
ar
X

iv
:1

10
7.

55
19

v2
  [

qu
an

t-
ph

] 
 1

9 
A

pr
 2

01
2

Implementing two-photon interference in the

frequency domain with electro-optic phase

modulators
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Abstract. Frequency-entangled photons can be readily produced using parametric

down-conversion. We have recently shown how such entanglement could be

manipulated and measured using electro-optic phase modulators and narrow-band

frequency filters, thereby leading to two-photon interference patterns in the frequency

domain. Here we introduce new theoretical and experimental developments showing

that this method is potentially a competitive platform for the realization of quantum

communication protocols in standard telecommunication fibres. We derive a simple

theoretical expression for the coincidence probabilities and use it to optimize a

Bell inequality. Furthermore, we establish an equivalence between the entangled-

photon scheme and a classical interference scheme. Our measurements of two-photon

interference in the frequency domain yield raw visibilities in excess of 99%. We use

our high quality setup to experimentally validate the theoretical predictions, and in

particular we report a violation of the CH74 inequality by more than 18 standard

deviations.
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1. Introduction

Precision manipulation of entangled photons is highly desirable, both from the

fundamental point of view of studying the ultimate limits of optics and from the point

of view of applications such as quantum communication. Indeed, since Ekert’s seminal

work [1], entangled photons have appeared to be a promising way to distribute quantum

information. Using entangled photons could potentially allow the realization of key

distribution protocols over distances greater than a few hundred kilometres [2, 3, 4] and

security certification without a priori trust in the devices employed [5].

Most practical quantum key distribution methods based on entangled photons

use time-bin [6, 7] or polarization [8, 9] encoding. These have also been among

the preferred methods for investigating the fundamental issue of quantum nonlocality

[10, 11, 12]. Manipulating entangled photons directly in the frequency domain is a

relatively unexplored area. Previous work in this direction includes Hong–Ou–Mandel

dip experiments [13, 14, 15], creation of entanglement in multiple degrees of freedom

including frequency [16, 17] and conversion from polarization to frequency entanglement

[18].

In [19], we introduced the notion of frequency-bin entanglement that allows a simple

description of experiments that manipulate entanglement in the frequency domain.

We have shown how, using conventional methods of production (parametric down-

conversion) and detection (avalanche photodiodes (APDs)), frequency-bin entangled

photons at telecommunication wavelengths (about 1550 nm) could be manipulated in

optical fibres using standard telecommunication components such as fibre Bragg gratings

and electro-optic phase modulators (EOPMs) driven by radio-frequency (RF) signals.

In this work, we improve on the work reported in [19]. We develop the theory behind

this experiment as well as report experimental improvements. The results reported in

[19] and in the present paper build on earlier experimental investigations on quantum

communication using attenuated coherent states and frequency encoding [20, 21], which

in particular aimed at applications in quantum key distribution. Complementary

theoretical studies of the manipulation of photons in the frequency domain using EOPMs

can be found in [22, 23].

The first part of the paper deals with the theoretical aspects of our experiment

involving frequency-bin entangled photons and EOPMs. After describing the basic

scheme, we show that it is possible to derive a considerably simpler expression for

the joint probabilities than was reported in [19]. This shows that, whereas in most

experiments involving entangled photons the interference pattern is given by sine

functions, here it is given by Bessel functions. We then use this expression to derive the

optimal RF settings for violation of a Bell-type inequality, the CH74 inequality. Finally,

we adapt the correspondence between “prepare-and-measure” and entanglement-based

schemes (often exploited in quantum key distribution) to our setup, showing that

identical RF settings will give rise to identical interference patterns both in two-photon

and in single-photon experiments. This identity is very useful experimentally as it makes
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it possible to test the quality of the RF setup using a broadband white light source. A

detailed comparison of the different experiments is reported in section 3.

At the experimental level, we have improved the experiment reported in [19] in

a number of ways. We have developed an RF architecture based on off-the-shelf

components that provides highly stable control of both the amplitude and phase

of the RF signals used to drive the EOPMs. In addition, we have improved the

stability of the pump laser wavelength and optimized the conversion efficiency of

the periodically poled lithium niobate (PPLN) crystal. We now also use low-noise

superconducting single-photon detectors (SSPDs). Altogether, these improvements

allow us to report two-photon interference with raw and net visibilities of (99.17±0.11)%

and (99.76 ± 0.11)%, respectively. These are comparable to the best results reported

for two-photon interference at telecommunication wavelengths; see, e.g., [24]. By using

the optimal settings mentioned above, we also report violation of the CH74 inequality

by more than 18 standard deviations. Both these figures are considerably better than

those reported in [19].

These results lay the groundwork for future experiments. In particular, they show

that manipulating frequency-bin photon entanglement with EOPMs is a promising

platform for the realization of quantum communication protocols at telecommunication

wavelengths.

2. Theoretical analysis

2.1. Manipulating and measuring frequency-entangled photons using electro-optic phase

modulators and narrow-band frequency filters

The experimental scheme we study in this paper is depicted in figure 1(b), see section

3. It consists of a continuous narrow-band laser at frequency 2ω0 pumping a parametric

down-converter. After removal of the pump beam, the signal and idler photons are

separated. They pass through EOPMs and through narrow-band frequency filters, and

are finally detected. We now give a detailed theoretical description of this experiment.

