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Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can

be interrogated through a wireless link. Amongst the practical applications of such devices, struc-

tural health monitoring through stress measurement and more generally vibration characteristics of

mechanical structures benefit from the ability to bury such sensors within the considered structure

(wireless and battery-less). However, measurement bandwidth becomes a significant challenge when

measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator mea-

surement scheme is demonstrated here. The measurement bandwidth is limited by the physical set-

tling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic

RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a res-

onator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor

SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally

demonstrated. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705728]

I. INTRODUCTION

Piezoelectric transducers acting as passive sensors

probed through a wireless link have demonstrated extended

robustness and interrogation range1,2 compared to silicon

based radiofrequency identification devices.3 Because such

devices act linearly in the conversion of the incoming elec-

tromagnetic wave to the acoustic propagating wave, the in-

terrogation range is not limited by the output power reaching

a rectifier diode threshold voltage but solely by the receiver

noise level and the ability to identify the sensor signal above

this noise.

Surface acoustic wave (SAW) sensors are designed along

two main approaches:

1. Wideband delay lines in which a short pulse launched

by an interdigitated transducer (IDT) propagates over

the free piezoelectric substrate surface with a veloc-

ity dependent on the environmental physical property

and hence a time delay representative of this physical

property.

2. Narrowband resonators in which an acoustic wave is ex-

cited by the above-mentioned IDT placed between two

Bragg mirrors, exhibiting a resonant frequency dependent

on the physical property under consideration.

An acoustic delay line being a wideband device, it should

in principle be the class of sensor fastest to probe, with typi-

cal time delay in the 5 µs range, yielding 200 kHz measure-

ment rate using high speed analog-to-digital converters and

fast storage media. Such hardware is however power con-

suming and hardly compatible with embedded applications.

a)Electronic mail: jmfriedt@femto-st.fr; http://jmfriedt.free.fr.
b)Also at SENSeOR SAS, Besançon, France.

Classical measurement techniques—frequency sweep prob-

ing of the returned power of either delay line or resonator, or

impulse response measurement of the time domain response

of both types of transducer—often exhibit limited bandwidth

of the measured physical quantity. This is due to the large

number of sampled frequencies and to the settling time of

the tunable frequency source/sampling time of the digitiza-

tion of the returned signal at each frequency.4 While hardly

an issue for temperature measurements whose bandwidth is

limited by the thermal inertia of the sensor to a few hertz,

the measurement refresh rate becomes a significant parame-

ter when probing strain gauges acting as sensors on vibrating

elements.

In this paper, after identifying some of the physical limi-

tations of the acoustic resonator probing and proposing a mea-

surement algorithm requiring only two measurement frequen-

cies, the measurement of the stress on a music tuning fork fit-

ted with a surface acoustic wave (SAW) resonator strain gauge

is demonstrated. A sampling rate of 4800 Hz is reached using

a high Q (Q = 13 300) SAW resonator operating at 434 MHz,

i.e., half the theoretically estimated maximum measurement

rate.

II. FAST MEASUREMENT ALGORITHM

A. Algorithm principles and interest

An algorithm dedicated to radiofrequency SAW res-

onator probing has been described in a previous work,5 based

on a frequency-modulation (FM) to amplitude-modulation

(AM) conversion.6 The emphasis in presenting this algo-

rithm was on its ability to improve the measured fre-

quency resolution by exploiting the linear phase vs. frequency
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relationship, thus improving the feedback algorithm on the

identified resonant frequency. However, a significant hin-

drance of the full FM probing implementation of the res-

onator response is the long interrogation duration since mul-

tiple FM periods are needed for phase extraction, either using

an analog low pass filter after a mixer stage or a digital low

pass filter acting on the recorded AM samples.5 On the other

hand, a fully digital implementation of the FM-AM algo-

rithm demonstrates that only two measurements are actually

needed for extracting an information similar to the so-called

phase information in the previous implementation, namely

the maximum and minimum FM frequencies: the returned

power difference at these two frequencies exhibits a behaviour

reminiscent of the phase behaviour in an FM-AM conver-

sion system. Hence, the phase feedback algorithm becomes

a feedback control aimed at keeping the magnitude response

balanced when probing the resonator with only two frequen-

cies, one located below and one located above the resonance

frequency.

