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Crenelated fast oscillatory outputs of a two-delay electro-optic oscillator
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An electro-optic oscillator subject to two distinct delayed feedbacks has been designed to develop pronounced
broadband chaotic output. Its route to chaos starts with regular pulsating gigahertz oscillations that we investigate
both experimentally and theoretically. Of particular physical interest are the transitions to various crenelated
fast time-periodic oscillations, prior to the onset of chaotic regimes. The two-delay problem is described
mathematically by two coupled delay-differential equations, which we analyze by using multiple-time-scale
methods. We show that the interplay of a large delay and a relatively small delay is responsible for the onset of
fast oscillations modulated by a slowly varying square-wave envelope. As the bifurcation parameter progressively
increases, this envelope undergoes a sequence of bifurcations that corresponds to successive fixed points of a
sine map.
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I. INTRODUCTION

Nonlinear problems modeled by delay-differential equa-
tions have attracted much interest during the past two years
[1–8]. A delay appears in any mechanical or physiological
control system because time is needed to sense information
and react to it. If this time lag is too important, oscillatory
instabilities often may take place. These stability problems
caused by a delay arise in all areas of science and engineering
and are explored with different objectives and expectations.
Mechanical engineers studying chatter instabilities in high-
speed machining are first interested in determining the con-
ditions for stable operation [1]. In nonlinear optics, however,
regular and irregular oscillatory outputs caused by a delayed
feedback are studied both experimentally and theoretically [9].
These instabilities are either undesired because they limit
the performance of a particular device (e.g., for ultrapure
microwave generation) or, in contrast, they are used to design
practical systems such as high-frequency and broadband opti-
cal chaotic oscillators (e.g., for secure chaos communication
[10] or high-speed random number generation [11]) or to
develop alternative imaging techniques [9].

The introduction of a second delay in a single-delayed-
feedback problem does not necessarily mean the emergence
of more complex behaviors. For particular combinations of
the two delays, the second feedback can be used to stabilize a
previously unstable steady state or even a desired unstable
periodic orbit [12]. While there is a substantial body of
literature devoted to experimental studies of single-delayed-
feedback problems, little has been attempted experimentally
on two-delay problems [13–15]. In this paper we consider
a broadband chaotic electro-optic oscillator (EOO) subject
to two independent delayed feedbacks [16]. Standard EOOs
typically incorporate a nonlinear (intensity) modulator, an
optical-fiber delay line, and an optical detector in a closed-
loop resonating configuration. This hybrid microwave source
is capable of generating, within the same optoelectronic
delayed-feedback topology, either an ultralow-jitter (low-

phase-noise) single-tone microwave oscillation, as used in
radar applications [17,18], or a broadband chaotic carrier
typically intended for physical data encryption in high-bit-rate
optical communications [19].

The dynamical behavior of the (nonstandard) EOO that we
investigate here depends on a large delay T and a relatively
small delay δT (T/δT ∼ 102). The latter results from the
unusual use of a phase modulator instead of an intensity
one (as for the standard EOO). As we shall demonstrate
experimentally and theoretically, these delays are responsible
for a cascade of period-doubling bifurcations to multiperiodic
regimes that depend on only two basic periods T1 and T2.
Because T/δT is large, we show that the ratio T2/T1 is close
to a large integer value.

The paper is organized as follows. In Sec. II we describe
the particular dual-delay experimental setup of concern and
discuss three time traces obtained by gradually increasing its
feedback gain. Of particular interest are their quite different
temporal waveforms (see Fig. 1) exhibiting different physical
time scales. This motivates the use of multiple-time-scale
techniques for their theoretical description. In Secs. III
and IV we formulate the model equations and determine
the Hopf bifurcation points analytically. Their asymptotic
properties in terms of the two delays are analyzed in Sec. V
and motivate the construction of the first Hopf bifurcation
branch. In Sec. VI we then apply the method of multiple time
scales and determine second- and higher-order bifurcations.
Our main results are summarized and discussed in Sec. VII.

