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We have measured sub-shot-noise quantum correlations of spatial fluctuations in the far field
image of the parametric fluorescence created in a type I BBO non linear crystal, either between
opposite angular sectors (non degenerate configuration) or between opposite pixels (degenerate
configuration). Imaging is performed at very low light level (0.2 photons per pixel) with an electron
multiplying CCD camera, resulting in purely spatial coincidences between single photons when
detecting on pixels. Experimental results overcome the standard quantum limit shot noise level
without subtraction of the variance of the detection noise. We compare these experimental results
with numerical results given by the quantum Green’s function method, which is proved to have

strong advantages over stochastic simulations.

PACS numbers: 42.50.Ar, 42.50.Dv, 42.50.Lc, 42.65.Lm

I. INTRODUCTION

Spontaneous down conversion (SPDC) occurs in a non-
linear crystal when a pump photon splits in a pair of
signal and idler photons. Even if the number of pairs
fluctuates, this relation is exact in the sense that, in the
absence of input light at the signal and idler frequency,
the difference between the signal and idler output photon
numbers is zero in an ideal experiment. Heidmann et al.
[1] showed that the spectrum of temporal fluctuations
of the intensity difference between spatially monomode
twin beams is below the standard shot noise level. Actu-
ally, the beams are entangled: the phases of the beams
are also correlated at the quantum level, as shown by ho-
modyne detection. If the two detectors do not intercept
the whole beams, the correlation is reduced because for
some pairs one photon is detected while the other is not
intercepted. Because ”intercepted” can be replaced by
”detected” in the previous sentence, such insufficient size
of a detector is exactly equivalent to a reduction of the
quantum efficiency.

The situation is different for a strongly spatially mul-
timode beam issued from a traveling wave amplifier:
Brambilla et al. showed theoretically [2] that, for unity
quantum efficiency, the variance of the signal-idler pho-
ton number difference goes to zero if the pixel size is
much greater than the coherence area. These results
were numerically confirmed either by stochastic simula-
tions corresponding to Wigner formalism [3] or by us-
ing the quantum Green’s function method [4]. Indeed,
Boyer et al. studied temporal fluctuations of spatially
broad-band twin beams obtained by four-wave mixing
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in a hot atomic vapor and showed that part of the
beams larger than the coherence area exhibit sub-shot-
noise intensity-differences [5], as well as entanglement [6],
if detected with local oscillators shaped as the beams.
These experiments demonstrated temporal entanglement
of ”subbeams” but did not consider fluctuation of spa-
tial variables, like position or angle. Entanglement of
such variables for beams [7] was demonstrated by com-
bining TEM0O beams with a vacuum squeezed TEMO01
beam and homodyne detection of temporal fluctuations
[8]. On the other hand, Boyd et al. [9] demonstrated spa-
tial entanglement of photon pairs in an image by varying
the position of detectors in both the near and the far-
field and recording temporal coincidences. Other spatial
properties of twin photons have been extensively stud-
ied in the group of Boston [10] by recording temporal
coincidences.

Though dealing with spatial aspects of multimode
beams, all the experiments in the above references were
devoted to the characterization of temporal fluctuations
or temporal coincidences. However, patterns in an image
are pure spatial information, without any time aspect,
which are ultimately degraded by spatial fluctuations of
quantum origin for very weak images [11]. Jedrkiewicz
et al. [12] performed the first experimental demonstra-
tion of sub shot-noise behavior of spatial fluctuations of
the signal-idler difference. They imaged SPDC issued
from a type II BBO crystal onto a back illuminated CCD
camera and showed that the value of the variance of the
difference between signal-idler intensities on opposite pix-
els is below the shot noise level. However, this result was
obtained by subtracting the variance of the readout noise,
i.e. about 100 squared photoelectrons, from a measured
variance of 110 squared photoelectrons. With a conven-
tional CCD, diminishing the relative weight of the de-
tection noise requires the acquisition of more intense im-



ages and convincing results have been recently obtained
without subtraction of the background noise [13], for in-
tensities around 600 photons per pixel and a pump pulse
duration in the ns range, in order to avoid excess noise
due to the thermal character of SPDC [14].

