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Abstract: Many information processing challenges are difficult to solve
with traditional Turing or von Neumann approaches. Implementing uncon-
ventional computational methods is therefore essential and optics provides
promising opportunities. Here we experimentally demonstrate optical
information processing using a nonlinear optoelectronic oscillator subject to
delayed feedback. We implement a neuro-inspired concept, called Reservoir
Computing, proven to possess universal computational capabilities. We
particularly exploit the transient response of a complex dynamical system
to an input data stream. We employ spoken digit recognition and time series
prediction tasks as benchmarks, achieving competitive processing figures of
merit.
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1. Introduction

Optical information processing is a vision originating from the 1970s [1, 2], but due to power
consumption, volume and scaling issues, interest decayed in the 1980s. Notwithstanding, opti-
cal information processing has been receiving reawakened interest with the evolution of pho-
tonic technologies and quantum computing [3]. The potential role of optics in supercomputing
is again under consideration [4–6].

Inspired by the way the brain processes information, neuroscience, neural network, and dy-
namical systems communities have been proposing novel computational concepts [7–9]. These
concepts are fundamentally different from the standard Turing or von Neumann Machine meth-
ods, which are widely implemented in most computational systems. One of these concepts is
known as Echo State Network [7], Liquid State Machine [8] or more generally as Reservoir
Computing (RC). RC is based on the computational power of complex recurrent networks oper-
ating in a dynamical and transient-like fashion. In standard neural networks recurrent networks
have been employed, however resulting in difficulties to train network connection weights. RC
benefits from the advantages of recurrent neural networks, while at the same time avoiding the
problems in the training procedure. A schematic illustration of the network structure typically
considered in RC, is shown in Fig. 1(a). These complex networks (or reservoirs) usually con-
sist of a large number (102 to 103) of randomly connected nonlinear dynamical nodes receiving
the information to be processed via input signals. These input signals are injected from l in-
put channels into m reservoir nodes, with random weights wi

lm. The reservoir response, i.e. the
response of the network to the input signal, is evaluated at the read-out nodes j via a linear



Fig. 1. Schematic representation of RC based on (a) a complex network of nonlinear nodes
or (b) a single nonlinear element subject to delayed feedback via time multiplexing, where
f (x) stands for the the system’s nonlinear transformation and h(t) denotes the system’s
impulse response, respectively.

weighted sum of k node states, with coefficients wr
jk. Due to the characteristics of the reservoir

and its large number of dynamical elements (degrees of freedom), complex classification tasks
and any nonlinear approximation can, in principle, be realized [7, 8, 10].
Without input, the reservoir is typically set to operate in an asymptotically stable, fixed point,
state. When excited by an external stimulus (i.e. the information to be processed), the reservoir
might, however, exhibit complex transient dynamics. The transient dynamical states, essential
for information processing purposes in this scheme, must comply with certain characteristics.
If two input signals are similar enough within a certain range, a sufficiently similar transient re-
sponse must be generated by the reservoir (approximation property). If two input signals belong
to different classes, their transient states must sufficiently differ (separation property). These
two properties, together with a short-term (fading) memory of the system, are crucial for the
computational performance of RC [7, 8]. Similar mechanisms have been reported in real phys-
iological systems [11]. In addition, RC requires the system to be trained with known signals.
During this training phase the read-out weights are optimized, enabling subsequent processing
of untrained signals belonging to the same class as those used in the training procedure [10].