II. ELECTRO-OPTIC PHASE DYNAMICS

We propose to investigate the electro-optic phase oscillator
shown in Fig. 2. The phase modulator (PM) is fed by a
cw-injected light (point 1) coming from a 50-mW telecom
semiconductor distributed feedback laser. The optical phase
of the injected light is then modulated according to the voltage
v(t) applied to the electrical rf input of the PM, while the
intensity of the output light (point 2) remains constant. The
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FIG. 1. (Color online) Experimental rf spectra (left) and time
series (right) for different values of the feedback gain: (a) and (d) β �
0.5 = βH [Hopf threshold, observed for an optical power measured at
point 3 (see Fig. 2), which is used as a reference for the experimental
calibration of the linear β scaling]; (b) and (e) β � 1.24 (crenelated
waveform, with the close-up showing the rising and falling edge of
the envelope); and (c) and (f) β � 5.9 (fully developed chaos).

output light intensity leaving the phase modulator is tuned by
a variable optical attenuator, the resulting light intensity being
measured at point 3 for the evaluation of the normalized and
linearly dependent feedback loop gain β. The corresponding
normalized gain β plays the role of the bifurcation parameter
and can be interpreted as the weight for the dual-delay
nonlinear feedback in the dynamics. The attenuated light then
enters a fiber-based passive imbalanced interferometer (time
imbalancing δT ∼ 402.68 ps). This interferometer converts
nonlinearly the input phase modulation into an output intensity
modulation, which can then be detected by a photodiode at
point 4. The electrical signal at the photodiode output is filtered
according to the bandwidth of the electronic feedback (point 5)
and amplified before being applied to the PM rf input (point 6).
The serial combination of the few meters of fiber pigtails, the
small electrical connections, and the various electrical group
delay of rf devices result in a total time delay in the closed-loop
oscillation measured to be T ∼ 61.89 ns.

When the feedback gain is progressively increased from
zero, fast oscillations are first observed if β � 1/2 = βH ,
as illustrated by the experimental spectrum and time trace
in Figs. 1(a) and 1(d). This regime is recorded right after
the first Hopf bifurcation point and serves as a reference
point for the experimental calibration of the bifurcation
parameter β calculated from the optical power measured at

cw

FIG. 2. (Color online) Experimental setup: 1, unmodulated light
from a semiconductor laser, E1 = E0e

iω0t ; 2, constant intensity, but
phase-modulated light by the electro-optic phase modulator PM,
according to the rf voltage v(t) delivered by the driver or amplifier
A, E2 = E0e

i[ω0t+φ(t)], where φ ∝ v; 3, tuned optical intensity via
a variable attenuator, |E3|2 = γ |E2|2, for adjusting the normalized
feedback gain β ∝ γ ; 4, nonlinear, nonlocal, phase to amplitude
conversion by a passive imbalanced Mach-Zehnder interferometer
(imbalancing δT ), E4 = 1/2[E3 + (E3)δT ]; 5, optical intensity to
voltage conversion by an amplified photodetector PD and dynamics
limitation by the electronic bandpass filtering F; 6, amplification by a
broadband Telecom driver, before applying the feedback to the PM;
the total feedback delay T originates mainly from the optical devices
(PM waveguide and fiber pigtails optical components) and partly
from the electronics (small connectors and devices group delay).

point 3. Right after this Hopf bifurcation, the oscillations are
weakly stable and exhibit amplitude fluctuations. In the rf
spectrum [fast Fourier transform (FFT) computed spectra with
a sub-megahertz resolution, from 600 kSamples time traces
recorded at a 8.3-ps sampling period with 120 GSamples/s
Lecroy WaveMaster 845Zi], we clearly identify the regular
oscillation frequency at f1 = 1.184 GHz or, equivalently, a
period T1 � 0.845 ns. This period is close to 2δT = 0.805 ns,
suggesting that only δT plays a role for the Hopf bifurcation.
From the spectrum, we also note the small noisy peak modes
attached to the large delay T , which is at the origin of the delay
modes spaced by 1/T � 16.16 MHz. Their noisy character is
revealed by the peak amplitude fluctuations in time (from one
FFT to the next one), whereas the deterministic character of
the dominating peak (at the oscillating frequency) leads to
a much more stable peak height. For slightly larger values
of β (β � 0.6–0.9), the rf noisy amplitude fluctuations of the
oscillation disappear and the signal shape progressively moves
to a square wave with the same fundamental frequency.

