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We extend the differential theory to anisotropic cylindrical structures

with arbitrary cross-section. Two cases have to be distinguished. When the

anisotropic cylinders do not contain the origin, the scattering matrix of the

device is calculated from the extended differential theory with the help of the

scattering matrix propagation algorithm. The fields outside the cylinders are

described by Fourier-Bessel expansions. When the origin is located in one

cylinder, the fields inside the cylinder are expressed from a semi-analytical

theory related to homogeneous anisotropic medium. In this second case,

the formalism of the scattering matrix propagation algorithm is not exactly

the same and requires suitable change. The numerical results are in good

agreement with the ones obtained for the diffraction by one circular cylinder.

The theory is then applied on the diffraction by an elliptical cylinder. c©

2013 Optical Society of America

OCIS codes: 050.1960, 160.1190, 060.2310.

1. Introduction

For the last half century, the Differential Method (DM) initially developed for studying

gratings [1] has been perfomed to modelize a large variety of diffracting devices. It took

about thirty years to solve the problems of numerical instabilities due to slow convergences

(particularly in TM polarization) and singular matrices to invert occuring when the number

of harmonics increases. The first kind of these numerical problems restricts the DM to thin

gratings specially in Transverse Magnetic (TM) polarisation [2]. The solution is Fast Fourier

Factorization [3, 4]. It allows faster convergences by using Li’s factorization rules [5]. The

second kind of numerical instability is related on the divergence of the Maxwell’s equation
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integration through very thick gratings. The Scattering Matrix Propagating Algorithm (or

S-algorithm) gave the solution in 1996 [6]. From these advances, the DM has been extended

to study photonic crystals [7,8] and gratings made of anisotropic and/or non-linear media [9].

Non-periodic objects have recently been studied by the DM written in cylindrical and then

spherical coordinate systems. The DM was first applied to classical then conical diffraction

by cylindrical objects [10, 11], which finally permits modelization of arbitrary cross-section

Microstructured Optical Fibers [12]. This numerical method was finally extended to three-

dimensional structures described in spherical coordinates [13–15].

In this paper, we generalize the DM for cylindrical objets filled with anisotropic media.

This method is named the ”Anisotropic Differential Method” (ADM). Its formalism requires

splitting the space into three regions: two homogeneous regions and the modulated region

including the diffracting device (see Fig. 1). The Electromagnetic problem is resolved by ap-

plying the boundary conditions at interfaces between these three regions. The DM deals with

the integration of Maxwell equations into the modulated area whereas the fields in homo-

geneous regions are given in analytical expressions. They are expressed by Fourier-Rayleigh

expansions in cartesian coordinates or Fourier-Bessel expansions in cylindrical coordinates

(assuming isotropic homogeneous media). In cylindrical coordinates, one of the homogeneous

areas corresponds to the inner space of a circular cylinder containing the origin as pointed

out in Fig. 1. Consequently, modelizing the diffraction of an anisotropic cylinder including

the origin induces an inner anisotropic homogenenous area. In view of presenting a general

diffracting theory for anisotropic cylinders, we distinguish two cases in our work. When the

origin is placed in the anisotropic cylinder, the diffracting problem is resolved by coupling the

ADM and the semi-analytical theory stated in [16] called the ”Classical Anisotropic Method”

(CAM). The ADM integrates Maxwell’s equations into the modulated area and the CAM

gives the field expressions in the inner anisotropic homogeneous area. For cylinders non con-

taining the origin, only the ADM is used in the modulated area, the fields in homogeneous

areas remaining expressed with a Fourier-Bessel expansion (we suppose the ambiant region

made of an isotropic homogenenous area).