The experimental implementation of traditional RC brings a key challenge with it. The reser-
voir is usually composed of a relatively large number of nonlinear nodes interconnected in a
network. For instance, a photonic LSM based on a network of coupled Semiconductor Optical
Amplifiers (SOA) has recently been proposed and simulated [12, 13]. However, considering
the physical complexity of the reservoir, the approach of many nodes is technologically highly
demanding and often unrealistic. These constrains can be overcome by replacing the complex
network of many elements with an approach based on a single nonlinear element subject to
long delayed feedback via time multiplexing [10]. Delay systems are well known to be high
dimensional and they have been shown to exhibit a sufficiently large number of different tran-
sient states. Despite its simplicity (scalar nonlinear dynamical system, but with a long delay)
this system can perform certain tasks as well as traditional reservoirs [10]. A schematic repre-
sentation of this approach is shown in Fig. 1(b). Here, the complex network is replaced by a
reservoir consisting of a single nonlinear element with delayed feedback. The network nodes
are distributed along the delay line and the data injection is realized via time multiplexing.
From a practical point of view, a big advantage of our scheme is the possible simplification of
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Fig. 2. Optoelectronic implementation of RC with a single nonlinear element subject to
delayed feedback.

a hardware implementation.
In the following, we demonstrate the first experimental realization of optical-based RC using

a single nonlinear optoelectronic device subject to delay feedback. Our experiments prove that
the RC concept can be transfered from the electronic [10] to the optical domain, using optoelec-
tronic hardware. Moreover, by using a different nonlinearity we show that the particular type of
the nonlinearity seems not to be crucial. An advantage of the particular choice of nonlinearity
in this manuscript is that it allows us to study the dependence of the RC performance on the
shape of the nonlinearity in detail. This is achieved by tuning a single experimental parameter.
Finally, our experiment demonstrates the potential for a high bandwidth realization of RC.

2. Experimental setup

The scheme we propose is based on a simple and efficient delay-coupled photonic system,
depicted in Fig. 2. This setup was originally proposed as a modern integrated optics version al-
lowing for the exploration of optical chaos [14–16], as exhibited by an Ikeda ring cavity [18]; it
was also later successfully modified and used in the framework of broadband optical chaos com-
munications [15], and highlighted as a system for studying fundamental characteristics and ap-
plications of complex dynamics including RC [17]. Our implementation consists of several key
components. We employ a standard telecommunication wavelength DFB diode laser (20 mW)
emitting at 1550 nm. An integrated telecom Mach-Zehnder modulator (MZM, LiNbO3) pro-
vides an electro-optic nonlinear modulation transfer function (sin2−function). A long optical
fiber implements the delayed feedback loop and a photodiode is employed for optical detec-
tion. An electronic feedback circuit closes the nonlinear delay loop, connecting its output to the
MZM input electrode. This circuit serves several purposes. It acts as a low pass filter, with a
characteristic response time TR. It allows to add the input information uI(t) to the delayed signal
x(t), and amplifies this signal before it is applied to the MZM to allow for sufficient nonlinear
operation. In addition, it provides the data output w(t).

Our experimental system provides direct access to key parameters, e.g. the nonlinearity gain
β and the offset phase of the MZM Φ0, enabling easy tunability of nonlinearity and dynamical
behaviors. Parameter β is controlled via the laser diode power, while Φ0 is controlled by the
DC bias input of the MZM. In the absence of input signal, the system is set to operate in a
steady (fixed point) state by keeping β at a sufficiently low value. By setting the system in the
steady state, a consistent response of the device to the same input signal is guaranteed.



The signal in the feedback loop can be described by the following scalar equation:

ε ẋ(s)+ x(s) = β sin2[μ x(s−1)+ρ uI(s−1)+Φ0], (1)

where ρ is the relative weight of the input information compared to the feedback signal x
and μ corresponds to the feedback scaling. Parameter ε = TR/τD is the oscillator response
time normalized to the delay and s = t/τD is the normalized time. Setting ρ = 0, the system
performs the well known Ikeda dynamics [18], whose bifurcation diagram has already been
intensively explored in the literature [19]. In the RC approach, the dynamics typically remain
in a fixed point when it is not excited by an input information (β < 1). Dynamical complexity
occurs during the transient response of the nonlinear delay system when it is excited by the
input information.