The plot in Figs. 1(b) and 1(e) illustrates a situation ob-
served when β is further increased and has passed a secondary
bifurcation point near βC � 1.14 [from the measured optical
power at point 3 in Fig. 2, the plot in Figs. 1(b) and 1(e)
corresponds to a regime with β � 1.24]. At this point, slowly
varying crenelated fast periodic rf oscillations emerge. The
period of the slow time envelope is T2 � 122 ns, which is
close to 2T = 123.78 ns, whereas the fast oscillations within
the envelope still exhibit the faster period T1. This suggests that
both δT and T play an active role for the secondary bifurcation.
The period of the slow-time envelope is observed in the FFT
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spectrum by the sideband peaks at ±(2T )−1 surrounding the
large dominant peak at f1 = 1/T1. These sideband peaks in the
FFT spectrum are consistent with the time trace because of the
amplitude modulation (AM) feature observed in the time series
[Fig. 1(e)]. We also note that all peaks in the FFT spectrum
[Fig. 1(b), the noisy ones far from the carrier, the carrier itself,
and the main dominating AM sidebands] are regularly spaced
by 1/2T , thus exactly matching half of a large delay mode
frequency, whereas the peak spacing in the FFT of Fig. 1(a)
(right after the first Hopf bifurcation) matches 1/T .

For much larger values of β, chaotic oscillations are
typically observed. The broadband and very flat spectrum
[Figs. 1(c) and 1(f), with an experimental β evaluated at about
5.9] covers actually the 12-GHz bandwidth of the electronic
feedback [16], of interest, e.g., for spectral masking of a binary
information signal at bit rates as fast as 10 Gbit/s [20].

Our main objective in this paper is to analyze the secondary-
and higher-order bifurcations that immediately appear after the
first Hopf bifurcation. As already anticipated in Ref. [16], the
large number of bifurcations results from the interplay between
two independent delays, namely, δT and T . We shall take
advantage of the small ratio δT /T and determine a two-time
asymptotic approximation of the solution. To this end, we first
determine the Hopf bifurcations of the basic steady state and
obtain useful asymptotic expressions for the bifurcation point
and its frequency. We then propose a nonlinear analysis where
we derive equations for maps.

III. DUAL-DELAY DYNAMICAL MODEL

According to the setup in Fig. 2, we first derive the
dynamical model of the dual-delay oscillator (see Ref. [16]
for details). The nonlocal nonlinear delayed term driving the
electronic feedback filter originates from the output intensity
of the imbalanced fiber-based Mach-Zehnder interferometer:

|E|2 = γ |E0|2 cos2

[
ω0δT + φT − φT +δT

2

]
, (1)

where ω0 is the angular frequency of the laser light source and
we have used the notation

φT ≡ φ(t − T ). (2)

This quantity is detected by a broadband amplified photodetec-
tor. The latter performs both an optical intensity fluctuations
conversion into the electrical domain u ∝ |E|2 and also a
Fourier filtering according to the limited electronic bandwidth,
which is generally smaller than the spectral broadening of the
rf optical intensity fluctuations. This electrical signal is then
linearly amplified by a broadband amplifier A, which is aimed
at driving the rf input v(t) of the PM with a potentially large
amplitude, thus printing the optical phase modulation φ(t) on
the light beam.