We first write the CAM equations in a matrix form from which the transmission matrix

(T-matrix) of an anisotropic circular cylinder is deduced. This matrix is used in the first

step of the S-algorithm when the studied object contains the origin. Then, we show how to

compute the T-matrices from the ADM written in cylindrical coordinates. Finally, numerical

calculations on circular and elliptical anisotropic cylinders validate the theory by comparison

with the works of Monzon et al [17,18]. The S-algorithm is always used in order to compute

diffracted fields without numerical instabilities. The suitable equations of the S-algorithm

for anisotropic media are specially given for the case of anisotropic cylinders containing the

origin.
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2. Presentation of the problem

We consider an infinitely long cylinder with an axis Oz and with an arbitrary directrix S

containing the origin or not. The first case (see Fig. 2) is designated by Cin and the second

case (see Fig. 3) by Cout. The matrix is filled with a homogeneous isotropic medium with

absolute permittivity ǫmat. The interior region of the cylinder contains an arbitrary (lossy or

lossless) anisotropic homogeneous material, characterized by the electric permittivity tensor:

¯̄ǫcyl =




¯̄ǫxx ¯̄ǫxy ¯̄ǫxz

¯̄ǫyx ¯̄ǫyy ¯̄ǫyz

¯̄ǫzx ¯̄ǫzy ¯̄ǫzz


 (1)

in which no symmetry relation is assumed a priori. Only in the Cout-configuration, the

material may be inhomogeneous in the cross-section which implies the dependence of the

components of ¯̄ǫcyl with respect to the cartesian coordinates x and y.

By introducing the transformation matrix ℜ, which links cartesian to cylindrical coordi-

nates, the expression of the permittivity tensor in cylindrical coordinates is given by the

relation:
˜̃ǫcyl = ℜ¯̄ǫcylℜ

T (2)

where T exponent stands for transpose. The components of ℜ are given by the scalar products

between the basis vectors {ex, ey, ez} in the cartesian coordinate system and {er, eθ, ez} in

the cylindrical coordinate system:

ℜ =




er.ex er.ey er.ez

eθ.ex eθ.ey eθ.ez

ez.ex ez.ey ez.ez


 =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 (3)

Since the cylindrical coordinate system is orthogonal, it is not necessary to distinguish be-

tween covariant and contravariant tensorial components and thus it will be denoted by

subscripts. It is worth noting that while ˜̃ǫij with (i, j) ∈ {r, θ, z}2 may be dependent on x

and y, they necessarily depend on θ through equation (3).

The space is divided into three regions by two circular cylinders with directrices Cmin and

Cmax of radii Rmin and Rmax respectively defined in order to be tangential to the surface of

the studied cylinder. In the case of Fig. 2, the interior region (int) such as r ≤ Rmin is filled

with an anisotopic medium with permittivity tensor ¯̄ǫint = ¯̄ǫcyl. The exterior region (ext)

such as r ≥ Rmax is always filled with an isotopic medium with permittivity ǫext = ǫmat.

In the case of Fig. 3, the region (int) is filled with the same medium as the region (ext),

and ¯̄ǫint = ǫintId = ǫextId where Id denotes the identity matrix. The space between the

two circular cylinders Cmin and Cmax is the modulated area. The permittivity tensor of the
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modulated area is noted ¯̄ǫ(r, θ) of which terms are 2π-periodic functions with respect to θ

with discontinuities at angles where the cylindrical surface is defined.

An incident planewave in the exterior region with unit amplitude and wavevector k(inc) is

defined as in ref. [11] by the incident angles θinc =
(
−ex,k

(inc)
t

)
and ϕinc =

(
k

(inc)
t ,k(inc)

)

where k
(inc)
t is the transverse component of k(inc) (in Oxy-plane). The k(inc)-components

in Cartesian coordinates are noted (α0, β0, γ0). The polarization vector E(inc) of the plane

wave can be arbitrarily oriented in the plane transverse to k(inc). The z-dependence of the

scattered field is given by eiγ0z with

γ0 = kext cos θinc (4)

where kext = (2π/λ0)
√

ǫext/ǫ0 and λ0 the wavelength in vacuum.