The parametric down-converter produces photon pairs in a frequency-entangled

state of the form

|Ψ〉 =
∫ +∞

−∞

dωf(ω)|ω0 + ω〉|ω0 − ω〉 , (1)

where f(ω) = r(ω)eiφ(ω) is a complex function of ω that characterizes the bandwidth

of the signal and idler photons. We have neglected in this expression the linewidth of

the pump laser — whose effect is to make the pump (angular) frequency 2ω0 slightly

uncertain.

If one measures the frequencies of Alice and Bob’s photon state, one finds perfect

correlations: if Alice obtains ω0 +ω, Bob obtains ω0 − ω. In practice the frequency can

only be measured with precision ΩF given by the width of the frequency filters used.

This leads to the notion of frequency bin: all photons whose frequencies are contained
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in an interval [ωF − ΩF

2
, ωF + ΩF

2
] are grouped into a single frequency bin centred on

frequency ωF.

When a single photon of frequency ω passes through an EOPM, driven at the RF

ΩRF (with ΩRF > ΩF) with adjustable amplitude c and phase γ, it undergoes the unitary

transformation

|ω〉 7→ Û(c, γ)|ω〉 =
∑
n∈Z

Un(c, γ)|ω + nΩRF〉 , (2)

where

Un(c, γ) = Jn(c)e
in(γ−π/2) (3)

and Jn is the nth-order Bessel function of the first kind.

Since the action of EOPMs on this state can only change the frequencies by integer

multiples of ΩRF, it is convenient to rewrite the state as

|Ψ〉 =
∫ +ΩRF/2

−ΩRF/2

dω
∑
n∈Z

f(nΩRF + ω)|ω0 + nΩRF + ω〉|ω0 − nΩRF − ω〉 . (4)

The motivation for re-expressing (1) in this form is that the EOPMs will cause

contributions from different values of the index n to interfere, while contributions from

different values of the offset parameter ω will add probabilistically. Indeed, with a

sufficiently precise measurement of the frequencies of the photons exiting the EOPMs,

we could determine a specific value for ω and, in retrospect, claim the initial entangled

state was

|Ψ〉 =
∑
n∈Z

f(nΩRF + ω)|ω0 + nΩRF + ω〉|ω0 − nΩRF − ω〉 . (5)

We can further simplify notation by noting that the actual value of ω in (5) is of

no importance. We therefore drop the parameter ω from (5) and adopt the discretized

version

|Ψ〉 =
∑
n∈Z

fn|n〉| − n〉 , (6)

where |n〉 denotes a photon with a frequency ω0+nΩRF+ω for some ω ∈ [−ΩRF

2
,+ΩRF

2
],

and we denote fn = rne
iφn = f(nΩRF + ω), ∀n.

We will also make the hypothesis that fn varies slowly with n, which is justified

if ΩRF is very small compared to the frequency range over which f varies. In our

experiments the bandwidth of the photon-pair source (the scale over which f changes)

is approximately 5 THz, while ΩRF = 25 GHz. This allows us to identify fn ≈ fn+p for

small values of p, say −5 ≤ p ≤ +5 (see next paragraph).

In the experiment schematized in figure 1(b), each photon is separately modulated

with respective parameters a, α and b, β. According to (2), the state (6) is transformed

to

|Ψ〉 7→ Û(a, α)⊗ Û(b, β)|Ψ〉 =
∑
n,d∈Z

fncd(a, α; b, β)|n〉| − n+ d〉 , (7)
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where cd(a, α; b, β) =
∑

p∈Z Up(a, α)Ud−p(b, β), and where we use the assumption that

fn±p ≈ fn. This is reasonable since |Up(c, γ)| decreases rapidly with p for accessible

RF amplitudes: the values of p for which |Up| is large are limited to approximately

p ∈ [−5,+5].

The joint probability of Alice detecting a photon in the frequency bin n on which

frequency filter FA is aligned and Bob detecting a photon in bin −n+ d on which filter

FB is aligned is given by

Pd(a, α; b, β;n) = |〈n|〈−n+ d|Ψ〉|2 = |fn|2|cd(a, α; b, β)|2 . (8)

At this stage, we note that the series giving the coincidence probability can be

summed by using the Graf addition formula [25] (which we rederive in Appendix A in

our adopted notation). We have∑
p∈Z

Up(a, α)Ud−p(b, β) = Ud(C,Γ) , (9)

where C = [a2 + b2 + 2ab cos(α − β)]1/2 and tan Γ = a sinα+b sinβ
a cosα+b cos β

, and we may always

take C to be positive. In terms of these parameters,

Pd(a, α; b, β;n) = |fn|2Jd(C)2 . (10)

Thus manipulating frequency-entangled photons with EOPMs gives rise to Bessel-type

interference patterns, rather than the usual sine and cosine interference patterns in

optics when only two modes are present.

Note that (10) implies the normalization∑
d

Pd(a, α; b, β;n) = |fn|2
∑
d

Jd(C)2 = |fn|2 (11)

required by conservation of probability.

Note also that with modulation turned off the photons do not change frequency

and we have Pd=0(a = b = 0;n) = |fn|2 and Pd6=0(a = b = 0;n) = 0, as expected.

Equation (10) shows that in the experiment schematized in figure 1(b), the

coincidence rate N
(2)
d for frequency bins n and −n + d will be given by

N
(2)
d (a, α; b, β;n)

= Jd([a
2 + b2 + 2ab cos(α− β)]1/2)2 ×N

(2)
d=0(a = b = 0;n) , (12)

where N
(2)
d=0(a = b = 0;n) is the coincidence rate for frequency bins n and −n when the

modulation is off.