We chose the opposite direction for obtaining sub-shot-
noise correlations, without subtraction of the variance
of the detector noise, by detecting single photons in low
light level images with an electron multiplying CCD cam-
era (EMCCD). In such cameras, the readout noise is ren-
dered negligible by adding a register where the photoelec-
trons are multiplied before reading. Hence even a unique
photon gives a signal that emerges from the read-out
floor. However, the gain is stochastic, as in an avalanche
photodiode, and it is not possible to assign a precise num-
ber of photons to each value of the output signal.It can
be demonstrated [15] that dividing the output signal by
the mean gain results in adding a Poisson detection noise
having the same amplitude as the standard photon noise.
This excess noise prevents any attempt to detect sub-
shot noise correlations, at least without subtraction of
the variance of the detection noise. On the other hand,
detection of single photons by thresholding adds in prin-
ciple no noise for high gain, even stochastic, and very
low light level images. In practice, false detections oc-
cur, whose number can be minimized [16] by choosing an
appropriate fluence (about 0.15 photon/pixel with our
camera) and by adjusting the threshold. In these condi-
tions, the variance of the detection noise is much smaller
than the mean fluence and detection of sub-shot noise
correlations becomes possible. We first studied [17] type
I broad-band non-degenerate SPDC, and showed corre-
lations between angular sectors, then added an interfer-
ential filter to obtain SPDC around degeneracy, in order
to obtain correlations between opposite pixels [18]. We
proved in this latter case spatial coincidences between in-
dividual photons. The aim of this paper is to present in
more details these experimental results, especially those
in the degeneracy configuration, and to add a discus-
sion of the numerical methods that allow a comparison.
In particular, we will show that usual stochastic simu-
lations, based on the Wigner formalism, are not feasible
in practice for intensities of the order of tenths of pho-
tons per pixel, while the Green’s function method can be
rendered less computational expensive than expected at
a first sight. The paper is organized as follows. Section
2 deals with experimental results at degeneracy, while
section 3 treats the broad-band configuration. Section 4
is devoted to numerical simulations and Section 5 con-
cludes.

II. MEASUREMENT OF SUB-SHOT-NOISE
CORRELATIONS BETWEEN PIXELS

The experimental setup is sketched in Fig.1. The pump
pulse provided by the fourth harmonic (0.93 ps duration
at 263.8 nm) of a Q-switched mode-locked Nd:Glass laser

(Twinkle laser by Light Conversion Inc.) at a repeti-
tion rate of 33 Hz, illuminated a type I 7 x 7 x 4 mm?
beta-barium-borate (BBO) nonlinear crystal. The far
field image of the parametric fluorescence was formed in
the focal plane of a lens by a back-illuminated EMCCD
camera from Andor technology, (model iXon+ DU897-
ECS-BV) with a quantum efficiency greater than 90 %
in the visible range. The detector area is formed by 512
x 512 pixels, with a pixel size of 16 x 16 um?. We used
a readout rate of 10 MHz at 14 bit and the camera was
cooled at —85°C. The exposure time was 33 ms and
the EM gain was set to 1000. In these conditions, the
read-out noise has a standard deviation of 46 electrons
and the level of clock induced noise, i.e. generation of
spurious electrons during the transfer, is of the order of
4 x 1073e~ /pizel. A threshold set to 2.8 read-out noise
standard deviations allows the number of false detections
to be minimized [16]. To eliminate the residual UV, two
dichroic filters with a nominal transmission of 95% at
527 nm were placed after the BBO crystal. To obtain
degenerate parametric fluorescence, an interferential fil-
ter (IF)was placed after the dichroics, with a quantum
efficiency greater than 90 % over a bandwidth of 20 nm,
while broadband fluorescence was obtained simply by re-
moving this filter. All the trajectory of the light after the
dichroics and the filter was enclosed in a tube in order to
avoid parasitic reflections. The energy of the 263.75 nm
pump pulse was measured to 106 +38nJ. The total quan-
tum efficiency is the product of the quantum efficiency of
the EMCCD by the transmission of the optical elements
after the crystal:

Ttot = NCCD X Topt X N = 0.9 x 0.68 x 0.9 = 0.55 (1)

Ncep is given by the manufacturer and 7., was mea-
sured. In particular, a transmission by the two dichroic
filters of 80 % has been measured.
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FIG. 1: experimental setup

Measurements at degeneracy were performed for a
crystal orientation corresponding to collinear phase-
matching. Fig. 2 shows a sum of 50 single shot images of
parametric fluorescence recorded by the EMCCD. Unlike
in a single image,the fluorescence disk is clearly visible.
The mean level in the disk for one image, about 0.20 pho-
ton per pixel, has been chosen in order to minimize the
number of false detections [16].
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FIG. 2: Sum of 50 experimental images. The white circle
delimits the area where the statistic is performed

We have measured the difference between the number
of photons in opposite pixels, which should go to zero
for a perfect detector, perfect degeneracy and negligible
diffraction, i.e. for a coherence area much smaller than
the pixel size [4]. This last condition is fulfilled here be-
cause of the wide illumination of the crystal : the mea-
sured pump width on the crystal (FWHM) is 3.2 mm.
For pure spontaneous down conversion with negligible
further amplification and a pump beam area smaller than
the crystal section (7 x 7mm? here), the down-converted
beam has the same intensity profile as the pump beam.
The width of the coherence area in the far field, 0.07 mrd
(FWHM), is proportional to the inverse of the width of
this beam [19] and is much smaller than the 0.32 mrd lat-
eral size of the CCD pixel. Moreover the mean number of
photons for one spatio-temporal mode is less than 1072,
resulting in theoretical Bose-Einstein photon distribution
[20] that is undistinguishable from a Poisson distribution.
Indeed, the number of amplified temporal modes is ap-
proximately 40 [19] and the number of amplified spatial
modes on a pixel is of the order of (0.32/0.07)? ~ 20. To
take into account the non uniform level of the electronic
background over the detector area, this background is
measured in darkness and subtracted from the SPDC
images in the form of a mean square plane. Then, a
thresholding procedure is applied on each image, in or-
der to decide whether there is one or zero photoelectron
on each pixel [16]. Note that it is not possible to dis-
tinguish the (rare) cases where two photoelectrons are
present on one pixel. The variance of the difference be-
tween opposite pixels is then computed inside a circle
containing N pixels where the level of SPDC is approxi-
mately constant. The center of this circle is determined

by minimizing the variance of the difference

N/2
2 1 ! 4 )2 2
Udiff = N/2 Z(nz _an’L) ( )

i=1

with a numbering of the pixels ensuring that indices ¢ an
N — i correspond to opposite pixels. The center deter-
mination must be performed with precision[14], at best
with a resolution of half a pixel in order to keep the ac-
tual pixels with, in case, a unused crux : see Fig. 3. After
this centering has been performed with physical pixels,
statistics can be calculated using square blocks of pixels,
called binned pixels.
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FIG. 3: centering for a 2 x 2 binning. Left : the best center
corresponds to the center of a physical pixel. Right : the best
center corresponds to the corner between four physical pixels.

It should be noted that subpixel centering algorithms
exist [21] [22] and have been employed with good results
in [13] but we have not used them in the presented re-
sults, in order to conserve a measurement of either zero
or one photon per physical pixel. We have nevertheless
verified that improvements of results provided by these
methods do exist for our experimental results, but are
weak because of the predominence of quantum noise in
our low flux regime.