3. Calculus of the Scattering Matrix of the entire device

The S-algorithm is an iterative process computing the S-matrix of the modulated area split

into L ∈ N layers or sub-modulated areas, from T-matrices of each layer. Radii of interfaces

surrounding the (s)−layers are denoted rs, and the T-matrices are now denoted T (s). Pre-

cisely, this iterative process propagated along the entire modulated area consists of computing

for each layer the S(s+1)-matrix on the outermost interface according to the T (s)-matrix and

the S(s)-matrix on the innermost interface [11]. This section provides the calculus of the

T (s)-matrices of these sub-modulated areas for anisotropic cylinders with an arbitrary cross-

section. For the case Cin, we first present the semi-analytical expression of the T-matrix of

an anisotropic circular cylinder required by the initial iteration of the S-algorithm on the

first interface Cmin and obtained from the theory exposed in ref. [16]. Then, this section

continues with the generalization of the Differential Method (DM) to anisotropic cylinders

with arbitrary cross-section which permits the calculation of the T (s)-matrix of each layer in

the modulated area used in the S-algorithm.

3.A. Transmission matrix of an anisotropic circular cylinder

We consider here a circular anisotropic cylinder with radius R centered to the origin, as

described in Fig. 2 in the particular case of a non modulated area, i.e. Rmin = Rmax = R.

We first write in a matrix form the expressions of the electromagnetic field in the Fourier

space for the anisotropic medium from the basic equations of the CAM presented in ref. [16].

The transmission matrix of the cylinder is then obtained by applying the electromagnetic

continuities to its interface r = R with the analytical field expressions for the isotropic

medium outside the cylinder.

In the anisotropic medium (r ≤ R), the equations (38), (39), (42) and (43) in ref. [16]

allow to express the Fourier coefficients of θ and z-components of the electromagnetic field
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versus their undetermined amplitudes, in a matrix form:

[F (r)] = Ψ̃(r)
[
Ã
]

(5)

where the column matrix [F (r)] is made of [Eθ], [Ez], [Hθ] and [Hz], then the column matrix[
Ã
]

contains the amplitudes Ã1,ν and Ã2,ν in the anisotropic media. We use the same notation

as shown in [11] that introduces [U ] as a column matrix containing the truncated series of

the quantity U . The matrix Ψ̃ is made of 4 × 2 blocks:

Ψ̃(r) =




Ψ̃11(r) Ψ̃12(r)

Ψ̃21(r) Ψ̃22(r)

Ψ̃31(r) Ψ̃32(r)

Ψ̃41(r) Ψ̃42(r)


 (6)

in which

{
Ψ̃1j(r)

}
n,ν

=
n

rkj,ν,ρ

(
αn,j,ν −

βn,j,ν

kj,ν,ρ

)
Jn (kj,ν,ρr) −

βn,j,ν

kj,ν,ρ

Jn+1 (kj,ν,ρr) (7)

{
Ψ̃2j(r)

}
n,ν

= γn,j,νJn (kj,ν,ρr) (8)

{
Ψ̃3j(r)

}
n,ν

=
−1

iωµ0

[
n

rkj,ν,ρ

(
kj,ν,ργn,j,ν +

βn,j,νγ0

kj,ν,ρ

− αn,j,νγ0

)
Jn (kj,ν,ρr) + (αn,j,νγ0 − kj,ν,ργn,j,ν) Jn+1 (kj,ν,ρr)

]

(9){
Ψ̃4j(r)

}
n,ν

=
βn,j,ν

iωµ0

Jn (kj,ν,ρr) (10)

with j = 1 or 2 and using the formula J ′

n(ζ) = nJn(ζ)/r − Jn+1(ζ). ω is the incident

field circular frequency and µ0 the vacuum permeability. We precise that coefficients αn,j,ν ,

βn,j,ν and γn,j,ν are respectively given by equations (33) to (35) in ref. [16], and kj,ν,ρ is

the ρ-component of the wavevectors kj(ϕ) with a discretization of angle ϕ on 2π-range

(see equations (15) and (16) in ref. [16]). We notice that the size of the matrix Ψ̃(r) is

4(2N + 1) × 2Nϕ where N denotes the truncated order of the Fourier developments so that

n ∈ [−N, +N ] and Nϕ the step number of ϕ-discretization so that ν ∈ [1, Nϕ].