The limiting bandwidth is modeled by an electronic
bandpass filter F characterized by two cutoff frequencies
[fhigh = (2πτ )−1 and flow = (2πθ )−1; see Ref. [21]]. Using a
simple second-order definition of the bandpass filter transfer

function, an evolution equation for x = φ(t)/2 ∝ v(t) can be
derived

1

θ

∫ t

0
x(ξ )dξ + τ

dx

dt
+ x=β

[
cos2

(
ω0δT

2 + xT − xT +δT

)
− cos2

(
ω0δT

2

)
]
,

(3)

where β ∝ γ |E0|2 is practically adjusted through a variable
optical attenuator changing γ . For mathematical clarity, we fix
the offset phase at either ω0δT = π/2 or −π/2. Equation (3)
then simplifies as

θ−1
∫ t

0
x(ξ )dξ + τ

dx

dt
+ x = ±β

2
sin[2(xT − xT +δT )], (4)

where the plus and minus signs correspond to ω0δT = −π/2
and π/2, respectively. For those values of ω0δT and by
increasing β from zero, we note that the first Hopf bifurcation
appears at its lowest possible value. This is explained by the
Hopf bifurcation conditions. We note that ω0T only appears
through a factor multiplying β [specifically, β sin(ω0τ )]. The
minimal value of |β| for a Hopf bifurcation then occurs if
|sin(ω0τ )| = 1, meaning ω0δT = ±π/2. Since we wish to
observe a large number of higher-order bifurcations as we
progressively increase β from zero, it is advantageous to start
with a Hopf bifurcation exhibiting the lowest possible value.

Without loss of generality, we consider from now on

ω0δT = π/2 (5)

[minus sign in Eq. (4)] and β > 0. By introducing u ≡∫ t

0 x(ξ )dξ , we may reformulate Eq. (4) as the following system
of two coupled first-order delay-differential equations:

τ
dx

dt
= −x − 1

θ
u − β

2
sin [2(xT − xT +δT )] ,

du

dt
= x. (6)

IV. EIGENMODES

In order to find if pulsating instabilities are possible, we
determine the Hopf bifurcations of the basic state (x,u) =
(0,0). From Eqs. (6) we formulate the linearized equations
and look for a periodic solution of the form x = a exp(iσ s),
where a is a constant and s = t/δT is time normalized to the
small delay. A nontrivial solution is possible if σ satisfies the
characteristic equation

(1 + iε2σ )iσ + ε1 + iσβ[e−iσ ζ − e−iσ (ζ+1)] = 0, (7)

where

ε1 ≡ δT /θ, ε2 ≡ τ/δT , (8)

and

ζ ≡ T/δT . (9)

Using the values of the experimental parameters θ, τ,T , and
δT , we determine ε1 = 1.3 × 10−4, ε2 = 5.1 × 10−2, and ζ =
153.69. The small values of ε1 and ε2 motivate the elimination
of the terms multiplying ε1 and ε2. We then obtain from
Eq. (7) a simple eigenvalue problem for σ given by

exp[iσ (ζ + 1/2)] = −2iβ sin(σ/2). (10)
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From the real and imaginary parts, we obtain two conditions
for β and σ ,

cos[σ (ζ + 1/2)] = 0, (11)

sin[σ (ζ + 1/2)] = −2β sin(σ/2). (12)

We concentrate only on the case σ > 0 [Eqs. (11) and (12) do
not change if we replace σ by −σ ]. Equation (11) determines
the discrete frequencies σ of the time-periodic modes that are
resonant with respect to the large delay T [from Eq. (9), ζ is
T in units of δT ]. Specifically, Eq. (11) is satisfied if

σp = π

2ζ + 1
+ 2pπ

2ζ + 1
, (13)

where the parity of p is imposed by the sign fulfillment
in Eq. (12): An even mode is obtained with p = 2n for
sin(σ/2) < 0 (e.g., σ close to π modulo 4π ) or an odd mode
with p = 2n + 1 when sin(σ/2) > 0 (e.g., σ close to 3π

modulo 4π ). From Eq. (12) and using Eq. (13), we obtain
the feedback gain β as

βp = (−1)p+1

2 sin(σp/2)
> 0. (14)