For perfect detection, sub-shot-noise correlations ex-
ist if O'giff is smaller than twice the mean n,,., =

+ Zi\; 1 (n;). However the measured variance of the pho-
ton number appears to be smaller than the mean photon
number, while the equality is expected for a Poisson dis-
tribution. This phenomenon can be easily explained by
taking into account the cases where two photoelectrons
or more are accumulated in the same pixel. If p is the
true mean number of photoelectrons accumulated in one
pixel, a thresholding procedure would give, in the absence
of false detections, a measured mean m given by

m=1-p(0) =1—exp(—p) 3)

where p(0) is the probability of detecting no photoelec-
tron. The first equality expresses the fact that the thresh-
olding procedure is unable to distinguish between one
and more photoelectrons on one pixel, while the second



equality reflects the Poisson distribution of photoelec-
trons. With the same hypotheses, the measured variance
o? is given by

0% =m’p(0) + (1 = m)*(1 = p(0)) =m(1 —m) (4)

Hence, the measured variance is smaller than the mea-
sured mean, because of the binary detection. On the
other hand, the variance of the difference is affected in
the same way as the variance by this effect. To cancel this
artefact, the criterion for the detection of sub-shot-noise
correlations becomes :

Odiss
A <9 5
m(l—m) ~ (5)
Hence, the measured ratio Uﬁi T / Nmoy Must be multiplied
by a correction coefficient ¢ = 1/(1 — Nypey) in order to
be compared to the shot noise limit (SNL). If binned
pixels are used, ¢ must be estimated before binning, since
thresholding is performed on the physical pixels.
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FIG. 4: Experimental results. Each point corresponds to a

single shot measurement. (a): no binning. (b): 2 X 2 binning

Fig. 4 presents the measured ratios on 50 images, ei-
ther without binning and with 4848 physical pixels in the

statistics area or for 1212 blocks of 2 x 2 pixels. In the
absence of binning, the corrected ratios r are almost ex-
actly equal to the ratios of the variances r’ = O’Ziff/dz,
meaning that the classical noise is negligible, while the
corrected ratios are slightly different from the variance
ratios for 2 x 2 binning, because of the smaller number
of samples. In both cases, these ratios are clearly in the
quantum regime. At 95% of confidence the results on
individual images are :

o2
ro=cx -2 — 1944008 (6)
Nimoy
05
= - 1.9440.08 (7)
o

S

for physical pixels and

0'2-
ro=ex 21— 1824018 (8)
Nimoy
Taifs
o=l = 1834016 (9)

S

for blocks of 2 x 2 pixels. In this latter case, the disper-
sion is doubled, because the number of pixels has been
divided by 4. While the limits of the confidence interval
for individual images attain the SNL, the averages of the
estimators on the 50 images are well below the SNL:

cr> =194+ 2% 1 oit 001 (10)

V50

<r'> =194+ 0.08 =1.944+0.01

V50

for physical pixels and

0.18
<r> =182+ —— =1.824+0.02 (11)
V50
. 0.18
<r'> =183+ — =1.83+0.02 (12)

V50

for blocks of 2 x 2 pixels.

To conclude this section, we have demonstrated pure
spatial quantum correlations between opposite pixels of
different sizes. For the smallest size, corresponding to
the physical pixels, this correlation corresponds to spa-
tial coincidences between individual photons, because the
number of photons per pixel is either one or zero. How-
ever, though diffraction is negligible even for this pixel
size, correlations are reduced because of imperfect cen-
tering, non perfect degeneracy and detector errors, as it
will be shown in section 4. The best results have been
obtained by grouping the pixels in 2 x 2 blocks.
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FIG. 5: Sum of 58 experimental images in pass-band configu-
ration. The white circles delimit the area where the statistic
is performed.

III. MEASUREMENT OF SUB-SHOT-NOISE
CORRELATIONS BETWEEN ANGULAR
SECTORS

We now describe results obtained without chromatic
filtering for a crystal orientation corresponding to non-
collinear phase matching. Fig. 5 shows a sum of 58
single shot images in this configuration. For non degen-
erate wavelengths, the idler and signal fluorescence form
rings of different diameter and the rings corresponding
to different wavelengths add incoherently in the image.
However, because of momentum conservation, each pair
of twin photons emitted in the SPDC process, although
not equidistant from the center of the pattern, lies along
a diameter line, as shown in Fig. 6.