In the outer isotropic region (r ≥ R), the column matrix [F (r)] is linked to the column ma-

trix
[
V (ext)(r)

]
containing the quantities A

(ext)
e,n Jn (kt,extr), A

(ext)
h,n Jn (kt,extr), B

(ext)
e,n H+

n (kt,extr)

and B
(ext)
h,n H+

n (kt,extr) by the relation (34) in ref. [11] that we write again:

[F (r)] = Ψ(ext)(r)
[
V (ext)(r)

]
(11)

with k2
t,ext = k2

ext − γ2
0 and k2

ext = ω2µ0ǫext. The terms A
(ext)
e,n , A

(ext)
h,n , B

(ext)
e,n and B

(ext)
h,n are

the Fourier amplitudes of the field z-components in the (ext) region. The matrix Ψ(ext)(r) is

explicitly given by equations (34) to (37) in the same previous reference.
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Finally, the transmission matrix of the anisotropic circular cylinder denoted T (ani) is ob-

tained by writing the continuity of [F (r)] at the interface r = R:

[
V (ext)(R)

]
= T (ani)

[
Ã
]

(12)

where

T (ani) =
{
Ψ(ext)(R)

}−1
Ψ̃(R) (13)

in which the inverse of the diagonal-block matrix Ψ(ext)(R) is analytically expressed. The

size of this matrix is 4(2N + 1) × 2Nϕ. We remark that the unknown quantities are the

diffracted amplitudes B
(ext)
e,n , B

(ext)
h,n , Ã1,ν and Ã2,ν whereas A

(ext)
e,n , A

(ext)
h,n are the given incident

ones. The resolution of the diffracting problem by using the equation (12) requires that

the discretization with respect to ϕ follows the same truncation of the Fourier series, i.e.

Nϕ = 2N + 1.

3.B. Differential theory for anisotropic cylinders

We pose here the main equations of the ADM which lead to the T-matrix expression of one

anisotropic modulated area. They may be seen as the achievement of the Differential theory

stated in ref. [11] to anisotropic cylinders with arbitrary cross-section. The last formulation

of this theory taking into account the Li factorization rules in the linear relation between D

and E (called the Fast Fourier Factorization method or FFF) was initially written for the

general case of periodic objects in Cartesian coordinates and made of inhomogeneous and

anisotropic materials [2, 4].

In the modulated area, the permittivity tensor may be written as a function of the ra-

dial and angular variables: ˜̃ǫ(r, θ), considering the coordinate transformation matrix ℜ (see

equation (2)) and the alternation of tensors ¯̄ǫmat and ¯̄ǫcyl versus θ for a fixed r-value. In the

Fourier space, the FFF method consists of expressing the column matrix [D] as the product

between Qǫ matrix (equations (14-15) in ref. [11]) and the column matrix [E], Qǫ depending

on Cǫ matrix (equation (12) in ref. [11]). The independence of the object according to z

implies that Cǫ is written for inhomogeneous and anisotropic media as:

Cǫ =
1

δ




Nrǫrθ + Nθǫθθ Nr −Nr (Nrǫrz + Nθǫθz)

−Nrǫrr + Nθǫθr Nθ −Nθ (Nrǫrz + Nθǫθz)

0 0 δ


 (14)

where

δ = N2
r ǫrr + N2

θ ǫθθ + NrNθ (ǫθr + ǫrθ) (15)

in which ǫij are the components of tensor ˜̃ǫ(r, θ). All terms Ni and ǫij with (i, j) ∈ {r, θ, z}2 are

dependent on r and θ. We specify that the functions Ni are defined as arbitrary extensions of

the components of the normal vector to the diffracting surface (S) inside the whole modulated
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area (see ref. [10] in which different kinds of extensions are analyzed). Ni functions are chosen

here as piecewise-constant functions with respect to θ. However, the non trivial dependence

