adding OCL Constraints (S3)

After the generation and completion of the SUT nhopgestconditions have to be added on operatioasate
provided by ports of a component. A postconditiséscribed using an UML Constraint and is wriftethe
Object Constraint Language (OCL) [9]. Typical pastditions are the values that an operation shaaildrm or a
Boolean if the operation does not have any retalnes(the Boolean indicates the operation’s sudiedisse).
These postconditions thus describe the abstraeviimtof the implemented operations.

3/6

STV 2012 Li, Bourdellés, Acebedo, Botella, Peureux

3-4 Data Pool Generation (S4)
In order to generate test inputs, it is necessapyavide it with test data coming from a data pool

A model-to-text transformation has been developedrder to generate the data pool structure. Tthistsire
takes into account every abstract data type ust#teiSUT model and creates for each:
= A C++ source file: This file contains a class reygrgting the data type. The class has a “getValue
function that returns the correct input used fer tisst, according to an identifier parameter passéd
The returned value can be for example an integan@numeration.
= A C++ header file for the source file.
= An identifier: The parameter used to get the tepui value is called the identifier. For example
“DEFAULT” is an enumeration literal that may idefgtthe kind of sequence that has to be returned.

The only effort needed by the user is to complbte itentifiers and write the “getValue” functione.i what
value should be returned according to the identfassed as a parameter of the function.

3-5 Tests Generation and Execution (S5 & S6)

After generating the SUT model, writing the OCL styaints and writing the data pool, the tests @megated
with Smartesting Certifylt. The tests need to bélighed and related to an activator framework. $@esting
provides publishers to the most popular activatordhe market. In the experiment, the targeted/aitti was
Google C++ Testing Framework [2]. The test scersaai@ generated as C++ source files that are cedhito
the executable tests on the system. One testasiat=d with one system requirement.

4. EXPERIMENTAL RESULTS

Tests generation has been experimented on threparmnts in the MAC. Figure 2 shows the MAC modeal an
these components’ position in the MAC.

I s

5 e 1] + bt tif
+ i n
TDMAManagenent F‘ — | >

+ dlocChTAOutzmi: MACPERTransenitter (1] + eomateons: Commueaoreteommeane (1] [— 1

+ SlncCERxOukpn: MACRDL Recaiver (1]

+ losRagsiry: AlocatiorRegstry 117 [] 17 + docRegistry: Alacaiorfgsiry 11]
+ TR Telpne: MACPTY Trarmmitter 1]
& emARAIrpat MACDLRecsivss £1]
- + slaneystry! Scinsgsty (1]
s e e & emATxOuRE: MACROUTrarssnittes 11]
+ conelFelngd; MACPDUTrirsrrithes 741
+ bk ot BrokastCrerveibenger 1] ["+ SictSmitehing i
[E + ralrk: RLCPOLRecsiver (1] + flowRegistry: AaRegstry [1]
+ reighbushoodOts: Meighbarhoodserver [1] SO FP0 S M]
+ flawts; FiowObserver [1] EIREEby Sty
| + rarat: w1y [A—————L 1
oo m
Sl ot Swi t chi ng e >
) B FOutant: Sofecsiver [1]
+ seniceTots: SolTaniserves (1]
+ sloflayairy; SaRegatry [1]
] + oeghborhoadDis: Neghrhoadsere 1] + sl Carfig.raer: SolCerfigueetar [1] []——[]
TR I] + vamesunouns: Saseve 11
+ slekTopOts: Sel Topkserves (1] + traMeSit Tessts : S TopOmerve (1]
+ bkt Dy 1 {
[+ IS Tralfics at 1]]
+ MRty Rowflagatey 11]
. + NwOs: amOnserves (1] + ridipt: SR 11]
Traf fi cSl ot Managenent >
L_r: o gy SeTs: STt (1
L—rl + oot m
+ bkt DwelTransaitte 1]

iT T + bk TrafficSeR Trardenitter (1]

Figure 2. Experimented Components in the MAC

4/6

STV 2012 Li, Bourdellés, Acebedo, Botella, Peureux

The Sl ot Swi t chi ng component plays a switch role. It receives astirgpsiot time. According to the action
to perform at that time, it will delegate operatdn other components in the MAC. The kinds ofsi¢lsat have
been automatically generated are port activatietsid.e. if a certain kind of slot is receivedatsmission,
reception or ignore), it will activate certain pohut never others.

The TDMAMAnagenent component is a register component. It stores tAMA structure that indicates the
action to perform at each slot time. Tests on treect data return and update are generated.

Finally the Traffi cSl ot Managenent component is a state machine. This component ettcute
operations and activate certain ports accordiritptourrent state and its previous states.

Figure 3 shows thé&l ot Swi t chi ng component’s transformation into its representationthe SUT model
(S2). Datatype instances (S2) and postconditio®Gh (S3) are added to the SUT model.