The SPDC image is divided in S=90 angular sectors
and a number of photons n; is determined in the intersec-
tion of each of these sectors with a ring encompassing the
greatest part of the multimode SPDC. The center of this
ring is determined in order to obtain the most regular
distribution of light between sectors on the sum image.
Note that only the pump beam experiences walk-off: the
center of the SPDC ring does not correspond to the center
of the pump beam, with no practical consequences since
this pump beam is not detected. The size of a sector,
240 pixels, results from a compromise between effects of
diffraction and not perfect centering, that are more sen-
sitive for small sectors, and of the other classical noises
(e.g. deterministic residual aberrations, see below) that
predominate if the number of photons in a sector is too
large. The symmetrical sector-pair correlation is eval-
uated by estimating the ratios r and r’ defined in the

> > >

K K
:

(a) Phase matching condition

Idler photon Idler photon

v v
/o o

Signal photon Signal photon
(b) Opposite angular sectors

Degeneracy Outside degeneracy

FIG. 6: a) Non collinear phase matching :;p,m wave vectors
of respectively pump, signal, idler. (b) Correlation between
angular sectors. For non collinear phase matching, idler and
signal form rings of different diameters.

preceding section. Fig.7 shows the experimental results
for 58 single shot images with a mean comprised between
0.1 and 0.25 photon/pixel : each point corresponds to a
single shot measurement with a statistics performed over
the 90 sectors. Results can be summarized for the whole
set of images as:
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FIG. 7: Experimental results : each point corresponds to a

single shot measurement.

o2 o2
=2 1854078, ' = % = 1.75 £ 0.50(13)

Moy s

For both values, the uncertainty range is centered on the
average T or 7/ of the coefficients of the 58 images and the
range width, i.e. £2 standard deviations of these 58 coef-
ficients, gives a confidence of 95% for gaussian measure-
ment errors. The dispersion of the measurements of r is
mainly due to the measurement of 031- 7¢ on a limited set



of 90 pairs of sectors, giving a theoretical standard devi-
ation for gaussian statistics oyar = (2/90)'/%07; ;, hence
a standard deviation on 7, by neglecting the much smaller
uncertainty on m: o, = (2/90)'/2r, i.e a theoretical un-
certainty range of £0.45. The other important source of
dispersion of r comes from the fluctuations of the mean
photon number from an image to another due to the fluc-
tuations of the pump energy. Though some measurement
values on individual images are greater than 2, in accor-
dance with the uncertainty range of Eq.13, the mean co-
efficients for the 58 images are significantly smaller than
2:

0.78
<r> =185+ —— =1854+0.10  (14)

V58

0.50
<r'> =183+ - =183+0.07  (15)
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FIG. 8: (a) intensity (in sum of gray levels/sector) of the sum
image versus the angular position of the sector. (b) Variance
of the difference between sectors versus their angular separa-
tion.

We show in Fig.8b the evolution of the variance of
the photon number difference between two non opposite

sectors, versus their angular separation « :

S/2
2 — / 4 2 16
Odiff,a = mz (n; — nz+%) (16)

=1

This variance increases when increasing «, because of
some residual deterministic aberrations which are evi-
denced on Fig.8a, and falls abruptly for opposite sectors,
because of quantum correlations. Nevertheless, these de-
terministic aberrations deteriorate the quantum correla-
tions. An other deterioration comes from non collinear
phase matching, in the cases where the signal ring is in-
cluded in the detection area while the idler ring lies out-
side this area. If the detection was perfect, such situa-
tion could be avoided by extending the outer diameter
of the detection ring. However, in practice, experimen-
tal results are worse because of the contribution of the
detector noise in the low intensity part of this area.The
other effects which deteriorate the theoretically perfect
quantum correlations are detailed in the next section.