of Cǫ terms to r and θ imposes the use of a Fast Fourier Transformation algorithm to compute

its Fourier coefficients from which the matrix Qǫ is deduced. The equation (14) implies that

the Qǫ matrix is made a priori of 9 non nil blocks since only two terms of Cǫ are nil, when it

contains only 5 non nil blocks for isotropic media [11]. Combining the Maxwell equations and

constitutive relations of media expressed thanks to equations (14) leads to the differential

equation sets given by eqs. (26)-(27) in ref. [11]. Finally, the T (s)-matrix of the anisotropic

modulated area is obtained by the integration of this differential set using a shooting method

along each (s)-layer (see section 4.C in [11]):

T (s) =
{
Ψ(ext)(rs+1)

}−1
[Finteg(rs+1)] Ψ

(ext)(rs) (16)

where [Finteg(rs+1)] is the vector [F (r)] obtained at the end of the integration (initial vector

chosen equal to identity matrix).

Before to numerically validate the theory, it is worth to mention the calculation of the

T (s)-matrices of an isotropic and homogeneous (s)-layer. Its permittivity is denoted ǫiso. The

T (s)-matrix is easily expressed by applying the continuity of [F (r)] at interfaces r = rs and

rs+1 and with the equation (11) written for the isotropic medium (iso):

T (s) =
{
Ψ(ext)(rs+1)

}−1
Ψ(iso)(rs+1)C

(iso)(rs, rs+1)
{
Ψ(iso)(rs)

}−1
Ψ(ext)(rs) (17)

with

C(iso)(rs, rs+1) =




J 0 0 0

0 J 0 0

0 0 H 0

0 0 0 H


 (18)

and

(J)n,m =
Jn (kt,isors+1)

Jn (kt,isors)
δnm (19)

(H)n,m =
H+

n (kt,isors+1)

H+
n (kt,isors)

δnm (20)

δnm is the Kronecker symbol.

4. Numerical validation

We present in this section the validation results of ADM and the coupling between ADM

and CAM. To accomplish this, the numerical results are compared with the ones shown

by Monzon et al in [17, 18] and by our previous works in [16] treating the diffraction of a

planewave by an anisotropic circular cylinder. At first, the study of one anisotropic circular
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cylinder non containing the origin permits the validation of only the ADM. After briefly

introducing the suitable equations of S-algorithm for cylinders containing the origin, we

have extended this geometry to elliptical anisotropic cylinders which has required coupling

ADM and CAM. Convergence tests reinforce the numerical analysis. The numerical code is

written in Fortran 90 and is executed on a personal computer with CPU at 2.66 GHz. The

length units are not mentioned since no material dispersion is considered (fixed refractive

index).

4.A. Cout-case

As shown in Fig. 3, we are interested in an anisotropic cylinder that does not contain the

origin (Cout-case), particularly in a circular cylinder defined by a center C, a radius R = 1

and a distance to origin Λ = 2 (see Fig. 4). In spite of this common profile, this geometrical

mounting is complex to compute with ADM (the need of many Fourier coefficients to describe

the profile) on account of non angular symmetry, but remains relevant to validate the theory.

The parameters of the incident planewave are λ = 2, ϕinc = 90o and θinc = 30o. Later on,

we suppose that any permittivity tensor is diagonal, i.e. the optic axes are parallel to the

Cartesian axis. The first studied cylinder is made of a biaxial anisotropic medium with

relative permittivities equal to ǫxx = 2, ǫyy = 2.25 and ǫzz = 2.5. The outside region is

filled with air (ǫmat = 1). We compare the numerical results obtained with the ADM for

the cylinder non including the origin (fig. 4) and the ones obtained with the CAM for the

same cylinder but centered to origin. The CAM is considered as the reference method due

to its large number of numerical accuracies (theory based on semi-analytical formulation)

and to the fact that it has been widely validated in [16]. It is important to notice that the

well-known S-algorithm [6, 11] is used in order to avoid numerical instabilities. Fig. 5(a)

points out the electric and magnetic differential cross sections (DCS), expressed in eqs. (67)

and (68) in [16], noted σE(θ) and σH(θ) respectively, and calculated with both methods. For