In delay systems, the dynamical degrees of freedom are distributed along the delay line [20].
Therefore, we define virtual nodes by dividing the total delay interval of length τD, realized by
4.2 km optical fiber, into subintervals of length θ [10]. At the end of each subinterval we extract
the respective virtual node states. By this, we aim at mimicking the nodes of traditional reser-
voirs. Unlike traditional RC, connectivity between virtual nodes is limited to local couplings
including few nearest neighbors. The extent of the coupling is determined by the characteristic
response time (TR) of the nonlinear delayed feedback loop through its impulse response. The
longer (shorter) TR is relative to the separation θ , the more (less) consecutive virtual nodes
are connected. Temporal separations θ slightly smaller than TR were found to yield the best RC
performance [10]. Additional to this short time (local) coupling, a long time coupling originates
from the delayed feedback, as explicitly written in Eq.(1).

In order to evaluate the performance of the system, the transient response of the reservoir
needs to be processed for a given task. This dedicated processing is carried out by one or
several read-out nodes. Each read-out node is defined by a linear weighted sum of the virtual
node states. As it is also the case in traditional RC processing, the read-out weights are obtained
via a training procedure. This training optimizes the linear separation of the virtual node states,
excited by the input information to be processed. A parallel read-out of the virtual nodes can
be obtained by simply tapping the delay line at the node positions. Each virtual node is scaled
with a weight that needs to be determined from the training stage. In our scheme, a sequential
read-out is also possible via time multiplexing, making it more practical and ideally suited
for an experimental realization. We have sequentially read out the full transient response of
the nonlinear delay dynamics and performed an off-line training procedure using a dedicated
toolbox [13].

In our experiments we have chosen a number of NN = 400 virtual nodes [10], a delay time
of τD = 20.87 μs, i.e. θ = τD/NN = 52.18 ns. With the internal system timescale of TR = 240
ns, we calculate a ratio of TR/θ � 4.6 between the system response time and node width. It is
worth mentioning that other values of NN and τD yield similar results, as long as the indicated
relative scaling is fulfilled. This is of particular relevance when the proposed setup has to be
extended to an ultra-fast version involving standard high speed telecom components.

To evaluate the performance of our system we perform two challenging tasks typically used
as benchmark in machine learning and neural network computing: spoken digit recognition
and time series prediction. We would like to emphasize at this point that data injection and
the classification are in this work computed off line. For RC, the input data is multiplied with
a discrete mask, and some additional pre-processing depending on the task at hand. The post
processing of the reservoir readout only consists of a linearly weighted sum. As such, both
steps could in the future be implemented into the experimental realization with high bandwidth
components. The training procedure, which is also carried out offline, once performed, does
not affect the bandwidth of the online operation. Accordingly, the achievable bandwidth of an



Fig. 3. Injection of a spoken digit into the reservoir showing the input connectivity matrix
(left), a Cochleagram of a spoken digit (middle) and the resulting input data of the network
(right). In the connect matrix the color code presents the magnitude of the input scaling fac-
tors wi

lm, in the Cochleagram and the Network input data the color encodes the amplitudes
of the signals, with red (blue) corresponding to large (small) values.

experimental realization consisting of entirely hardware based data injection, reservoir response
and classifier readout should be determined by the bandwidth of our reservoir.

3. Benchmark tests for evaluating computational power

Spoken digit recognition is a benchmark test widely used in the field of machine learning and
in particular RC [21]. The task of recognizing spoken digits reliably at high speed represents
a very demanding computational task. At the same time this test also has a certain appeal due
to its practical nature. The standard approach to spoken digit recognition utilizes data pre-
processing, which replicates the response of the human Cochlea to sound waves, as depicted in
Fig. 3. The Lyon’s Cochlear ear model [22] divides the input signal into 86 channels, containing
different frequency information, and associating each channel’s response to the data input with
a firing (excitation) possibility. The input data matrix Ml (dimension Nf xNs) constructed with
the Lyon’s Cochlear ear model consists of the corresponding Nf =86 frequency channels and a
maximum of Ns=130 samples in time. Ml is multiplied with the input connectivity matrix Wi

