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Symmetry-breaking instability of quadratic soliton bound states
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We study both numerically and experimentally two-dimensional soliton bound states in quadratic media and
demonstrate their symmetry-breaking instability. The experiment is performed in a potassium titanyl phosphate
crystal in a type-II configuration. The bound state is generated by the copropagation of the antisymmetric
fundamental beam locked in phase with the symmetrical second harmonic one. Experimental results are in good
agreement with numerical simulations of the nonlinear wave equations.
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I. INTRODUCTION

Since the early works of Torruellas et al. [1], Torner
et al. [2,3], and Boardman et al. [4], it has been well known
that second-order nonlinearity (χ (2)) can lead to efficient
self-guiding effects. In that context, soliton beam propagation
in nonlinear media commonly used for frequency conversion
has been observed in plenty of configurations (see Ref. [5]
for a review) including, in particular, the (2 + 1)-dimensional
[(2 + 1)D] geometry [1,3,6] for which Kerr solitons are not
stable [7]. As expected in a medium that supports soliton
propagation, modulation instability (MI) [8] has also been
observed in quadratic materials [9–12]. In a theoretical paper,
Haelterman et al. predicted the existence in these media of
multiple soliton bound states analogous to those of Kerr media
[13]. In Kerr media these bound states have a vector nature
in the sense that they consist of coupled linearly polarized
solitons of orthogonal polarization in phase quadrature [14]. In
quadratic media the bound states are the result of the coupling
of two parallel quadratic soliton beams of the same polarization
but having π -out-of-phase fundamental field envelopes. It was
shown in Ref. [13] that these quadratic bound states exhibit a
symmetry-breaking instability that results in a power transfer
from one soliton of the bound state to the other, in a way similar
to what happens in Kerr soliton bound states. The existence and
the symmetry-breaking instability of the soliton bound states
have already been demonstrated in Kerr media [15,16]. Until
now, no experimental demonstrations have been presented
concerning the existence and the propagation dynamics of
quadratic bound soliton states whereas collisions between
individual solitons [17] have been observed [18]. This can be
explained by the difficulty in performing the polarization and
spatial shaping of the bound-state components while assuring
the appropriate phase relation between them. In the Kerr
configuration only, the phase-locking problem can be bypassed
by using circularly polarized components. Here, we overcome
this issue by using a couple of phase plates controlling the
spatial features of the beams and their phase relation and
demonstrate the quadratic bound-state dynamics.

In the present paper, we provide a detailed study of
the dynamical features of quadratic soliton bound states.
In particular, we demonstrate experimentally that the bound
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states undergo the theoretically predicted symmetry-breaking
instability. However, for practical reasons we considered in our
experiment the generation and propagation of the bound states
in a (2 + 1)D geometry whereas theory has been developed
for the (1 + 1)D geometry [13]. In addition, we considered a
type-II phase-matching configuration that implies walk-offs
between the waves involved in the underlying three-wave-
mixing process. For these reasons we first had to check the
existence of the bound states with two transverse dimensions
in the type-II phase-matching arrangement. This was done
numerically on the basis of a realistic wave propagation model.
We first calculated the stationary soliton solutions of this model
by means of a standard relaxation method. This calculation
allowed us to confirm the existence of (2 + 1)D quadratic
soliton bound states in a type-II phase-matching configuration.
We then simulated the propagation of these bound states to
confirm their invariant nature as well as to show that they
suffer a symmetry-breaking instability exactly as predicted in
Ref. [13] for the (1 + 1)D geometry. Finally, we provide a
statistical analysis from laser shots of the symmetry-breaking
instability of the bound states.

II. NUMERICAL STUDY

As in the first demonstration of the existence of the
quadratic soliton [1], we chose the commonly used potas-
sium titanyl phosphate (KTP) crystal as nonlinear quadratic
material. The reasons for this choice are its availability in
large format (centimeter size), its high efficiency, and its high
damage threshold (>500 MW/cm2 [19]).