2.2. Bell inequality optimisation

We now show that the correlations (10) allow the violation of a Clauser-Horne (CH74)

inequality [26], specifically the violation of S ≤ 2, where (see [19])

S = [N
(2)
d=0(a0, α0; b0, β0;n) +N

(2)
d=0(a0, α0; b1, β1;n) +N

(2)
d=0(a1, α1; b0, β0;n)

−N
(2)
d=0(a1, α1; b1, β1;n)]/N

(2)
d=0(a = b = 0;n) . (13)
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The summation based on the Graf addition formula allows a relatively

straightforward determination of the optimal parameters for violating the CH74

inequality. To this end, we first substitute (10) in order to rewrite the CH74 expression

as

S = J0(C00)
2 + J0(C01)

2 + J0(C10)
2 − J0(C11)

2 , (14)

where

Cij = [a2i + b2j + 2aibj cos(αi − βj)]
1/2 (15)

and i, j ∈ {0, 1}.
The parameters Cij obey constraints imposed by the form of (15). To see this, we

introduce the vectors

ai = (ai cosαi, ai sinαi) ,

bj = − (bj cos βj, bj sin βj) . (16)

In terms of these, Cij = |ai − bj|. We may therefore identify the Cij with the lengths of

the sides of a quadrilateral defined by the vertex vectors a0, b0, a1 and b1. This implies

that each of the four Cij is bounded by the sum of the other three. For example,

C11 = |a1 − b1|
= |a1 − b0 + b0 − a0 + a0 − b1|
≤ |a1 − b0|+ |b0 − a0|+ |a0 − b1|
= C10 + C00 + C01 . (17)

In this way, we reduce the eight-parameter optimization of (13) to a four-parameter

optimization with constraints. There are two possibilities: either the optimum will lie

within the parameter domain, or it will lie along one of the boundaries. We quickly

rule out the former possibility: in this case, local extrema are found for parameters

Cij which are local extrema of J 2
0 . Since at the second greatest extremum we have

J0(x)
2 ≈ 0.162 (for x ≈ 3.832), no combination of four positive extrema of J 2

0 satisfying

the strict inequalities will lead to a violation of the CH74 expression.

A Bell inequality violating optimum, if one exists, must therefore lie along one of

the boundaries. In Appendix B, we show that the global optimum of (14) lies along the

constraint C00 = C01 = C10 = C11/3, systematically ruling out any other possibility.

The optimum of C00 ≈ 0.550, for which S ≈ 2.389, corresponds to the RF parameters

(a0, α0) = (0.275, θ) = (b0, β0) ,

(a1, α1) = (0.825, θ + π) = (b1, β1) . (18)

Reaching the optimal value requires the use of variable — but small — modulation

amplitudes and precise phase adjustment.

These optimal parameters should be contrasted with the analysis and experiment

reported in [19] where the CH74 inequality was violated in a configuration where the

amplitudes a0 = a1 = b0 = b1 were all equal, and only the phases α0, α1, β0, β1 varied. In

this configuration, the largest CH74 violation tends to the above, but requires arbitrarily
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large RF amplitudes. But when the amplitudes are large, the two-photon interference

pattern is much more sensitive to small errors in the RF amplitudes and phases. The

above — optimal — value of S is attained for rather small values of the RF amplitudes,

which makes the experiment much more robust.

For comparison, we note that the maximum value for the expression (13) attainable

by quantum theory for systems of dimension 2 is 2.414, which is quite close to

the maximum value of 2.389 attainable using EOPMs on frequency-bin entangled

photons. However, as the frequency-bin entangled photons belong to a Hilbert space

of dimension greater than 2, it may be that the maximum value attainable by some

local measurements on the state exceeds this value. We do not know whether this is

the case. The algebraic maximum for this expression is 3, which cannot be exceeded by

any measurement.

2.3. Equivalence of two-photon and single-photon interference schemes

There is a mathematical correspondence between correlation experiments on maximally

entangled states and prepare-and-measure schemes, based on the identity 〈i|〈j|UA ⊗
UB|Φ+〉 = 〈i|UAU

T
B |j〉/

√
d where |Φ+〉 =

∑d
i=1 |i〉|i〉/

√
d. Indeed, the first term in the

equality can be interpreted as a measurement on the entangled state |Φ+〉 in which

Alice projects onto 〈i|UA and Bob projects onto 〈j|UB, whereas the second term can be

interpreted as the preparation by Bob of the state UT
B |j〉 and the subsequent projection

by Alice onto the state 〈i|UA.

This theoretical correspondence is well established in the context of quantum key

distribution, where it is used to demonstrate the equivalence between prepare-and-

measure schemes and entanglement-based schemes. However, in general, these two

schemes correspond to different experiments because implementing UT
B is physically

different from implementing UB. This is the case, for example, in experiments involving

time bins. In our case however, where the transformations UA,B are realized by EOPMs,

UT
B = UB, in the sense that we have the identity 〈−n|Û(a, α)|p〉 = 〈−p|Û(a, α)|n〉.

The above mathematical identity thus translates to a physical correspondence between

transition amplitudes in two-photon and single-photon experiments, with all the RF

parameters (amplitudes and phases) kept unchanged.