(dimension NNxNf , NN=400 being the number of virtual nodes in the delay line), creating the
data input Mi for the reservoir. Most of the elements wi

lm of the connectivity matrix Wi are set to
zero, realizing a sparse and random connectivity between the input layer and the reservoir. The
remaining elements are chosen randomly from two discrete mask values, keeping the system in
a transient state for the duration of the spoken digit, while also breaking the symmetry between
the Nn nodes. The elements of the connectivity matrix remain constant for the duration of the
node separation θ . For training the output weights we have randomly chosen 475 spoken digits
among a data set of 500, leaving 25 for testing. The read-out weights ωr

jk are calculated from a
ridge regression [23] on the system response to the 475 test samples. These weights correspond
to the coefficients of a read-out matrix Wr, which is expected to provide the identification of the
spoken digit in the form of a so-called target function. The entire training and test procedure is
repeated 20 times with different, non-overlapping fragmentations of the 500 speech samples.
By following this approach, we minimize the influence of individual speakers and spoken digits
on our results, as well as providing statistical information.
The performance for this task is characterized by the word error rate (WER), as well as a mar-
gin. We compute the margin by taking the classifier value of the reservoir’s best guess, from
which we subtract the classifier value of the second best guess. Figures 4(a) and 4(b) show
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Fig. 4. (a) and (b) show the WER and Margin for spoken digit recognition in the
(β ,Φ0)−plane (bifurcation parameter vs. MZM phase). The two figures of merit show
a similar dependency on both parameters, with excellent performance at β = 0.3 and
Φ0 = 0.89π . (c) Detailed dependence of the RC performance on the MZM phase at β = 0.3.
(d) MZM transmission function as a function of phase Φ0.

WER and margin extracted from our experiment, displayed in the (β ,Φ0)−plane. Part (c) of
the same Figure provides the Φ0-dependence for a constant β , while the transmission func-
tion of the MZM as a function of Φ0 is shown in part (d). As demonstrated by the nonlinear
transfer function of the MZM, depicted in Fig. 4(d), and by Eq. (1), we can experimentally
realize a variety of different nonlinear response properties to data input. These can be directly
tuned by scanning the (β ,Φ0)−plane, allowing to control magnitude and sign of the linear, as
well as nonlinear response. We can choose to work with settings for different sign and magni-
tude of slope as well as curvature. Accordingly, our experiment represents not only a powerful
electro-optical realization of RC, but at the same time it allows for studying the influence of
nonlinearity and dynamical properties on the RC performance. A strong dependence in classi-
fication capability of the reservoir is found, with the WER ranging from (7.24±0.79) % down
to only (0.04±0.017) %. The systematic dependence of the WER on Φ0 shows the importance
of the nonlinearity for the classification performance. We find the lowest WER always to be at
points close, but not equal, to the local extrema of the nonlinear response. Around these points
the nonlinearity can be approximated by a quadratic function. The optimal operational point
has a tendency to be shifted from the local extrema towards the side with a negative slope in
the response function. Corresponding points, sharing the same nonlinearity, differ in stability
properties of the fixed point for a change in sign of the slope [19]. Besides operating around the
local extrema of the response function, we can tune the operating point to the vicinity of the
inflection point, making its response almost linear. Here the performance strongly decreases,
highlighting the importance of the nonlinearity for classification tasks. When changing β , we
find the optimal operational conditions for intermediate values. As soon as β is sufficiently
large (β >0.1) the performance does not critically depend on β , as long as Φ0 is kept opti-
mized. An increase in β , however, results in a growing sensitivity on Φ0. In the absence of



feedback (μ=0), the system’s performance significantly degrades, with the best classification
yielding a WER of 1.84 %. Removing the delayed feedback strips the system of its memory,
which is thus proven to be beneficial for successful spoken digit classification using our setup.
Figure 4(c) shows the WER and margin as a function of Φ0 for β = 0.3 and ρ � π in more
detail. Error bars are extracted from three independent measurements, repeated under identical
experimental conditions. It can be seen that good performance is not limited to a single point,
with a WER remaining below 0.5% for the range 0.75π ≤ Φ0 ≤ 0.95π .