The digital implementation7 of the interrogation unit

probes the power returned by the SAW sensors at two frequen-

cies located at f − fstep and f + fstep with fstep the FM frequency

excursion and f an hypothetical central FM frequency. The lat-

ter is never practically generated but is assumed to be close

to the resonance frequency f0 of the sensor. The algorithm

thus designed for tracking the resonance frequency controls

the interrogation frequencies: f − fstep and f + fstep, respec-

tively, in order to keep the returned signals y( f − fstep) and y( f

+ fstep) equal (Fig. 1). Therefore, rather than probing the sen-

sor response at a large number of frequencies and conse-

quently suffering for a long interrogation process, this strat-

egy minimizes the number of probe frequencies needed to the

two extreme frequencies of the FM signal with excursion fstep.

The measurement bandwidth is thus increased while keeping

the measurement accuracy.
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FIG. 1. Simulation of the two-point interrogation strategy—each pulse is

generated as a rectangular 30 µs long window—probing a resonator fit-

ted with a Butterworth-van Dyke model (C0 = 1.7 pF, C1 = 0.56 F,

L1 = 241 µH, R1 = 73 Ä).

B. Frequency step and proportional feedback
gain identification

Hence, considering two resonator measurements y(f

− fstep) and y(f + fstep), the feedback loop aims at identify-

ing the resonance frequency f0 so that y(f0 − fstep) = y(f0
+ fstep). The expression of the resonator response following

the Butterworth-Van Dyke (BvD) equivalent circuit is not triv-

ial and does not yield analytical feedback control loop coef-

ficients. We use instead a second order polynomial fit of the

resonator response to define the proportional feedback con-

trol loop gain factor. Indeed, during an initialization step of

the algorithm, the SAW sensor response is probed along a fre-

quency comb with spacing 1f (Fig. 1) selected so that, under

the assumption of the SAW resonator quality factor is known,

at least three returned magnitude measurements fit within the

bandpass of the resonator. These three measurements provide

a unique parabola equation describing the resonator returned

power law close to the resonance, whose shape is assumed

throughout this document to be constant whatever the phys-

ical quantity under investigation acting on the SAW sensor

(constant quality factor and varying resonance frequency as-

sumptions). Thus, assuming three returned signal measure-

ments yi (i ∈ [1, . . . , 3]) obtained at f − 1f, f, and f + 1f

respectively during the initialization process, with y2 > y1, y3,

the resonator parabolic fit curvature then expresses as7

A =
y3 + y1 − 2y2

2(1 f )2

and the resonance frequency f0 so that the power law y = A(f

− f0)
2 + B fitting at best the measured return power is given

by f0 = f −
y2−y1

2×A×1 f
. The curvature A will be used to esti-

mate the gain of the feedback loop relating the output central

probe frequency during the two-point approach to the returned

power difference δy = y(f + fstep) − y(f − fstep) (also known as

the error signal, expected to vanish due to the feedback loop

acting on f and aimed at bringing f close to the resonance fre-

quency f0).

Expressing the fact that at resonance, when f = f0, δy = 0

and using the locally parabolic approximation of the resonator

shape, this expression becomes f0 = f −
y( f − fstep)−y( f + fstep)

2 fstep
y3+y1−2y2

(1 f )2

:

the correction to the current value of the probed frequency f is

(1 f )2

2 fstep
×

y( f − fstep) − y( f + fstep)

y3 + y1 − 2y2

and the slope of this proportional correction is

(1 f )2

2 fstep
×

1

y3 + y1 − 2y2
=

1

4A fstep
.

The ability to control the feedback loop on the emitted

probe frequency was thus demonstrated in order to track the

resonance frequency using only two resonator measurements.