In practice, this corresponds to the equivalence between the scheme depicted

in figure 1(b) in which entangled photons are manipulated by EOPMs and that of

figure 1(a) in which photons belonging to a particular frequency bin are selected by

filter FA and subsequently modulated with parameters (a, α) and (b, β). Specifically,

the amplitude of detecting photons in frequency bins −n and n+ d in experiment 1(b)

is proportional to the amplitude of detecting a photon in frequency bin n+ d given that

it was prepared in bin n in experiment 1(a):

〈−n|〈n+ d|Û(a, α)⊗ Û(b, β)|Ψ〉
=

∑
p

fp〈n + d|Û(b, β)| − p〉〈−n|Û(a, α)|p〉
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≃ fn
∑
p

〈n+ d|Û(b, β)| − p〉〈−p|Û(a, α)|n〉

= fn〈n+ d|Û(b, β)Û(a, α)|n〉 , (19)

where in line 3 we have invoked the same assumption used to derive (7), namely that fn
is approximately constant over the experimentally accessible range of frequencies which

interfere, and we used the completeness relation
∑

p |p〉〈p| = 1.

Thus, in the experiment of figure 1(a), if a single photon is initially in bin n, the

probability that it is detected in bin n + d has the same functional dependence as

(10) in the two-photon case. Experimentally, the quantity measured is the photon rate

N
(1)
d , where d denotes the separation between the initial bin n and the final bin n + d.

Therefore, we have

N
(1)
d (a, α; b, β;n)

= Jd([a
2 + b2 + 2ab cos(α− β)]1/2)2 ×N

(1)
d=0(a = b = 0;n) , (20)

where N
(1)
d=0(a = b = 0;n) is the photon rate for frequency bin n when the modulation

is off.

Moreover, if bin n initially contains a large number of photons, then in the

experiment of figure 1(a) the optical power N
(class)
d measured in bin n + d, if the initial

light beam is prepared in bin n, is given by

N
(class)
d (a, α; b, β;n)

= Jd([a
2 + b2 + 2ab cos(α− β)]1/2)2 ×N

(class)
d=0 (a = b = 0;n) , (21)

where N
(class)
d=0 (a = b = 0;n) is the optical power for frequency bin n when the modulation

is off.

In addition to the correspondence to the entanglement-based scheme, experiments

based on figure 1(a) are of interest in themselves: when used with a single-photon

source, this scheme allows the realization of quantum communication protocols such as

quantum key distribution, see [21].

2.4. A note on phase accumulation during propagation

If a photon of frequency ω propagates a distance L, its state is transformed according

to

|ω〉 7→ eik(ω)L|ω〉 ≃ ei(β0+β1(ω−ω0)+···)L|ω〉 , (22)

where we have developed the wave number k in series in ω − ω0.

When considering frequency coding of information, the zeroth-order term eiβ0L is

an overall phase, and has no physical influence. The first-order term eiβ1(ω−ω0)L can

be absorbed into the phase γ of the RF field applied to the EOPM, see (3). In all

calculations as well as the analysis of the experiments, we absorb the phases eiβ1(ω−ω0)L

into the phases of the RF fields.

The fact that phases accumulated during propagation can be absorbed into the

phases of the RF fields underlies the inherent high stability of experiments using
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frequency bins. Indeed, stability of our experimental setup requires that β1ΩRFL ≪ 1

(since the only frequencies that interfere are those separated by small multiples of

ΩRF). This should be contrasted with interference experiments in the spatial domain,

where one is sensitive to the phase β0L. Approximate equality of the phase and group

velocities implies that β0 ≃ β1ω0. Since ΩRF/ω0 ≃ 10−4, our experiments are less

sensitive to changes in fibre lengths by a factor of roughly 10−4. This implies that

in laboratory experiments, no stabilization is required. In field experiments, however,

where propagation distances are tens of kilometres, the local RF oscillators must be

synchronized, as was done for instance in [27].

Note that the higher-order terms in (22) due to frequency dispersion cannot be

absorbed in the phase γ of the RF field. In this work, we neglect dispersion effects, but

it may degrade the quality of interference in certain cases — i.e. dispersion management

may be needed for long-distance and broad-spectrum applications.

3. Experimental setups

In this section we describe the experimental implementations of the setups already

introduced and illustrated in figures 1(a) and (b), and point out the critical requirements

for high-visibility experiments.

3.1. Classical optics and one-photon experiments

We present here in total three versions of the experiment schematized in figure 1(a),

differing mainly in the optical source S employed. In the first version, S is a classical

source consisting of a coherent polarized narrow-band laser. In this case neither filtration

nor polarization management is required, since all the photons emitted already belong

to a given frequency bin, with their polarization aligned with the active axes of the

modulators. In the second version, the source, also classical, consists of a non-coherent

non-polarized broadband light source. In this case, the light beam must first pass

through the filter FA and a polarizer before being sent through the setup. This

corresponds more strictly to the entangled-photon case, where signal and idler photons

have a broad spectrum. In the third version (the one-photon experiment), an ideal

broadband single-photon source is approximated by attenuating the broadband light

source until it contains, on average, much fewer than one photon in each frequency bin

within each detection time window. We report the results for all three sources.