IV. NUMERICAL SIMULATIONS

A. Stochastic simulations

In the linear approximation, one can show that the
Wigner distribution of the output field can be simulated
by integrating the classical propagation equations start-
ing from a stochastic field which has the phase-space dis-
tribution determined by the input field Wigner function.
By averaging a great number of such simulations, one
determines the expectation values of symmetrized opera-
tors. However, quantities measured in an experiment do
not correspond to symmetrized operators but rather to
normal ordering, so that correction terms must be added
to the averages. First, the expectation of the photon
number in pixel 7 is given by

ot " 1
<a;aF> = <aFaF>stoch - 5 (17)

Similarly, the normally ordered photon number vari-
ance is obtained by subtracting i to the stochastic vari-
ance.

To perform the Monte-Carlo numerical simulations, we
proceed with the following steps [4]:

- For each temporal mode, we generate the stochas-
tic input field with the appropriate phase-probability
distribution corresponding to the vacuum field in the
Wigner representation, i.e. for each pixel Gaussian white
noise with zero mean and a random phase, such that
<O‘;‘O‘?>stoch = %

- The propagation of the stochastic field is then eval-
uated by integrating classical propagation equations,
which are solved with a split-step algorithm.

- The fluences for each temporal mode are added at
the output to obtain results corresponding to a single
trajectory.



- The expectations of the symmetrically ordered oper-
ators are estimated by averaging the results over a great
number of trajectories.

- All the expectation values in the normal ordering are
finally obtained from these stochastic averages by apply-
ing the appropriate corrections.

The duration of a temporal mode is roughly equal to
the inverse of the bandwidth of the SPDC, resulting for
a pump pulse duration of 1ps in approximately a tem-
poral mode per nm of bandwidth, i.e approximately 20
temporal modes for a bandwidth limited by the inter-
ferential filter, or 40 temporal modes in the broadband
SPDC configuration (the other modes give light outside
the statistics area). Each temporal mode must be sim-
ulated with its proper couple of wavelengths. The final
fluence of the order of 0.15 photons/pixel is thus obtained
by subtracting 40 x % =20 photons/pixel from the aver-
aged output. The variance o7, fore Of this fluence before
corrections, obtained as the average of IV trajectories,
has a mean of the order 40 x % = 10 photons? /pixel and
obeys a gaussian statistics (x? law with 40N degrees of
freedom) and with a variance o, fore/N. Hence, if the
physical variance, i.e the variance after corrections, is of
the order of 0.15, a huge number of trajectories must be
averaged to determinate o2, ¢ With a precision at 95% of
confidence of, say, 10% :

2
0.4 0'2 .
el — (0.050%)% = N = ( ”ef"’”e> ~ 1.8 x 10°

N 0.0502

(18)

This number has to be multiplied by the number of

temporal modes. To conclude this subsection, stochastic

simulations need a non acceptable huge number of runs

to give a good precision, because of the low light level in

the output image, resulting in a too high difference be-

tween the fluences in the corrected and the non corrected
images.

B. Green’s function method

In the undepleted pump approximation, equations of
parametric amplification are linear and the output field
on the pixel ¥ can be described as the sum of contribu-
tions from all the pixels 71, multiplied by Green’s func-
tion G (7,71). To take into account the non commuting
character of the fields in their quantum description, two
Green’s functions G (7,77) and H (¥,71) must be intro-
duced [23]. Their numerical values are computed using
a delta function successively on both quadratures corre-
sponding either to a maximum amplification or a maxi-
mum deamplification as an initial condition in the classi-
cal propagation equation. The output quadrature fields
obtained through the numerical propagation of this delta-
like input functions are directly proportional to linear
combinations of the Green’s functions. It is then easy to
deduce the actual value of G and H after the numerical

propagation of a delta function centered at each point of
the transverse plane. To summarize the anterior work [4],
the Green’s functions H and G can be numerically com-
puted as linear combinations of output fields obtained
by propagation of delta function input fields. The prop-
agation of these input fields must be computed for each
position in the output crystal plane and for both input
quadratures. The knowledge of these Green’s functions
allows us to compute all the output covariance functions.