+ shotSwitching: SictSwitching
[shiagutry |
+ topobs: TopCbserver Ej—
{] + slotRegistry: SotRegistry - !
& s
EX=r
+ rxlnput: OwellReceiver E} I I
R2:| Conponent t0 dlass
+ serviceSlotRxOutput: SlotReceiver . [5
+ serviceSlotTopObs: SlatTopObserver
— &
+ sintConfigurator: SlokCorfigurstor |:_P
R3: Port to Connectedd ass & Assodiation

+ ErafficSlotRocoutput: SlotReceiver
+ trafficSios TopObs: SlokTopObserver

Figure 3. SlotSwitching Component TransformatianfrRules in Table 2

Between 32 and 54 tests have been generated fbroemeponent. The test scenarios generated fronettie
model were executed (S6) on a Linux-based platiasma complement of the software integration on. hidse
generated tests use the wrapper code generatedifeo@BM to execute.

5. EVALUATION OF THE AUTOMATIC TESTS GENERATION FLO W

We have used the following metrics to evaluate élxigeriment’s results:
= (M1) Capacity to model system requirements (stgpaces explosion, data value expressivity
capabilities)
= (M2) Consistency of generated tests
= (M3) Effort needed to concretize and execute testthe developed application

For M1, as requirements are expressed as contrite® access in the underlying SUT, only a sub$¢he
system requirements on software can be verified.eample requirements on complex exchanges ofiptault
radio equipments, mixing watch dogs and data vadsesrtions, are particularly awkward to expreghénSUT
model. Due to state space explosion, the righetfido be tuned between abstraction level andesgivity is
tedious to define.

For M2, inconsistencies between manually writtestsdeand generated tests were effectively detedted.
particular a same requirement was interpretedréiffidy by a manual test approach and the autorgatieration
approach. This induced in two tests that had differimplemented functional behaviors for the same
requirement.

For M3, OCL was used to model system behavior. @hierts the language from its initial use on cdindis

capturing. An adapted behavior modeling languagg @&LF [7], or preferably graphical activity diagns) is
better suited for an industrial usage.

5/6

STV 2012 Li, Bourdellés, Acebedo, Botella, Peureux

In conclusion of our evaluation of MBT applied tcSaftware Radio Protocol using Smartesting Cettifyle
state the following: MBT is the appropriate linktlween formal verification and software integratizalidation
by manual tests. Automatic tests generation is sesea complement of manual tests related to regeinés.
Moreover automatic tests generation provides c@eeiaformation for building the SUT specifications.

6. CONCLUSION

In this paper we have described our experimentpphyang an automatic tests generation tool, throMdir, on
a Software Radio Protocol design at THALES Commatiins & Security.

The radio protocol has been modeled as an UML compisbased model. A tests generation flow has been
established to integrate the Smartesting Certifglil to the current design flow. The developed nhode
transformations for the flow have been describedally practical experiments on automatic testsegation
with the Smartesting tools have been presentedvanitave evaluated of this approach.

Using the MBT approach we are currently able toegaete functional tests based on the control flowthef
application. Further works have to concentrate lom tise of test generation pillars, which offer sihass
determination on a range of input data for thestesbr example we would like tools to indicate thaange of
data will always follow the same path of controlimgs, and thus test several values for this rarfggata to
validate the path.

7. ACKNOWLEDGEMENTS

This work is performed in the framework of the ITRAfunded project VERDE (http://www.itea-verde.org)
The views expressed in this document do not nedbssepresent the views of the complete consortitine
community is not liable for any use that may be enafithe information contained herein. The autheosid
like to thank Patrick Kolodziejczyk for his help tiis experiment.

8. REFERENCES

[1] T. S. Chan: Time-Division Multiple Accessiandbook of Computer Network®ohn Wiley & Sons, pp. 769-
778, 2011

[2] Google: Google C++ Testing Framework; http:deaoogle.com/p/googletest/

[3] A. Hartman, K. Nagin: The AGEDIS Tools for Mddgased TestingACM SIGSOFT Software Engineering
Notes vol. 29, 1. 4, pp. 129, 2004.

[4] M. Kandé, A. Strohmeier: Towards a UML Profflar Software Architecture DescriptiondML 2000 - The
Unified Modeling LanguageSpringer Berlin Heidelberg, pp. 513-527, 2000

[5] N. Medvidovic and R. N. Taylor: A classificatioand comparison framework for software architectur
description languaget£EE Transactions on Software Engineetingl. 26, 3. 1, pp. 70-93, 2000

[6] C. Nebut, F. Fleurey, Y. Le Traon, and J.-Mzelguel: Automatic Test Generation: A Use Case Drive
Approach;|EEE Transactions on Software Engineetimgl. 32, . 3, pp. 140-155, 2006

[7] OMG: ALF Specification; http://www.omg.org/sp@d F/1.0/Beta2/PDF/, 2010

[8] OMG: CORBA Component Model Specification; httpaww.omg.org/spec/CCM/4.0/PDF/, 2006

[9] OMG: Object Constraint Language Specificatibttp://www.omg.org/spec/OCL/2.3.1/PDF, 2012

[10] S. Sendall and W. Kozaczynski: Model Transfation: The Heart and Soul of Model-Driven Software
Development|EEE Softwargvol. 20, . 5, pp. 42-45, 2003

[11] Smartesting: Smartesting; http://www.smartggitom/index.php/cms/en/home

[12] M. Utting and B. Legeard: Practical Model-BdsSkesting: A Tools Approach; Elsevier, 2007

[13] H. Zimmermann: OSI Reference Model - The ISOoddl of Architecture for Open Systems
InterconnectionlEEE Transactions on Communicationsl. 28, 1. 4, pp. 425-432, 1980

6/6