The remaining limitation on the measurement speed is then

the duration of the resonator probing. Since a resonator8 op-

erating at f0 and exhibiting a quality factor Q is character-

ized by a time constant (for loading or unloading energy to

1/e = 63% of the asymptotic value) of τ = Q/(π f0), the mea-

surement duration is of the order of 2τ . With Q = 13 300

at f0 = 434 MHz, this measurement duration is 20 µs
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corresponding to a measurement rate of 50 kHz. Our practi-

cal implementation of the measurement algorithm waits dur-

ing 5τ for loading the resonator to 99.3% of its asymptotic

value, thus providing a narrowband interrogation pulse aimed

at fully loading the resonator, and 5τ for unloading the res-

onator and making sure that each successive measurement is

independent by starting from an unloaded resonator. Hence,

the theoretical maximum update rate of our two-point interro-

gation strategy is 10 kHz.

One last free parameter is fstep, acting as the FM excur-

sion in the previous formalism.5 The quantification of the re-

turned power digitized for processing purpose constraints this

parameter: under the worst condition when y(f − fstep) = 0 and

y(f + fstep) = ymax with ymax the maximum quanticized value

(e.g., 4096 in the case of a 12 bit analog-to-digital converter),

the feedback loop should move to f by less than fstep. Using the

previous expression of the slope relating the frequency cor-

rection to the measured amplitude error, a condition on fstep is

ymax ×
(1 f )2

2 fstep
×

1
y3+y1−2y2

< fstep and under appropriate con-

ditions of improved signal to noise ratio, y3 + y1 − 2y2 ∼ ymax

so that (1 f )2 < 2 f 2step. The FM excursion should be selected

larger than the initialization frequency step, which has al-

ready been selected at one third of the width at half height 1/3

× f0/Q of the resonator.7 Selecting a large enough FM excur-

sion reduces the chance of amplifying the amplitude measure-

ment error and generating frequency corrections above fstep.

However, such a condition means probing the resonator far

from its resonance, with two consequences:

r Assumptions concerning the BvD polynomial fit are

no longer valid since the returned power dependency

departs significantly from a parabolic shape.
r Most significantly, the resonator is probed far from its

resonance, and hence loads little energy (overlap in

the frequency domain of the probe pulse spectrum and

resonator transfer function). The consequence is a re-

duced interrogation distance since the returned power

has to remain above the receiver noise level.

Despite the chance of saturating the feedback loop for

large physical quantity variations yielding large resonance

frequency variations, the use of fstep = 5 kHz (smaller than

1f = 15 kHz) has been selected all along this work to pre-

serve the interrogation distance by keeping the probe pulse

frequencies close to the resonance frequency.

The feedback law assumes that the transfer function of

the resonator is symmetric, which is only an approximation

of the BvD equivalent circuit of the piezoelectric resonator

locally fitted by a parabolic law close to the resonance fre-

quency. The resulting measurement is thus biased, but since

the algorithm always operates at the same setpoint of equili-

brating y(f0 ± fstep), this bias is constant as long as the quality

factor of the resonator is not significantly changed by the in-

teraction with the physical quantity under investigation.

Because a resonator is probed at known frequencies in a

forced regime, the classical time-frequency uncertainty rela-

tionship will not apply: as opposed to a closed loop oscilla-

tor providing a frequency output to be monitored using a fre-

quency counter, here the returned power response of a SAW

resonator is probed at various known frequencies. Hence, the

measurement bandwidth limitation is due to the loading and

unloading duration of the resonator, not by a sampling dura-

tion since the (strong) assumption of a single mode resonator

is considered, providing a single resonance frequency infor-

mation, following a returned power dependence on frequency

locally approximated by a parabolic function. Indeed, we will

see that even though the measurement duration is less than 1

ms, the resulting resonance frequency identification standard

deviation is less than 1 kHz (while a classical Fourier trans-

form time-frequency uncertainty relationship would require

the measurement duration to be inverse of the target frequency

resolution).