In the experiment, filter FA is a home-made fibre Bragg grating used in reflection

with a circulator. It selects photons belonging to the frequency bin [ωF − ΩF

2
, ωF + ΩF

2
]

centred on ωF = ω0 and restricted to a 3 dB width ΩF

2π
≈ 3 GHz. Photons are

consecutively guided through EOPMA and EOPMB (EOSPACE) driven by an RF

signal at ΩRF

2π
= 25 GHz with adjustable amplitude and phase a, α and b, β, respectively

(controlled by the setup depicted in figure 2). At 12.5 GHz, the isolation of FA is better

than 30 dB, ensuring that frequency bins are well isolated from each other. Photons
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Figure 1. Schematic representation of the experimental setups. (a) Classical optics

and single-photon experiments. The source S can be a narrow-band laser, a broadband

incoherent source or a broadband incoherent source attenuated to reach the single-

photon regime. The detector D is either a classical photodiode or, in the single-photon

regime, an APD operated in the Geiger mode. (b) Two-photon experiment. The source

consists of a PUMP laser (whose wavelength λP is stabilized) that enters a PPLN

waveguide (whose temperature TP is stabilized) and is then removed by a drop filter

F. Detectors DA and DB are SSPDs. In both panels, band-pass filters FA and FB select

photons belonging to a specific frequency bin. The phase of the light is modulated by

EOPMA and EOPMB, driven by a signal at frequency ΩRF with respective parameters

a, α and b, β, determined by the RF system depicted in figure 2.

selected by filter FB (which has the same characteristics as FA) are detected. Where

classical sources are used, the optical power N (class) is measured by a photodetector D.

In the single-photon regime, the single-photon rate N (1) is measured with an APD (id

Quantique) operated in gated mode (repetition rate = 100 kHz, detection window size

= 2.5 ns, efficiency ≈ 10% and dark count rate ≈ 3× 10−6 ns−1).

3.2. Two-photon experiment

In the experiment schematized in figure 1(b), a narrow-band (2 MHz bandwidth)

continuous pump laser (Sacher Lasertechnik) stabilized at a wavelength λP emits 3 mW

of power into a 3 cm long PPLN waveguide (HC Photonics). Phase matching is achieved

by controlling the waveguide’s temperature TP. It is then possible to efficiently generate

frequency-entangled photon pairs centred on a specific frequency, corresponding in our

case to the wavelength 2λP = 2πc/ω0 = 1547.743 nm.

At the output of the PPLN, a drop filter F rejects the pump with more than 60 dB

isolation. The pairs are separated (with 50% probability) with a 3 dB coupler, such that

each photon in every entangled pair is sent through an independent EOPM, EOPMA

or EOPMB. Polarization-maintaining fibre components ensure that the photons’
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polarizations are aligned with the active axes of the modulators. Filters FA and FB

select photons belonging to the frequency bin centred on ω0. Photons are finally detected

by SSPDs DA and DB (Scontel) cooled to 1.7 K and operated in the continuous mode

(efficiency ≈ 5%; dark count rate ≈ 30 Hz).

A time-to-digital converter performs a coincidence measurement. Specifically, it

registers the arrival times tA and tB of photons A and B and records the number

of coincident detection events as a function of tB − tA. The coincidence rate N (2) is

extracted from the histogram by summing all contributions for which the difference in

arrival times tB − tA is contained in a given time interval of width 0.6 ns.

3.3. Requirements for high-visibility experiments

In order to produce high-visibility Bessel interference patterns, our architecture must

fulfil some critical requirements, particularly in the two-photon case.

First, in order to obtain precise reproducible interference in the frequency domain,

high-resolution phase and amplitude control of the RF signals must be achieved. We use

the RF architecture presented in figure 2. This architecture is based on RF translation

and uses cheap off-the-shelf RF components. It could therefore be adapted for field

experiments in which Alice and Bob are separated by a large distance.

Figure 2. The RF system used to drive EOPMA and EOPMB in all experiments. A

2.5 GHz signal of an RF generator G is separated by power splitters PSG, PSA and PSB.

The phase of both Alice’s and Bob’s signals is controlled by I&Q modulation. Using

frequency multipliers ×4 and ×2, signal multipliers MA and MB and amplifiers AA

and AB, strong 25 GHz signals are obtained. Their amplitude is controlled by variable

attenuators. Accurate control of the parameters a, α and b, β is thus obtained.
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In this RF architecture, an RF generator outputs a 2.5 GHz, 10 dBm signal. Its

power is equally shared by splitter PSG between Alice and Bob. The two parts of the

setup are equivalent and made independent with isolators. Alice’s and Bob’s signals

are split by PSA and PSB, respectively. A first part of the signal is subjected to I&Q

modulation: a given combination of attenuation allows the precise imposition of an RF

phase. A digital-to-analogue converter controls with high precision the I&Q voltages

IA, QA and IB, QB, allowing fine selection of (I, Q) pairs. In this way, phases α and

β can be shifted from 0 to 2π while the amplitude remains constant. Since the phase

shift introduced at 2.5 GHz is altered by frequency translation (see below), a mapping

is performed at 25 GHz in order to identify the correct (I, Q) couples. This permits

distortion correction, resulting in a highly accurate control of the phase of the RF signal

with a precision better than 10−2 rad. The second part of the signal is sent through a

multiplier and the 10 GHz signal obtained is multiplied, with fixed phase, by the phase-

shifted signal to obtain a 12.5 GHz signal with adjustable phase. Frequency filters

control the purity of the signal. The signal is sent through an amplifier and a frequency

doubler, which amplifies the signal and converts it into 25 GHz. Finally, the signal

is applied to EOPMA or EOPMB with an adjustable amplitude a = πV −1
π R1/2P

1/2
A or

b = πV −1
π R1/2P

1/2
B , where the half-wave voltage Vπ ≈ 2.9 V, the internal resistance

R = 50 Ω and power PA or PB is mechanically adjusted with a variable attenuator. Ten

per cent of the signal is sent to an RF power meter allowing an adjustment of PA and

PB with 10−2 dB precision.