In KTP the propagation of the fundamental and second
harmonic fields in the type-II phase-matching configuration
can be described by a set of three equations [1]. They model
the propagation of the three fields involved in the nonlinear
wave coupling, i.e., ordinary and extraordinary polarized
fundamental fields (FF) and the extraordinary polarized second
harmonic field (SH):
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with Uo, Ue, and Ve the ordinary, extraordinary FF, and
extraordinary SH, and nFF

o , nFF
e , and nSH
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013807-11050-2947/2011/83(1)/013807(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.013807
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indices, respectively. � stands for the 2D transverse Laplacian
operator ∂2

∂x2 + ∂2

∂y2 , and ρFF
e,x = 0.19◦ and ρSH

e,x = 0.28◦ are
the spatial walk-off angles of the two extraordinary beams.
We assume that the KTP crystal is cut for second harmonic
generation at 1064 nm. This implies the angle values θ = 90◦
(corresponding to propagation in the X-Y crystal plane),
φ = 23.5◦ (with tan φ = Y0/X0;

−−−−→
(X0,Y0) defining the beam

propagation direction in the X-Y crystal plane). Note that the
coordinates axes (x,y,z) are chosen so that the x axis is in
the direction of the walk-off. The parameters δ1 and δ2 are the
phase mismatches between the two FF fields and the SH field.
The nonlinear coefficient is written as γ = deffωFF/c, where
ωFF is the FF angular frequency, c is the speed of light in
vacuum, and deff is the effective nonlinearity given by deff =
d31 sin2 φ + d24 cos2 φ2 (for θ = 90◦), with d31 = 1.95 pm/V
and d24 = 3.9 pm/V [19].

Compared to the model of Ref. [13] in which the quadratic
soliton bound states and their instability have been predicted,
the main differences are the 2D transverse geometry and the
type-II phase-matching configuration (two FF components
leading to a system of three coupled equations instead of
two) with the associated spatial walk-off between the three
field components. Given these fundamental differences, we
have first checked numerically the existence of the bound
states as stationary solutions of Eqs. (1) and then we studied
numerically their stability through a standard beam propaga-
tion method. These preliminary studies are the object of the
following paragraphs.

A. Soliton bound states

The stationary solutions of the model (1) have been
calculated numerically using the so-called relaxation method
[20], Sec. 17.3]. We considered as initial guess a two-lobe
structure with antisymmetric profiles in the FF components
and a symmetric profile in the SH component so as to mimic
the (1 + 1)D soliton solution of Ref. [13]. The two lobes are
naturally centered on the y axis, so that the system symmetry
is not broken by the walk-offs that are in the x direction.
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FIG. 1. (Color online) Quadratic soliton bound state correspond-
ing to a total power of 29 kW as calculated numerically from
Eqs. (1) with the experimental parameters given in the text. Shown are
amplitude profiles of (a) Uo, (b) Ue, and (c) Ve and their corresponding
phase profiles [(d), (e), and (f), respectively].

An example of a calculated quadratic soliton bound state is
depicted in Fig. 1. One can clearly see that each component
exhibits a dual-hump structure and a phase slope in the walk-
off direction. The FFs carry a π phase step at y = 0, their
profiles being antisymmetric in the y direction, in contrast to
SH one, which is symmetric. The bound state can then be
described as a couple of quadratic solitons (the left and right
intensity lobes) propagating invariantly side by side owing to
the interaction equilibrium ensured by the π phase relation
between their fundamental components. In the following, the
bound-state dynamics will be described by means of the left
and right soliton behaviors.

This solution has been computed for a crystal misalign-
ment of −0.32◦ with respect to the phase-matching angle
of φ = 23.5◦. This misalignment corresponds to a phase
mismatch δk = ωFF/c(nFF

o + nFF
e − 2nSH

e ) < 0. This negative
phase mismatch is required for the existence of soliton bound
states [13] although quadratic solitons exist under both positive
and negative phase-mismatch condition [5].