CAM, the truncation order N is equal to 20. For ADM, N = 100 and the number L of layers

for S-algorithm is equal to 40. Good agreement between the results of CAM and ADM is

confirmed by convergence tests shown in Fig. 5(b) of σH(270o) and σE(301o) according to

N . The relative error between σH(270o) computed at N = 100 for ADM and at N = 20

for CAM reaches 0.03%, and is equal to 0.4% for σE(301o). It is worth noticing that the

incident polarization and the cylinder electrical size can affect the convergence speed. For

instance, the convergence slows down when the circular cylinder radius decreases. We have

also checked that the diffracted field maps of |Ez| and |Hz| obtained with ADM for N = 60,

and illustrated in Fig. 6, are exactly the same as the ones computed with CAM.

We consider now the circular cylinder with the same geometrical parameters but filled

with a uniaxial medium such as ǫxx = 4.87526 and ǫyy = ǫzz = 5.29 for which the DCS are
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illustrated in Fig. 7(a). The gaps between the permittivities inside and outside the cylinder

are clearly higher than the ones in the previous case of a biaxial medium, that is why

the ADM results converge more slowly to the value obtained with CAM (see Fig. 7(b)):

the relative error between σH(270o) computed at N = 100 for ADM and at N = 20 for

CAM reaches 1.39%, and is equal to 0.66% for σE(321o). We would like to specify that the

computation time is 11 seconds at N = 10 and 174 minutes at N = 100 for calculation with

ADM whatever the anisotropic medium.

4.B. Cin-case

Above all, we have to focus our attention on the S-algorithm for Cin-case. The region (int) is

filled with the anisotropic medium for which the Fourier coefficients of the field are expressed

from the CAM (Eq. (5)). The modulated area is split into L ∈ N layers (s), s ∈ [1, L], with

T (s)-matrices given by equation (16). An infinitely thin isotropic layer with permittivity ǫext

is added at each interface (with radius rs). For a fixed thickness Rmax − Rmin, the number

L of layers is chosen so that the matrices T (s) are well conditioned. In other words, the

thicknesses rs+1 − rs of (s)-layers are chosen small enough to avoid numerical instabilities

(see also ref. [2]). To maintain precision on surface profile discretization, the number M of

steps in differential set’s integration is chosen such as M × L remains constant. For the

coupling ADM-CAM, the S(s′)-matrix at the interface r = rs′ (s′ ∈ [1, L + 1]) takes the

following form: ( [
B(ext)(rs′)

]
[
Ã
]

)
= S(s′)

[
A(ext)(rs′)

]
(21)

where the column matrix
[
B(ext)(r)

]
contains the components A

(ext)
e,n Jn (kt,extr) and

A
(ext)
h,n Jn (kt,extr), then

[
A(ext)(r)

]
the components B

(ext)
e,n H+

n (kt,extr) and B
(ext)
h,n H+

n (kt,extr).

The matrix S(s′) differs from the common one used in S-algorithm [6, 11] since it is a non

square matrix with a size of 4(2N + 1) × 2(2N + 1). Besides, it links two different kinds of

amplitudes:
[
Ã
]

and
[
A(ext)(rs′)

]
. Noticing S

(s′)
1 and S

(s′)
2 both 2(2N +1)×2(2N +1) blocks

of S(s′), the iterative process of the S-algorithm reduces here to:

Z(s) =
[
T

(s)
11 + T

(s)
12 S

(s)
1

]
−1

(22)

S
(s+1)
2 = S

(s)
2 Z(s) (23)

S
(s+1)
1 =

[
T

(s)
21 + T

(s)
22 S

(s)
1

]
Z(s) (24)

The initial matrix S(1) at the interface r = r1 = Rmin is obtained thanks to the T (ani)-matrix

given by equation (13). By comparison of the equation (12) with R = Rmin and equation