Second, in order to achieve a high and stable SNR in the two-photon case, fine

control of the pump laser wavelength is compulsory. Each down-converted photon

must belong to a frequency bin whose width is set by the 3 GHz band-pass filters

FA and FB. The pump wavelength must thus be accurately set at the centre of a

frequency bin. To this end, 10% of the power of the pump laser is sent to a wavelength

meter (Exfo) that generates an electric signal proportional to the difference between the

measured wavelength and a reference. A proportional-integral-derivative loop generates

an error signal which feeds the piezoelectric transducer of the external cavity of the laser,

stabilizing the wavelength at λP = (773.8715± 0.0002) nm. The degeneracy frequency

ω0 is thus controlled with a precision of around ±0.04 GHz.

Third, in order to have a high and stable pair production rate, one must also

optimize the parametric down-conversion of the PPLN source. To achieve a fine

conversion wavelength control and good efficiency, the PPLN crystal is seated on a

Peltier cell for accurate temperature stability. Precise measurements with a tunable

C-band laser in the second-harmonic regime show that after several hours, a stable

optimized conversion wavelength is reached with about 1 pm precision.

Achievement of the latter two conditions allows us to detect (using low-noise SSPDs)

coincidences at a rate of approximately 20 Hz and with a SNR of approximately 2×103

(without RF signal applied to the EOPMs).

Together with the accurate control of the RF parameters, these improvements lead

to raw and net visibilities of (99.17 ± 0.11)% and (99.76 ± 0.11)%, respectively. This
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should be compared to the 98% net visibilities reported in [19].

Note that compared to our previous work [19], control of the RF phases is now

automated and the accuracy much improved. The detectors in all experiments can be

interfaced to a computer, enabling both selection of RF phases α and β and measurement

data acquisition. Rates N (2), N (1) and N (class) are thus measured during automatically

adjustable times in automatically adjustable RF configurations. Note that replacing

mechanically variable attenuators by remotely controlled components would allow full

automatization of the system. Note also that for long-distance experiments it is possible

to use two synchronized RF generators instead of one, as shown in [27].

4. Experimental results

4.1. Equivalence of interference schemes

We first evaluate the rates N (2), N (1) and N (class). As discussed in section 2.3,

these should have identical dependence on the RF parameters, see (12), (20) and

(21). To experimentally test this equivalence, we chose d = 0, and the parameter

C = [a2 + b2 + 2ab cos(α − β)]1/2 is varied by scanning one of the phases α or β with

a = b fixed. This procedure permits easy evaluation of the interference visibility, the

value of which is critical for the performance of the system.

We define the raw and net visibilities as follows:

Vraw =
Nmax −Nmin

Nmax +Nmin

, (23)

Vnet =
(Nmax −Nnoise)− (Nmin −Nnoise)

(Nmax −Nnoise) + (Nmin −Nnoise)
, (24)

where N denotes either N (2), N (1) or N (class), and Nnoise in (24) represents the noise due

to detector imperfections (e.g. dark counts) which can be measured independently.

The maximal rate Nmax is obtained in principle for C∗ = 0, such that J0(C
∗)2 = 1.

For a = b, this is achieved with a phase difference α − β = π. The minimal rate Nmin

is obtained for any of the positive roots {C∗
i } of J0, for which J0(C

∗
i )

2 = 0, ∀i. The

visibility therefore attains a theoretical maximum value of 1. If a = b, the first root

C∗
1 is attainable at sufficiently high RF powers (a = b & 1.2) with the phase difference

α− β = arccos(C∗2
1 /2a2 − 1).

Our results are summarized in figure 3 and in table 1. Figure 3 is a plot of

Jd([a
2 + b2 + 2ab cos(α − β)]1/2)2 as a function of α − β for d = 0 and a = b ≈ 2.25.

The experimentally derived rates N (2), N (1) and N (class) — normalized by N (2), N (1)

and N (class) with modulation turned off — are superposed to the theoretical curve. The

close agreement of the experimental data taken with the different experimental schemes

validates the predictions of (12), (20) and (21) and thereby demonstrates the equivalence

of the two-photon, one-photon and classical optics experiments of figure 1.