B. Symmetry-breaking dynamics

Solving Eqs. (1) by means of a (2 + 1)D split-step Fourier
method we simulated the propagation of these quadratic
soliton bound states. These simulations will provide more
information on the physics of the soliton bound states as they
give access to the amplitude and phase evolution during their
propagation and their dependency on the perturbation. The
output profiles of the three interacting waves Uo, Ue, and
Ve, are presented in Fig. 2. As expected, Figs. 2(a1)–2(a3)
show that the soliton bound state propagates undistorted;
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FIG. 2. (Color online) Simulated output intensity profiles of the
three interacting waves after 2 cm of propagation of (a) the numerical
bound-state solution of Fig. 1; (b) the same initial conditions as in
(a) but in the linear regime (low power) and in the absence of initial
phase slope in the x direction; (c) the same as in (b) but at soliton
power.
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in particular, it conserves its profile and, in spite of the
walk-offs, its propagation direction (with the total power here
being 29 kW). The absence of visible walk-off is naturally
due to the compensation of the initial phase slopes in the
input profiles. Note that the compensation is not perfect as a
slight (≈10-µm) translation in the direction of the walk-off
is observable in Figs. 2(a1)–2(a3). This can be explained by
the limited transverse resolution of our numerical simulations
(8 and 4 µm in the x and y directions, respectively) as imposed
by computational limitations. However, the remaining drift
is far lower than what can be observed without phase slope
compensation, as described thereafter.

Figures 2(b1)–2(b3) show the output intensity profiles of
the same soliton bound-state envelopes but in the linear regime
of propagation, that is, at very low power (the total power here
being 29 W) and in the absence of the walk-off compensation
phase slopes. The observed beam broadening clearly shows
that diffraction governs propagation. We also see that the
walk-off separates the different beam components: −62- and
−94-µm x translation for the extraordinary FF and SH,
respectively, as expected from the values of the two walk-off
angles in Eqs. (1).

Figures 2(c1)–2(c3) present the propagation of the same
input envelopes without phase slope, but with the appropriate
power corresponding to the soliton bound-state solution
computed numerically and shown in Fig. 1. It is clear from this
result that the quadratic nonlinearity induces spatial self- and
mutual trapping of the field components even in the absence
of phase slope in the initial field profiles. The walk-off only
results in a tilted propagation in the x direction. A common
translation of −82 µm in x is observed on each beam. This
result is of importance because it demonstrates that soliton
propagation does not require an initial phase slope in the beam
profiles. The absence of phase slope is only responsible for
a drift while the self- and mutual confinement is preserved.
In our experiment it is therefore legitimate and convenient to
generate the beam profiles without their phase slope, which
strongly simplifies the beam-shaping setup.

Propagation simulations of field profiles as obtained in
the experiment were performed to observe the generation
dynamics of the bound state starting from nonideal profiles
and to check the stability of the soliton bound states. The
SH profile is a simple circular Gaussian beam while the FF
profiles are formed by juxtaposing two out-of-phase circular
Gaussian beams of smaller diameter. For the three beams the
phase profile is flat. A 10% intensity noise with a random
phase has been added to the three envelopes in order to mimic
experimental conditions. Figure 3 presents a typical result of
the simulations with a total beam power of 20 kW. The input
beams are shown in Fig. 3(a). The other figures allow us to
identify three steps in the propagation dynamics. Over the first
5 mm we see that the SH beam is spontaneously reshaped to
adopt the two-hump profile of the exact soliton bound-state
solution [Fig. 3(b)]. After 2 cm the FF envelopes start to
exhibit an asymmetry [Fig. 3(c)], which is the signature of
the symmetry-breaking instability predicted in the (1 + 1)D
geometry in Ref. [13]. The instability develops rapidly and
results in an almost complete transfer of power from one
soliton of the bound state to the other, exactly as what happens
in the Kerr-type soliton bound state [21] [Fig. 3(d)]. At
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FIG. 3. (Color online) Simulated intensity profiles in the
y direction (resulting from integration in x) of the beams corre-
sponding to a total power of 20 kW. The red (bottom bold), magenta
(bottom), and blue (upper) lines represent Uo, Ue, and Ve, respectively.
(a) Input z = 0 cm, (b) z = 0.5 cm, (c) z = 2 cm, and (d) z = 5 cm.