Figure 3(a) represents βp as a function of σp. The solid line
is provided by Eq. (14) and the red crosses reveal the discrete
modes imposed by Eq. (13) (p is the upper horizontal axis).
For clarity, we show in this figure only the (2n + 1)-odd
modes close to σ = π . Equation (14) allows us to define a
minimum gain eigenmode for which | sin(σp/2)| is necessarily
close to 1. This occurs if σp is close to π modulo 4π

(p odd) or if σ is close to 3π modulo 4π (p even). Therefore,
this minimum gain condition is mathematically satisfied with
multiple possible frequencies, but this degeneracy is usually
removed experimentally in favor of the lowest frequency
eigenmode. Indeed, the electronic amplifiers do not have an
ideally flat frequency response over the full available frequency
bandwidth covering many eigenmode frequencies. The gain
profile in our experiment admits slightly more gain in the
lower part of the electronic bandwidth pushing preferably
the first eigenmode. This was already noted in Ref. [16],
where a Hopf frequency shift was observed slightly below the
theoretical minimum gain condition. Figure 3(b) illustrates this
effect over several degenerate modes, through the successive
parabolic dashed lines that exhibit progressively higher values
of their minima. The red crosses denote the even modes already
represented in Fig. 3(a) in the vicinity of σ = π and the figure
also indicates the other degenerate modes: odd ones around
3π (blue dots) and even ones around 5π (red crosses).

V. PRIMARY BIFURCATION

We wish to determine an asymptotic approximation of the
bifurcation points (13) and (14) that are valid in the limit
ζ → ∞. To this end, we expand the parameters ζ as

ζ = ε−1 + a0 + εa1 + · · · , (15)

where

ε ≡ p−1 = 1

2n
(16)
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FIG. 3. (Color online) Each cross represents a Hopf bifurcation
point located at β = βp and characterized by a frequency σ = σp .
Because of Eq. (5), the first Hopf bifurcation occurs at its minimal
possible value (β = 1/2). (a) Crosses satisfy Eqs. (11) and (12) with
ζ � 153.69, i.e., σ in the vicinity of π . (b) Degenerate modes with
the odd and even modes alternated every 2π . As explained in the text,
the mode degeneracy is removed by the nonflat electronic gain and is
illustrated by the dashed parabola, implying an actually higher Hopf
threshold for the high-frequency modes.

is a small parameter, with p = 2n a large fixed integer
determined from Eq. (13) with the constraint σ � π , as
explained in the preceding section [21]. We next seek a solution
for (σ,β) close to (π,1/2) of the form

σ = π + εσ1 + ε2σ2 + · · · , (17)

β = 1
2 + εβ1 + ε2β2 + · · · . (18)

Inserting Eqs. (15), (17), and (18) into Eqs. (13) and (14),
we equate to zero the coefficients of each power of ε. We
obtain a sequence of problems for the unknown coefficients
σ1,σ2,β1,β2, . . ., from which we find

σ1 = −πa0,

σ2 = π

[
− a1 + a0

2
(2a0 + 1)

]
, (19)

β1 = 0, β2 = σ 2
1

16
.

The first primary Hopf bifurcation that marks the change of
stability of the basic steady state corresponds to the lowest
value of β2. The fact that the leading approximation of the Hopf
frequency is π suggests a bifurcation to 2-periodic square-
wave oscillations in units of time s. Note that the period is not
exactly 2 but admits a correction that depends on a0: using
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Eq. (17), the period 2P is given by

2P ≡ 2π

σ
= 2(1 + εa0) + O(ε2). (20)

We next consider the full nonlinear problem. Motivated by
the linearized theory indicating a first Hopf bifurcation with
period 2 in units of

s = t/δT , (21)

we rewrite Eq. (6) in terms of s and with the variable u ≡ δT y

and obtain

ε2
dx

ds
= −x − ε1y − β

2
sin[2xζ − 2xζ+1], (22)

dy

ds
= x. (23)