III. STRAIN GAUGE MEASUREMENT

Having considered the maximum sampling rate of a SAW

resonator using a two-point measurement strategy, the re-

maining issue concerns the maximum bandwidth of the ob-

served phenomenon considering that each successive dis-

placement of f must be less than fstep. Assuming a (YXl)/40

quartz resonator, exhibiting a parallel stress sensitivity of sα11
= −16.7 ppm/MPa and sα33 = +5.9 ppm/MPa transverse

sensitivity,9 acting as a strain gauge with a linear relation-

ship between stress T and relative frequency shift (f − f0)/f0
through a coefficient10 sα:

f − f0
f0

= 6sαT , then during a time

interval t = 1/fs, with fs the sampling rate, the stress variation

should induce a sensor resonance frequency variation of less

than fstep for the feedback loop to still operate. A periodic vari-

ation of the stress T at angular frequency ω, T = T0exp (iωt),

yields a condition f0sαT0 < fstep
fs
ω

or

T0 <
fstep

f0
×

fs

sαω
.

This condition on the maximum stress variation in the strain

gauge aims at keeping the feedback loop functional, de-

pending on the physical property angular frequency. This

case is applied here to the particular application of mea-

suring the stress at the surface of a strain gauge bound to

a musical tuning fork oscillating at about 440 Hz so that

ω ≃ 2765 rad s−1. Since sα ≃ 10−11 MPa Hz−1 for quartz,10,11

for a strain gauge operating at 434 MHz and sampled at 10

kHz, then T0 < 4.2 MPa. This limitation is significantly lower

than the rupture stress of quartz of about 100 MPa.12,13 For

polychromatic vibrations, this consideration is extended by

summing the contributions of each Fourier component of the

measured signal and making sure the threshold condition is

never met.

IV. WIRELESS STRESS MONITORING
OF A VIBRATING STRUCTURE

A demonstration experiment was carried out using a mu-

sic tuning fork (440 Hz nominal resonant frequency) as vi-

brating structure. The tuning fork was instrumented at its

base—where stress variation is maximum—with a 434 MHz

quartz SAW resonator acting as a stress gauge and interro-

gated through a wireless link (Fig. 2). The tuning fork was

set in motion using a magnetically coupled voice coil, as
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FIG. 2. Experimental setup: A music tuning fork is fitted with a quartz strain

gauge resonator interrogated through a wireless link. The interrogation algo-

rithm is implemented in the flexible digital interrogation unit.

described earlier.14 The two-point strategy was implemented

as a fully digital algorithm in a flexible hardware

interrogation unit fully controlled by a central processor

(ARM7-core ADuC7026 microcontroller7), and the recorded

resonance frequency was converted into an analog output

voltage generated by the on-board 1 MS/s digital-to-analog

converter (DAC) in order not to reduce the measurement

bandwidth by the relatively slow asynchronous serial digital

communication (Fig. 3). Indeed, even at the high baud rate

of 57 600 bauds, each symbol requires 174 µs for transfer

through the digital link, i.e., more than the actual measure-

ment duration using the above-presented two-point strategy.

The frequency-to-voltage conversion accounts for the di-

rect digital synthesizer (DDS) word scaling: bits 12–23 of the
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FIG. 3. Top right: Time domain records of the DAC output of the wireless

acoustic sensor reader probing a quartz resonator strain gauge bound to a

music tuning fork: the voice coil driving voltage at 442 Hz (maximum re-

sponse amplitude) is increased from 0 to 1.8 Vpp. As described in the text,

the voltage-to-frequency conversion factor is 4.2 × 10−6 V/Hz, so that the

20 mV amplitude indicates a frequency shift amplitude of 362 Hz or a stress

variation at the quartz strain gauge bound at the base of one of the prongs of

about 650 kPa. Left: Fourier transform of the interrogation unit DAC voltage,

sampled by a digital oscilloscope at 25 ksamples/s. The strain gauge signal is

visible at 442 Hz—the driving voltage at resonance of the tuning fork (set at

441.737 Hz)—with a magnitude dependent on the driving signal amplitude,

and vanishing when no excitation signal is applied (0 V). The interrogation

unit sampling rate is visible at fs/2 = 2412 Hz, with a power independent on

the voice coil driving voltage.