this stage the beams progressively adopt the profiles of the
well-known stable single quadratic soliton. As the symmetry-
breaking instability is induced by noise, the direction of the
energy transfer from one lobe to the other is random. As a
result, we can expect in the experiment to observe from shot to
shot a random left-right symmetry breaking of the laser beam.

III. EXPERIMENTAL SETUP

The experimental setup is depicted in Fig. 4. A Nd:YAG
Q-switched mode-locked laser emitting 1064-nm, 55-ps
pulses with energy in the millijoule range is used to generate
both the FF and the SH fields. After cleaning up the beam
profile through spatial filtering, the linear polarization is set
to 45◦ by using a half-wave plate combined with a polarizer
so as to reach the maximum SH generation efficiency (≈50%)
in a 2-cm-long KTP crystal cut for type-II phase matching
(KTP1). The FF and SH beams are then shaped in a cylindrical
lens arrangement (Lx,Ly) and launched into the second KTP
crystal (KTP2, with the same specifications as KTP1).

The phase profiles of the beams are shaped after the lenses
by means of two glass plates P1 and P2. P1 is a nonparallel
plate (truncated prism) with an angle of 1◦ between its main
faces. A simple translation of this plate in the transverse plane
allows for a fine tuning of the phase difference between the
FF and SH input fields. Experimental results show that a 1-cm
translation corresponds approximately to a 2π relative phase
shift. Note that this plate induces a spatial misalignment of
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Ly
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Imaging
system 1
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FIG. 4. (Color online) Experimental setup. λ/2 stands for the
half-wave plate. Lx and Ly are cylindrical lenses with focal length of
150 mm in the x direction and 80 mm in the y directions, respectively.
P1 and P2 are the phase plates. FF and SH are imaged using distinct
imaging systems with synchronized CCD cameras.
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the FF and SH beams due to dispersion (refraction through a
prism); however, the 1◦ angular aperture is sufficiently small to
induce only negligible misalignments. The second plate P2 is
covered on half the surface by a thin glass layer. The layer has
a thickness inducing a π phase shift across the FF beam and a
nearly 2π phase shift across the SH beam. Due to diffraction
the π phase shift in the FF beam induces in the focal plane
of the lenses two well-separated lobes of opposite phase while
the perturbation caused by the nearly 2π phase shift in the SH
beam is merely washed out provided that this phase jump is
established on a sufficiently short distance in the transverse
plane. One can therefore reasonably admit that this shaping
process leads to field distributions that are close to those of the
theoretical soliton bound state.

In a first step, only the KTP1 crystal is placed in the beam
and oriented by means of a couple of rotation stages in order
to optimize frequency conversion. According to numerical
simulation a conversion of 90% would be necessary but, due to
experimental constraints (available power and crystal length),
a maximum conversion of 50% has been achieved. This limit is
not critical as the excess FF energy is lost in the crystal KTP2
through radiative waves in the soliton generation process. The
KTP2 crystal is then placed in the focal plane of the lenses.
KTP2 is aligned by generating first a fundamental (single-
hump) quadratic soliton. It is then misaligned by a few tenths of
degrees with respect to the phase-matching angle in order to get
the negative phase mismatch necessary for the generation of
soliton beams. The generation of a fundamental (single-hump)
quadratic soliton is obtained through the introduction of phase
plate P1 by finely tuning its transverse position in the beam.
Then the phase plate P2 is introduced to induce the π phase
shift in the middle of the FF beam. The setup is therefore ready
to study through power tuning the formation and the stability
of the two-hump quadratic soliton bound state. The power was
adjusted by using a set of absorptive density filters to obtain the
most polarization- and wavelength-insensitive power tuning.