From our analysis of the Hopf bifurcation points, we anticipate
a first Hopf bifurcation close to β = βH = 1/2, leading to 2P -
periodic square-wave oscillations with 2P defined by Eq. (20).
As for the analysis of the Hopf bifurcation conditions, we
neglect the contributions of ε2 and ε1 and expect to formulate
a simpler problem. We have verified numerically that their
elimination does not affect the bifurcation diagram provided
we limit our attention to the first bifurcations located in the
prechaotic region. Setting ε1 = ε2 = 0, Eq. (22) reduces to a
single equation for x given by

x(s) = −β

2
sin[2xζ − 2xζ+1]. (24)

This equation defines a map that relates x(s) to xζ and xζ+1.
We next plan to reformulate it by taking advantage of the large
value of ζ and its particular relation with the half period P .
To this end, we simply calculate the ratio ζ/P using Eqs. (15)
and (20) and obtain

ζ

P
= p + O(ε), (25)

i.e., an exact integer ratio as ε → 0. Consequently, the
expressions of xζ and xζ+1 in Eq. (24) can be rewritten as
xζ = xpP + O(ε) and xζ+1 = x(p+1)P + O(ε). Equation (24)
then becomes

x(s) = −β

2
sin[2(xpP − x(p+1)P )] + O(ε). (26)

With the notation

xk ≡ x(s), xk−1 ≡ xP , (27)

Eq. (26) admits the compact form

xk = −β

2
sin[2xk−p − 2xk−p−1]. (28)

In order to determine the Hopf bifurcation branch, we seek
a 2-periodic fixed point of Eq. (28) satisfying the condition
xk = xk−2. Two successive iterations of Eq. (28) provide two
equations for the extrema u0 = xk and u1 = xk−1,

u0 = −β

2
sin(2u1 − 2u0), (29)

u1 = −β

2
sin(2u0 − 2u1), (30)

=0.5 21 1.5

1

x0

0.5

0

-0.5

-1

CH

FIG. 4. (Color online) Numerical bifurcation diagram. The
dashed red curve corresponds to the extrema u0 and u1 of the
basic square-wave period-2 solution, from Eq. (29). The grayscale
dots denote vertically the extrema probability for the corresponding
bifurcation parameter, calculated from the asymptotic dynamic of the
sine map in Eq. (38).

which imply that u1 = −u0 and

u0 = β

2
sin(4u0). (31)

The branch of 2P -periodic solutions emerging from the first
Hopf bifurcation is shown by a thick red dashed line in Fig. 4.
It is obtained from the parametric solution β = 2u0/ sin(4u0)
and u1 = −u0. This solution represents our basic primary
branch that connects the first Hopf bifurcation of the steady
state. We are now ready to determine higher-order bifurcations.
Note that the basic dimensionless time s implies that the period
of the square-wave oscillations in units of time t is

T1 = 2PδT = 2δT + O(ε), (32)

as the experiments suggested.

VI. SECONDARY BIFURCATION

As indicated by the experiments, we now assume that the
Hopf bifurcation branch undergoes a secondary bifurcation to a
slowly modulated, fast 2P -periodic square-wave oscillations.
Specifically, we seek a solution that depends on both time s (t
normalized to δT ) and the slower time

ρ ≡ εs. (33)

We apply the method of multiple time scales [22–24]. The
assumption of two independent time variables implies the
chain rules

xζ = x(s − ζ,ρ − 1 + O(ε)), (34)

xζ+1 = x(s − ζ − 1,ρ − 1 + O(ε)). (35)

Instead of Eqs. (26) and (24) now becomes

x(s,ρ) = −β

2
sin

[
2x(s − pP,ρ − 1)

−2x(s − (p + 1)P,ρ − 1)

]
+ O(ε).