To describe the experiment, the number and the size
of the pixels in the simulation must correspond to the
actual CCD sensor. At a first glance, it means that we
have to calculate G and H Green’s functions for 2 x 5122
input delta functions, giving for one input pixel (2 delta
functions, one per quadrature) 2 x 5122 output values
(2 Green’s functions G and H). This scheme seems not
practicable, because of the half a million simulations and
the 10! output values. However, symmetries and neg-
ligible terms allow a considerable reduction of the com-
putations. For example, an angular sector includes 240
pixels. To calculate O’?h 7 characterizing this sector, sim-
ulations must be performed for input Diracs on the pixels
of the sector plus a border 2 pixels wide, to take into ac-
count diffraction, and for input Diracs on an opposite
area of the same dimensions, to retrieve signal-idler cor-
relations. Hence approximately 2000 propagations of a
field of 512 x 512 pixels must be performed and it is nec-
essary to keep in memory only the results for 7 inside the
sector or its opposite. This number is even considerably
reduced in the degenerate case, because a binned pixel
and its border include less than 100 physical pixels. The
numbers above correspond to one temporal mode and
must be multiplied by the number of these modes that
give a significant contribution. To conclude this para-
graph, the Green’s function method appears the only one
that allows the computation of quantum covariances for
very low fluxes corresponding to photon counting detec-
tion.

C. Results

Four types of cause deteriorate the ideal perfect signal-
idler correlation when considering opposite areas. First,
the idler photon is detected in a coherence area around
the exact opposite position of the detection of the signal
photon, because of diffraction. This effect will be quan-
tified by simulations involving only one temporal mode
corresponding to degeneracy and oversampling in the far
field. Second, the center of a physical pixel or the corner
between four pixels does not correspond exactly to the
symmetry center of the far-field image. Third, twin pho-
tons correspond to non degenerate frequencies, resulting
in a non collinear phase matching scheme and non op-
posite locations in the far-field, see Fig.6. The Green’s
function allows us to quantify this effect, by using a suffi-
cient number of temporal modes, with for each a specific
sampling in the image space (near field) in order to ob-



tain an uniform sampling in the far-field corresponding to
the actual CCD sensor. Fourth, the imperfect detection
by the camera leads to the loss of some photons and to
the detection of spurious photoelectrons that do not cor-
respond to actual photons. We present in the following
results including successively these four types of error.

To quantify diffraction effects, we have to take into
account the actual dimensions of the illuminated crystal
and of the pump beam in the near field,while the sam-
pling step in this near field must correspond to the en-
tire phase matching bandwidth in the far field. By using
2048 x 2048 samples, both requirements are fulfilled, with
4 x 4 samples corresponding to one physical pixel of the
camera in the far-field. Even for the smallest measure-
ment area, i.e one physical pixel, the effect of diffraction
appears to be weak: r < 4 x 1072, because the coher-
ence area is sufficiently smaller than the physical pixel.
Hence, the other effects will be simulated with 512 x 512
samples, i.e a sample length equal to a fourth of the crys-
tal transversal size, in order to keep computation times
reasonable and to obtain in the far field an equal size
between the sample in the simulations and the physical
pixel. Diffraction effects will be nevertheless taken into
account by using a pump beam diameter smaller than its
actual diameter, in order to retrieve the same value of r
as with 2048 x 2048 samples.

Centering is physically performed with a resolution of
half a pixel, in order to avoid interpolation (see section
2). The maximum difference between the actual center
and the center used in calculations of section 2 is there-
fore 0.25 pixel, if the actual center is determined without
error. Fig.9 shows the evolution of r with this difference,
in the case of no binning and of 2 x 2 binning. For the
maximum theoretical shift of 0.25 pixel, r attains half
the SNL if no binning is performed and twice less for
2 x 2 binning. r becomes negligible for greater binning,
in particular in the case of the angular sectors of section
3.