As the KTP2 crystal is only 2 cm long, the symmetry
breaking of the beam can only be observed at the first stage of
its development, as illustrated by the simulated output profiles
of Fig. 3(c). The fully developed left-right symmetry breaking
leading to complete energy transfer, as illustrated in Fig. 3(d),
would require a 5-cm-long crystal.

IV. EXPERIMENTAL RESULTS

A. Two-dimensional profiles

Our results are presented in Fig. 5. Figures 5(a1)–5(a3)
show the input intensity profiles of the three fields Uo, Ue,
and Ve, respectively. This allows us to check the efficiency of
the beam-shaping technique. As can be seen, a rather smooth
and symmetric dual-lobe structure is obtained in both FF
components, while the SH field exhibits a single-lobe profile.
The visible distortion of this profile is attributed to the effect
of the finite-width SH 2π phase shift induced by the shaping
setup. Note however that what is important is that the SH
energy is located in one single lobe well centered on the phase
defect of the FF fields.

The output profiles at low power are presented in
Figs. 5(b1)–5(b3). As expected, the three components undergo
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FIG. 5. (Color online) Experimental intensity profiles of Uo,

Ue, and Ve in the first, second, and third column, respectively.
(a) Input condition, (b) output in the low-power regime, (c,d) output
at soliton power ≈ 60 kW showing both the soliton bound state and
its symmetry breaking, and (e) output at soliton power but with an
unfavorable FF and SH phase relation.

a strong diffraction and a clear spatial separation due to
the birefringence walk-off in the crystal. Note that in the
present case propagation is not strictly linear, as SHG clearly
occurs from the diffracted FF beam wings, which results
in the distorted FF profiles and SH intensity background of
Fig. 5(b). One can estimate that the FF extraordinary and SH
fields undergo ≈ −55- and ≈ −100-µm walk-of-induced x

translations. These values are in good agreement with those
predicted by the numerical simulation of Fig. 2(b).

Figures 5(c1)–5(c3) show the three output beams obtained
at a power of ≈60 kW for which self-guiding is observed.
As can be seen, the FF and SH beams are now nicely self-
guided through mutual trapping. Their nonlinear interactions
compensate not only for diffraction but also for the difference
in walk-off angles between the field components. The walk-off
is now clearly the same for the three components, resulting
in a final translation of approximately 68 µm. Moreover, the
SH intensity distribution [Fig. 5(c3)] exhibits a fine dual-
lobe structure which reflects the nonlinear beam-reshaping
process numerically predicted and illustrated in Fig. 3. This
observation clearly demonstrates the existence of the two-
hump quadratic soliton bound state theoretically predicted in
Ref. [13].

However, this result is not obtained systematically. The
experiment is repeated and from one laser shot to another
there are significant dissimilarities. In most cases the intensity
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profiles adopt a one-lobe structure randomly displaced either
to the left or the right with respect to the center of the above
symmetrical profile. This behavior is a clear signature of the
symmetry-breaking instability.

A typical example of a symmetry-broken beam is shown in
Figs. 5(d1)–5(d3) for exactly the same experimental conditions
as those of Figs. 5(c1)–5(c3). As can be seen, the three initially
symmetric fields have transferred almost all their power to a
single-lobe structure displaced to the left of the initial beam
axis. Quite remarkably, the resulting beam is quite smooth
and well confined, which shows that the compensation of
diffraction and the mutual field trapping are both maintained in
the symmetry-breaking process. This is in excellent agreement
with the numerical simulations that show in the final stage
of the instability process the formation of a single-lobe
fundamental quadratic soliton.