(36)
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We proceed as for Eq. (26). The leading approximation as
ε → 0 is the equation for the map

xk(ρ) = −β

2
sin[2xk−p(ρ − 1) − 2xk−p−1(ρ − 1)]. (37)

Similarly to the derivation of Eq. (31), we look for a 2-periodic
fixed point of Eq. (37) satisfying the condition xk = xk−2. The
extrema u0 = xk and u1 = xk+1 now satisfy the conditions
u1 = −u0 and

u0(ρ) = β

2
sin[4u0(ρ − 1)]. (38)

Equation (38) is equivalent to the well-known sine map
vj+1 = r sin(πvj ) with u0(ρ) = πvj+1/4, u0(ρ − 1) = πvj ,
and r = 2β/π [25]. Equation (38) describes the long time
modulation effects of the rapid 2P -periodic square-wave
oscillations. Its period-1 fixed point satisfies the condition
u0(ρ − 1) = u0 and Eq. (38) reduces to Eq. (31), as expected.
We already know that it corresponds to the fast 2P -periodic
square-wave oscillations in units of time s; however, Eq. (38)
admits other fixed points (see Fig. 4) that gradually lead to
chaotic oscillations as β increases. This is exactly what we
have observed experimentally. The crenelated envelope of the
rapid oscillations shown in Fig. 1(e) occurs for β = 1.14,
which corresponds to the domain βC � 1.13 < β < 1.31
of the secondary bifurcation to a period-2 fixed point of
Eq. (38), as shown in Fig. 4. The period of the crenelated
oscillations corresponding to this period-2 fixed point is, using
Eq. (33), equal to T2 = 2ε−1 in units of time s. Using then the
definition of s and Eq. (15), the period in real units of time
t is

T2 = 2δT ε−1 � 2pδT � 2T , (39)

where p is a large integer. As β is increased further, higher-
order bifurcations appear following the period-doubling route
to chaos of the sine map.

VII. CONCLUSION

We have studied experimentally and analytically the first
instabilities in a nonlinear double-delay electro-optic phase

oscillator. Although the system is modeled by a second-order
coupled delay-differential equation, an asymptotic approxi-
mation based on a strong separation of the delay times leads
to a successful description of the first bifurcations observed
as the feedback gain increases. Our analysis highlights the
dominating modal competition imposed by the delay times
and their resonant conditions.

We showed that the bifurcation diagram exhibits a cascade
of bifurcations to multiperiodic regimes characterized by
fast T1 � 2δT oscillations modulated by crenelated envelopes
with periods that are multiples of T2 � 2pδT . Note that the
ratio T2/T1 � p is a large integer, which explains why the
overall oscillations appear nearly periodic over long intervals
of time. Our results suggest a secondary bifurcation to a
periodic state (periodic locking) rather than a torus bifurcation
exhibiting two incommensurable frequencies. However, a
different analysis is needed to explore the nature of this
secondary bifurcation. The successive bifurcation transitions
are elegantly described by the sine map (38), which depends
only on the two delays. We have verified numerically by
simulating the original equations that the limiting bandwidth
of the electronics does not play a role on the bifurcation
diagram in the first approximation (the parameters ε1 and
ε2 have been neglected). It is involved at the level of the
mode selection between the discrete modes exhibiting equal
or very similar gain thresholds and is determinant if we are
interested in describing the fast transition layers between flat
plateaus. Moreover, these transition layers certainly needs to be
taken into account for the higher-order bifurcations and chaotic
regimes where strongly pulsating oscillations are observed. At
moderate values of the feedback gain β, we could accurately
describe theoretically the occurrence of the crenelated fast
oscillations that result from the fact that we have two distinct
time scales parametrized by the two delays T and δT . The fact
that the fast periodic oscillations are square-wave oscillations
does not play a role. In Refs. [26,27] crenelated slowly varying
envelopes modulate fast pure sine oscillations. The EOO in
these other publications involve only one delayed feedback
and the delay is large compared to the basic time of the fast
oscillations.
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