32-bit word defining the output frequency of an AD9954 DDS

internally clocked at 200 MHz are used to program a digital-

to-analog voltage converted using a 3.3 V reference. Hence,

the output voltage V is related to the resonance frequency

f0 by

f0 ×
232

200MHz
×

1

4096
×

3.3V

4096
= 4.2 × 10−6 V/Hz.

The observation of a 20 mVpp peak-to-peak output voltage as

the tuning fork is vibrating close to its resonance frequency is

thus associated to a resonance frequency variation the SAW

resonator gauge of 4735 Hzpp. Using the tabulated ST-cut

Rayleigh wave sensitivity10 of −16.8 ppm/MPa, as experi-

mentally validated in Ref. 11, the stress variation at the base

of a prong of the tuning fork is 650 kPapp.

The actual sampling rate of fs = 4800 Hz (Fig. 3) is half

the theoretical maximum update rate (10 kHz) because of the

additional mandatory digital processing steps: programming

the 32-bit frequency defining register of the DDS through a

5 Mb/s SPI link already requires 6.25 µs, while further digi-

tal signal handling (data storage and arithmetic operations) on

the 41.8 MHz ARM7-core CPU yield an additional process-

ing time of 24 µs.

Using the same apparatus and a stroboscopic imaging

method, an end-prong displacement amplitude dmax of about

6 to 60 µm has been observed, depending on the voice coil

position.14 Assuming a distributed force acting on the whole

length of the tuning fork prong considered as a clamped beam,

the prong displacement equation along its length x is

d(x) =
dmax

3L4
× (4Lx3

− 6L2x2
− x4)

with dmax the maximum displacement at position L = 8 cm

(i.e., the length of the prong). Since the quartz strain gauge is

located close to the clamping position of the prong at x = 0,

the bending stress at this position is

σ =
4dmax

L2
×

Eh

2
,

assuming a gauge of negligible thickness (quartz substrate

thickness: 380 µm) with respect to the prong thickness h = 4

mm (section 4 × 5 mm2). Using an equivalent Young modulus

of quartz E = 72 GPa,15 the stress in the quartz strain gauge

lies in the σ = 540–5400 kPa range. The observed strain

gauge frequency shift, associated with a stress of 650 kPa,

lies within this interval.

While the two-point measurement strategy exhibits ex-

cellent measurement bandwidth, one drawback is the reduced

interrogation range: since the resonator is probed on purpose

at frequencies different from the resonant frequency, the load-

ing efficiency is poor due to the lack of synchronism between

the incoming electromagnetic wave and the SAW interdigi-

tated transducer and Bragg grating geometry. A 10 dB loss

(20 dB two-way trip) in free space propagation loss (FSPL)

has been observed with respect to a strategy aimed at probing

a resonator close to its resonance frequency.

One option to yet increase the measurement speed con-

sists in reducing the quality factor of the resonator. Using

a resonator with such a quality factor allows for shortening

the interrogation pulse duration but yields reduced accuracy
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FIG. 4. Top: Two-minute measurement of the frequency output of the resonator interrogation unit running the two-point algorithm, here with a digital commu-

nication of the measurement through an asynchronous serial link, yielding a rather slow measurement rate of 135 Hz. Bottom: Allan deviation of the resulting

dataset, exhibiting a sub-kHz standard deviation (two-point standard deviaton) and sub-100 Hz Allan deviation at 1 s (135 sample averages) integration time.

and interrogation distance. The same result is obtained by

shortening the interrogation pulse width while probing a high

quality factor resonator. In the latter case, because probing

an acoustic resonator with a wideband pulse physically corre-

sponds to a convolution of the acoustic and probe pulse time

domain responses (or product in the frequency domain), the

high quality factor of the sensor is no longer usable because

the pulse spectral shape no longer matches the sensor spec-

tral occupation (most of the incoming energy lies outside the

bandpass of the resonator). Hence, high quality factor res-

onators are hardly compatible with measurements above the

50 kHz range. The current implementation, using a long probe

pulse (spectral width narrower than the width at half height of

the acoustic resonance), exhibits a sub-kHz standard deviation

on the resonance frequency identification, decreasing to sub-

100 Hz when running a 100 point sliding average, as shown

by the Allan deviation plot of Fig. 4.