Figures 5(e1)–5(e3) show what is observed when the rela-
tive phase between the FF and SH fields is not controlled (phase
plate P1 is removed from the setup). Even at power levels
corresponding to the soliton regime (≈60 kW), diffraction is
no longer compensated and the mutual field trapping is reduced
to the formation of some randomly distributed spots. It is the
contrast between this erratic behavior and the soliton regime
that allowed us to finely tune the relative phase between the
FF and SH fields by means of the phase plate P1.

B. Statistical study

Figure 6 shows the result of a statistical study of the
instability. It shows histograms of a measure of the beam asym-
metry. Because of the radiative wave and noise background in
the beam images (mainly due to the absence of diffraction
compensation in the pulse wings), the beam asymmetry could
not be evaluated simply through the first-order intensity
distribution moment. We adopted an alternative technique that
consisted in making a fit of the two beam peaks by means
of two separate and independent Gaussian functions (the
two-dimensional intensity distribution being first integrated
over the x direction so that the fit is performed on the two-peak
intensity profile in y). We then defined the beam asymmetry
parameter S as being the ratio between the intensity of the
left beam Gaussian fit and the overall beam intensity. The
parameter S is then the relative weight of the left beam, a
value of 0.5 corresponding to a symmetric beam.

Figure 6(a) shows the S distribution of the input beam.
As can be seen, the input beam is not perfectly stable due to
variations of the spatial profile of the Q-switched laser pulses
from shot to shot (since there are 10% intensity fluctuations in
the spatial profiles of the laser pulses).

0.25 0.25 0.250.5 0.5 0.50.75 0.75 0.75
0

1

S

(a) (b) (c)

FIG. 6. (Color online) Statistical study of the soliton symmetry-
breaking process: (a) input beam, 66 laser shots; (b) output in the
low-power regime, 87 laser shots; (c) output in the soliton regime,
159 shots.

Figure 6(b) shows the statistics for the output beam at the
relatively low power (≈1 kW) corresponding to Fig. 5(b1)–
5(b3). As previously mentioned, at this power there is non-
negligible energy transfer between the FF and SH components,
leading to some complexity. The resulting distribution width
reveals that nonlinear effects already induce some kind of
instability. However, the distribution remains peaked at the
origin, showing that the symmetric output is still the most
probable.

Figure 6(c) reveals that in the soliton regime (60 kW) the
distribution is split into two main lobes of approximately the
same height. Clearly the probability of getting a symmetric
event becomes much weaker and in a large majority of the
events symmetry breaking occurs. The large width of the
distribution lobes shows that the fundamental quadratic soliton
beam resulting from the symmetry breaking has an orientation
that greatly fluctuates from shot to shot.

V. CONCLUSION

In summary, we have shown numerically and experimen-
tally the existence of the (2 + 1)D quadratic soliton bound state
as a stationary solution of the full nonlinear wave propagation
model including birefringence walk-off. The experiments were
performed by launching in a type-II KTP crystal a field
configuration that is as close as possible to the theoretical
soliton-bound-state solution, which means that we controlled
the relative phase between the fundamental and second
harmonic fields and that we shaped the fundamental field into
an antisymmetric two-lobe amplitude profile. Although the
propagation length is relatively short (2 cm), the symmetry-
breaking instability of the soliton bound state has been clearly
observed thanks to the pulse-to-pulse noise fluctuations of
the Q-switched laser used for the experiment. From shot to
shot the spatial profile changes sufficiently to get two regimes
of propagation in the same experiment. Depending to the
shot, the noise perturbation spatial asymmetry is either weak
enough to allow for steady propagation of the bound state
or, conversely, able to seed the instability, in which case
the symmetry breaking leads to a single-lobe fundamental
quadratic soliton walking transversely at variable angles. We
provided a statistical study that shows the robustness of the
symmetry-breaking dynamics that is at play in the quadratic
soliton bound state, a feature that might have some potential
application for all-optical signal processing in which beam
self-guiding and switching processes are key functions.
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