Fig.9 shows also the difference between a strict degen-
eracy and the experiment described in section 2, where
the SPDC is rendered narrow-band by a 20 nm wide fil-
ter. For perfect centering and without binning, r equals
0.4 for this multimode light. Actually, this value de-
pends notably of the position of the opposite pixels that
are used for the simulation: if the pair of pixels is close
to the center of the far-field fluorescence disk, there is al-
most no degradation due to the multimode character of
the SPDC, as shown in Fig.10: involved angles are small
and the locations for different wavelengths, though not
exactly opposite, are shifted of far less than one pixel.
However, the shift increases linearly with the distance
between both pixels, resulting in a linear increase of r.
Actually, using a smaller statistics area (maximum dis-
tance from the center of 20 pixels instead of 40) induces
a diminution of the experimental value of r: 1.93 instead
of 1.94 found in Eq.11, but with a greater dispersion be-
tween images because of the smaller number of pixels
available for the statistics. Note that an error in centering

diminishes the effect of non perfect degeneracy because
the asymmetry due to different wavelengths compensates
in part the asymmetry due to imperfect centering : see
the points for a high centering error in Fig.9. All the
points in this figure have been obtained for twin pixels
distant of 20 pixels from the center, i.e a middle value of
this distance.
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FIG. 9: Variance of the signal-idler difference versus the shift
between the actual and the used center. The values in abscissa
correspond to a shift along a diameter and to a shift of the
same value in the orthogonal direction.The distance between
the twin pixels and the center is 20 pixels
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FIG. 10: Variance of the signal-idler difference versus the
distance between the twin pixels and the center.

In actual measurements, r is computed by using differ-
ent distances between twin pixels and without knowing



the actual error on the center position. To take into
account all the parameters, we have repeated the simu-
lation for multimode SPDC with random values of the
centering errors between 0 and 0.25 on both axes and
random positions of the twin pixels inside the disk. We
obtain 7rperfect = 0.93 for perfect detection. We have
then computed with our model of EMCCD camera[16]
the probability p; of detecting only one photon on one
pixel when opposite pixels receive either 0 or twin pho-
tons (ideal correlation before detection) for a detected
photon mean m (see Eq.3) equal to 0.20, in agreement
with the average of experimental results. The variance
o2 ¢ after detection can then be computed as :

O'giff = Tperfect X o? +p1 X (1 - Tperfect/2) (19)
where o2 is computed with Eq.4. We obtain as final
result for one physical pixel without binning:

o5 if
=c— =147 (20)
m

A part of the remaining difference between experiment
(r =1.94) and simulation (r = 1.47) is due to determin-
istic aberrations, visible on Fig. 8(a). However, this part
is weak in the case of correlations between single pixels,
because the quantum noise is predominent for a fluence
smaller than 1 photon/pixel, and the origin of the dis-
crepancy between simulation and experimental results is
not clear. Note however that parametric amplifiers are

often described in quantum optics by introducing an ”ex-
cess noise” factor [24], whose origin comes from distor-
tions in the pump wavefront.

In the case of a 2x2 binning, the experimental and sim-
ulated ratios become respectively r = 1.82 and r = 1.29
while, for angular sectors, they become r = 1.75 and
r = 1.33. Note that, because of the greater number of
photons in an angular sector, the deterministic aberra-
tions induce an increase of r of about 0.1, that is no more
negligible.

V. CONCLUSION

In conclusion, we have experimentally demonstrated
in the photon-counting regime that opposite spatial fluc-
tuations of spontaneous down conversion radiation are
correlated in the quantum regime with a variance of the
photon numbers between opposite areas below the shot-
noise level. This conclusion holds close to degeneracy for
opposite pixels as well as for broad-band SPDC for oppo-
site angular sectors. In the case of physical pixels, purely
spatial coincidences have been demonstrated, because the
fluence of 0.2 photon/pixel corresponds to either zero or
one photon on the pixel. These experimental results are
supported by numerical simulations based on the Green’s
function method, that has been proved to have strong ad-
vantages on stochastic simulations for such a low photon
flux.
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