A quantitative design rule of a resonator targeted for high

bandwidth measurement, aimed at estimating the interroga-

tion distance loss tradeoff associated with increased measure-

ment speed allowed by lowering the quality factor from an

initial value of Q1 to an improved value Q2 (through a novel

sensor design), is proposed as follows:

1. The radiofrequency link budget is characterized by the

antenna efficiency, FSPL, losses induced in the sensor,

and emitted to received power ratio. For a given interro-

gation unit equipped with a given set of antennas, only

the losses in the resonator and the FSPL are expected to

vary.

2. On the one hand the loading delay of the resonator is

Q/(π f0) which is representative of the duration needed

to perform a measurement at best conditions and on the

other hand the FSPL in a RADAR system is a function

of 1/d4 where d is the distance between the interrogation

unit and the sensor.

3. Assuming the interrogation unit samples at a fixed delay

tm the signal returned from the resonator after loading at

frequency f, then the exponentially decaying return sig-

nal envelope is given by exp (− tm × π f0/Q), or, using a

logarithmic scale, the difference between the return sig-

nal losses due to the exponentially decaying envelope

between resonators of quality factor Q1 and Q2 respec-

tively is as follows:

8.7 × π f0ts

(

1

Q1

−
1

Q2

)

,

where 20 × log10(e) ≃ 8.7.

4. Because the FSPL depends as the fourth power of the

interrogation distance, the variation of the interroga-

tion distances d1 and d2 when probing the two res-

onators with quality factors Q1 and Q2 respectively is

given by

40 log10

(

d2

d1

)

= 8.7 × π f0ts

(

1

Q1

−
1

Q2

)

⇔
d2

d1

= 10
−

8.7
40

×π f0ts (
1
Q2

−
1
Q1

).
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As a numerical application, if f0 = 434 MHz, ts = 1 µs

allowing for the electromagnetic clutter to fade out and the

RF duplexer to stabilize, Q1 = 10 000 and Q2 = 5000, then

the interrogation distance is only reduced by 7% (since d2/d1

= 0.934) while the interrogation bandwidth is doubled.

Hence, depending on the targeted application, if interrogation

range is not a mandatory requirement, decreasing the quality

factor following the described rules will significantly increase

the measurement bandwidth while inducing marginal interro-

gation distance loss. Since probing a high quality factor res-

onator with a short pulse whose spectral width is wider than

the resonator width at half height, the equivalent sensor qual-

ity factor is lowered and the same result is achieved with no

need to actually change the sensor hardware. This rule is also

applicable when comparing the interrogation range of piezo-

electric resonators and dielectric resonators which might act

as passive radiofrequency sensors16 (Q ∼ 100 at 434 MHz

(Ref. 17)): in the latter case, the interrogation distance is di-

vided by 1000. An additional drawback of reducing the qual-

ity factor, beyond the loss of interrogation range, is the de-

creased measurement resolution due to the broader resonance.

V. CONCLUSION

Using a digital implementation on a flexible monostatic

radiofrequency pulsed RADAR hardware requiring only two

sampling points, a feedback controlled strategy for probing

the resonant frequency of a passive resonator acting as a sen-

sor monitored through a wireless link has been demonstrated.

This approach has been implemented to quantify the corre-

sponding system bandwidth, as this fast algorithm interroga-

tion approach is discussed to allow for real time data acquisi-

tion, for instance of dynamic strain measurements with a re-

fresh rate better than 200 µs. A 5 kHz sampling rate has been

experimentally emphasized, which is better than any system

based on Fourier Transform analysis considering the accuracy

of the proposed system.18 There is still possibility to theo-

retically increase this sampling rate to 10 kHz, either by im-

proving the signal processing implementation or adapting the

sensor characteristics, yielding tradeoff between refresh rate,

accuracy and interrogation distance.
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