We further evaluated the performance of our system by addressing the one-time-step predic-
tion task of a time series recorded from a far-infrared laser operating in a chaotic state [24]. The
one-time-step prediction is performed by feeding the reservoir only one explicit data point at a
time. Information about points further in the past are present in the system only implicitly due
to its internal, fading memory. To evaluate the performance of our RC approach we computed
the normalized mean square error (NMSE) between a sequence of predicted points and their
corresponding targets. The results for the one-time-step prediction are depicted in Fig. 5. For
β = 0.2 (blue points), we again find a strong dependence of the NMSE on the MZM phase Φ0

and therefore on the characteristics of the nonlinearity. For Φ0 = 0.1π we obtain the lowest
prediction error with a NMSE= 0.124± 4× 10−4. For the task of time series prediction the
system’s performance is optimized for Φ0 being shifted further away from the local extrema in
the response function, closer towards the inflection point. In addition, the system’s performance
significantly degrades for these values of Φ0 corresponding to the local extrema. This is differ-
ent to the behavior obtained in the spoken digit recognition task, where at these values of Φ0

the performance was not optimal, still the loss in performance was far less significant. We in-
terpret this as a manifestation of the importance of the memory for the one-time-step prediction
task, however, a small amount of nonlinearity is still required for obtaining good performance.
To provide evidence that the performance indeed stems from the interplay of high-dimensional
mapping and nonlinearity and not from the nonlinearity alone, we in addition plot the data ob-
tained when disconnecting the feedback line (red points, μ= 0). The lower performance without
feedback loop (i.e. memory) is clearly visible. Data presented for β= 0.2 shows consistently
better optimal performance for Φ0 <0.5π , where the slope of Eq. (1) is positive. For the case of
zero feedback the performance is almost symmetric around Φ0=0.5π , again indicating that this
effect might be connected to properties of the system’s memory. Timeseries prediction based
on numerical methods achieved even lower prediction errors (below 1 % using echo state net-
works [25] or support vector machines [26]), however neglecting noise and finite experimental
precision, and even more, externally feeding the reservoir several data points at a time.

4. Conclusion

Our results prove that a simple nonlinear optoelectronic system subject to delayed feedback
can efficiently perform RC, a non-Turing type of computation. The presented experiments
encourage a new approach to optical information processing, representing a flexible and
efficient, potentially low power-consuming device with excellent computational performance.
Using RC, parallel and high speed optical processing becomes feasible without the difficulty
of training the entire connection topology of the network [27], which is an advantage over
classical optical neural networks. Laser diodes and other nonlinear optical elements with
dynamical bandwidths easily reaching 10 GHz should allow for an all-optical implementation
of the reservoir. An evaluation of speed limitations due to all-optical data input and data
classification requires, however, more detailed studies. Our approach serves multipurpose
information processing, as demonstrated by the two different computational tasks carried out in
the experiments. We note that a related experiment is reported in [28]. Our demonstrated results
should not be limited to an optoelectronic oscillator and might be transferred to all-optical
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Fig. 5. MZM phase dependence of the RC performance in a time series prediction task,
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0.5π,Φ0 = 0.7πand Φ0 = 0.85π phase values in the vicinity of local extrema of the transfer
function of the MZM (see Figs. 4(d), 1(a), and 1(b)).

implementations. This would allow for direct interconnection between optical communication
and information processing.

Major work needs to be done in the future in order to explore the full potential of our ap-
proach, including scaling possibilities. In addition, implementation of more advanced features,
e.g. enhancing the connectivity of the virtual network, real-time post-processing and plasticity
rules to optimize the reservoir for the corresponding task during the training phase, are foreseen.
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