Note that, as mentioned in section 3, an uncontrolled phase shift arises due

to propagation times in the optical fibres. The experimental results are therefore
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Figure 3. Bessel interference pattern in the frequency domain. The interference

described by (12), (20) and (21) is plotted for d = 0 and a = b ≈ 2.25 as a function

of the phase difference α − β. The raw (with detector noise) and net (detector noise

subtracted) data are shown, respectively, on the top and bottom panels. On both plots,

the theoretical curve is included in black, the green data points are the normalized light

intensity N (class) (obtained using the tunable laser source and the setup of figure 1(a)),

the blue data points correspond to the normalized photon rate N (1), i.e. the single-

photon interference pattern (obtained using the broadband source, attenuated to the

single-photon regime, and the setup of figure 1(a)), and the red data points correspond

to the normalized coincidence rate N (2), i.e. the two-photon interference pattern

(obtained using the PPLN source and the setup of figure 1(b)). The error bars are

statistical. Note that the classical measurements N (class) are made with a relatively

noisy photodiode, and the raw visibility for the green data points in the top panel

is therefore less than that reported in table 1, where a low-noise photodiode was

used. Note also that when detector noise is subtracted (bottom panel) the different

experimental data points superpose exactly, demonstrating the equivalence of the

interference schemes, but deviate slightly from the theoretical curve. We attribute

this to small errors in the calibration of I&Q parameters, so that the actual phases α

and β deviate slightly from their theoretical value.
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horizontally shifted in order to obtain the best possible agreement with the theoretical

curve. This is the only parameter that is adjusted to fit the data.

Table 1 gives the values of the visibilities Vraw and Vnet extracted from curves such

as those reported in figure 3. In the classical case a very low noise detector was used to

measure maximal and minimal rates, which is why Vraw ≈ Vnet. Both the laser source

and the broadband source were used. In the single-photon case an APD with a relatively

high dark count rate was used, which explains the low value of the raw visibility. In the

entangled-photon case, the high value of Vraw is due to the quality of the SSPDs, which

are much less noisy than APDs. Maximal and minimal rates were measured for several

minutes in order to obtain good statistical precision on the visibilities.

Table 1. Experimentally measured visibilities.

Classical expt Classical expt One-photon expt Two-photon expt

(laser source) (broadband source)

Vraw (99.79± 0.01)% (99.41± 0.12)% (87.25± 0.38)% (99.17± 0.11)%

Vnet (99.79± 0.01)% (99.41± 0.12)% (99.27± 0.43)% (99.76± 0.11)%

The values of Vraw depend strongly on the noise inherent in the detectors and thus

vary greatly across the different cases. By contrast, the values of Vnet are all almost

equal and notably high. This agreement once again confirms the equivalence between

the different experiments. It also allows us to separate the contributions to visibility

degradation due to the experimental setup from those inherent to the detectors (detector

noise and dark counts) and sources (in particular noise due to multiple photon events)

used. The main contributions from the setup itself are imperfect frequency-bin isolation,

imperfect polarization management and imperfect control of the RF parameters.

4.2. Bell inequality violation

As a second main result, we evaluate the experimental violation of the CH74 inequality

introduced in section 2.2. Scans of both phases α and β at the amplitudes (a0, b0),

(a0, b1), (a1, b0), (a1, b1) given in (18) enable precise selections of the phases α0, β0, α1, β1

given in (18) for which the violation will be largest. Measurements are then realized for

phases and amplitudes optimizing the violation.

The experimental results, listed in table 2, agree with the theoretical predictions

up to the statistical errors and imply that the CH74 inequality is violated by more than

18 standard deviations.

We should, however, mention that this result does not provide a decisive test of

local causality as we have not closed either the detection or locality loopholes, and

because the CH74 inequality, as we have applied it, requires additional assumptions (see

the discussion in [19, 26]). Nevertheless, these results show that our present approach

allows the study of quantum correlations of frequency-entangled photons, and could in



Implementing two-photon interference in the frequency domain 16

Table 2. Bell inequality violation results. AiBj , i, j ∈ {0, 1} is the notational

shorthand for (ai, αi; bj , βj). The column “Theory” gives the values that should be

obtained at the point (18) for which the CH74 violation is maximal. Note that the

experimental values agree with theoretical predictions up to statistical errors.

Theory Expt N
(2)
raw Expt N

(2)
net

(with noise) (noise subtracted)

A0B0 0.857 0.862± 0.006 0.861± 0.006

A0B1 0.857 0.863± 0.006 0.862± 0.006

A1B0 0.857 0.854± 0.006 0.853± 0.006

A1B1 0.182 0.190± 0.003 0.186± 0.003

S 2.389 2.389± 0.021 2.391± 0.021

principle, i.e. if experimental imperfections (mainly losses and detector inefficiencies)

were small, be adapted to permit a decisive test of local causality.

5. Conclusion

In summary, building on our earlier work [19], we have further developed the theory

underlying the manipulation of frequency-bin entangled photons with EOPMs, and

demonstrated that this could be reliably realized experimentally. At the theoretical

level, our main results are an analytic simplification of the expression giving the

coincidence probabilities, and the demonstration of the equivalence of prepare-and-

measure schemes with two-photon schemes. In our experiment, frequency-entangled

photons are produced by parametric down-conversion with a frequency-stabilized pump

laser and a temperature-stabilized PPLN waveguide. They are made to interfere in the

frequency domain through EOPMs whose driving signals are controlled by a dedicated

RF architecture built entirely from off-the-shelf components. Interference patterns are

detected with SSPDs via optical frequency filtering. The interference patterns are

accurately controlled, exhibit high visibilities and allow the violation of a Bell inequality

by 18 standard deviations.

The strengths of our method are

• the use of optical, electro-optic and RF components that are commercially available

and allow easy interconnection and remote control;

• the use of optical components that allow good polarization management, frequency-

bin isolation and stability;

• the use of an RF system that allows stability, independence, easy calibration and

precise adjustment of parameters;

• overall reproducibility and robustness allowing day-long experiments with no

measurable drift or decrease in performance.

Our system can be easily adapted to field experiments, as it is robust and allows full
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automatization and long-distance synchronization. We are therefore confident that

we will be able to extend our results in the near future to long-distance quantum

communication experiments and to perform tasks such as long-distance Bell inequality

violation or quantum key distribution. These future experimental works would be

supported by the theoretical analysis introduced here.
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Appendix A. The Graf addition formula

The matrix elements Un(c, γ) = Jn(c)e
in(γ−π/2) are the Fourier components of the

periodic function e−ic cos(φ−γ), so we have

e−ic cos(φ−γ) =
∑
n

Un(c, γ)e
−inφ (A.1)

(the Jacobi-Anger expansion). Since adding two sine waves with the same period yields

another sine wave, we may write

e−ia cos(φ−α)e−ib cos(φ−β) = e−iC cos(φ−Γ) . (A.2)

We extract an expression for C and Γ by applying the identity cos(φ−γ) = cosφ cos γ+

sinφ sin γ and comparing terms in sinφ and cosφ:

a cosα + b cos β = C cos Γ , (A.3)

a sinα + b sin β = C sin Γ , (A.4)

from which we obtain

C2 = a2 + b2 + 2ab cos(α− β) (A.5)

and

tan Γ =
a sinα + b sin β

a cosα + b cos β
. (A.6)

Note that we may impose C ≥ 0, which fully determines Γ. Equations (A.1) and (A.2)

and the convolution theorem then imply∑
n

Un(a, α)Ud−n(b, β) = Ud(C,Γ) . (A.7)
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Intuitively, (A.2) and (A.7) express that two phase modulators used in series, driven

by sinusoidal RF signals of the same frequency, have the same action as a single phase

modulator. Equation (A.7) is a slight generalisation of the Graf addition formula as

given in [25], expressed in the notation we have adopted.

Appendix B. Optimization of CH74

We begin with the boundary C11 = C00+C01+C10. Considering the partial derivatives

of the expression

S = J0(C00)
2 + J0(C01)

2 + J0(C10)
2 − J0(C00 + C01 + C10)

2 , (B.1)

we find that the optimum must satisfy

(J 2
0 )

′(C00) = (J 2
0 )

′(C01) = (J 2
0 )

′(C10) = (J 2
0 )

′(C00 + C01 + C10) , (B.2)

where (J 2
0 )

′ is the derivative of J 2
0 . Due to the symmetry in (B.1), we may impose

C00 ≤ C01 ≤ C10 without loss of generality. Since J 2
0 ≤ 1, a violation of S ≤ 2 will

clearly require C00 ≤ x2/3 ≈ 0.878, such that J0(C00)
2 ≥ 2/3, and C01 ≤ x1/2 ≈ 1.126,

where J0(C01)
2 ≥ 1/2. Because there is no overlap in the images (J 2

0 )
′([0, x2/3])

and (J 2
0 )

′(]x2/3, x1/2]), (B.2) further imposes C01 ≤ x2/3. Finally, (B.2) together

with injectivity of (J 2
0 )

′ on the domain [0, x2/3] impose C00 = C01, so we require

C00 = C01 ≤ x2/3.

We first assume C00 = C01 = C10 ≤ x2/3 and C11 = 3C00, reducing the problem to

a one-parameter optimization of

S = 3J0(C00)
2 − J0(3C00)

2 . (B.3)

Numerically, we find an optimal value of Soptimized ≈ 2.389 for C00 ≈ 0.550.

We now show that this is the global optimum. The alternative would be to take

some C10 > x1. In this case, it will not be possible to satisfy (B.2) unless C10 & 1.291,

and we have no chance of surpassing the optimum given above unless J0(C10)
2 & 0.389,

which translates to C10 . 1.293. Via (B.2), this in turn imposes C00 = C01 & 0.876, for

which 2J0(C00)
2 . 1.634. However, J0(C10)

2 . 0.390 for 1.291 . C10 . 1.293, which

guarantees we will not surpass the optimum of (B.3).

Finally, we check that there is not a better optimum along one of the three other

possible boundaries. Using the symmetry of (14), without loss of generality we consider

the boundary C10 = C00 + C01 + C11. In this case, and assuming that the function J 2
0

is symmetric, the analogue of (B.1) is

S = J0(C00)
2 + J0(C01)

2 + J0(C10)
2 − J0(C00 + C01 − C10)

2 (B.4)

and we find that an optimum along this boundary must satisfy

(J 2
0 )

′(C00) = (J 2
0 )

′(C01) = (J 2
0 )

′(−C10) = (J 2
0 )

′(C00 + C01 − C10) . (B.5)

Equations (B.4) and (B.5) are identical to (B.1) and (B.2), except with the substitution

C10 7→ −C10. In this case, we still require C00 = C01 ≤ x2/3. This combined with (B.5)

would impose −C10 . −2.405, where J 2
0 . 0.162, again guaranteeing that we will not

surpass the optimum found in the preceding case.



Implementing two-photon interference in the frequency domain 19

References

[1] Ekert A K 1991 Phys. Rev. Lett. 67 661–663

[2] Waks E, Zeevi A and Yamamoto Y 2002 Phys. Rev. A 65 052310

[3] Ma X, Fung C H F and Lo H K 2007 Phys. Rev. A 76 012307

[4] Scherer A, Sanders B C and Tittel W 2011 Opt. Express 19 3004–3018
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