(21) for s′ = 1, we obtain S
(1)
2 =

{
T

(ani)
1

}
−1

and S
(1)
1 = T

(ani)
2

{
T

(ani)
1

}
−1

using the same
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notation for blocks of T (ani) as the S(s′)’s ones. At the last interface r = rL+1, the S(L+1)-

matrix identifies to the S-matrix of the entire modulated area defined in equation (21) with[
B(ext)(rL+1)

]
=
[
B(ext)(Rmax)

]
and

[
A(ext)(rL+1)

]
=
[
A(ext)(Rmax)

]
.

We study in this section the diffraction by an elliptical cylinder centered to origin (Cin-

case) and filled with the same biaxial medium as the previous one. The modelization of such

a device requires coupling the CAM (to describe the fields in region (int)) with the ADM (to

describe the fields in the modulated area). We observe in Fig. 8(a) the variation of DCS when

the semi-major axis of length a (along the x-axis) increases from 1 to 1.5, the semi-minor

axis of length b (along the y-axis) being fixed at 1. The continuity of variation of σH(270o)

and σH(90o) versus a for a circular cylinder is checked in viewing Fig. 8(b). We show that

the increase of the semi-major axis implies a reinforcement of the transmitted peak and an

attenuation of the reflected peak.

But we tarry on the convergence test of the coupling ADM-CAM versus the truncation

order as shown in Fig. 9 for the highest point σH(270o). In fact, thanks to a semi-analytical

formulation given in eqs. (6) to (10), the CAM converges quickly according to the truncation

order N but remains numerically unstable. The terms of matrix Ψ̃(r) are linear depending

on Bessel functions Jn(kj,ν,ρ) which tend toward zero when n increases. Consequently, few

columns of Ψ̃(r) and T (ani) contain terms with very low values if N is sufficiently high.

The inversion of T
(ani)
1 needed to calculate the S-matrix at the first step of the S-algorithm,

becomes numerically tricky (determinant of T (ani) tends toward zero). We specify that these

numerical instabilities do not occur in the case of the T-matrix for an isotropic layer (eq.

(17)) because the terms of Ψ(j)(r) are normalized by the Bessel and Hankel functions (see

eqs (19) and (20) then eqs (35) to (37) in ref. [11]). So, only the blocks T
(s)
11 may diverge when

N and the layer’s thickness increases, which justifies the use of the S-algorithm (the terms

of other blocks have values close to unity). For anisotropic media, the matrix Ψ̃(r) cannot

be normalized in the same way because the subscripts n and ν are basically different. One

idea consists of normalizing all terms by JN(kj,ν,ρ) (n fixed) but this implies a divergence

of both blocks of T (ani) (not only T
(ani)
1 ) for terms evaluated at low values of n. Finally, we

have found no solution to avoid numerical instabilities that occur in the inversion of T
(ani)
1

for high values of N .

However, the CAM is very accurate before numerical instabilities appear, and it converges

faster than ADM. That is why it seems judicious for coupling both methods to impose

different truncation orders noted NCAM and NADM such as NCAM ≤ NADM . When NADM

is strictly higher than NCAM , the matrix S(1) is computed at N = NCAM (from the matrix

T (ani)) and permits the evaluation of S(1) at N = NADM , the other terms for high orders

being forced to zero. This last matrix becomes the initial matrix of the S-algorithm (equal to

the identity matrix otherwise). This operation may be seen as a filtering procedure to order

10



NCAM of all Fourier expansions in CAM when the truncation order in ADM is fixed to NADM .

For instance, Fig. 9 clearly points out that the coupling between ADM and CAM is wrongly

conditioned from N = NCAM = NADM = 20 only due to the divergence of
{
T (ani)

}
−1

in

CAM. But numerical instabilities progressively disappear when NCAM decreases (see sub-

figure in Fig. 9).

5. conclusion

We have validated the Differential Method for studying diffraction by the anisotropic cylin-

der. The homogeneous regions, induced by the space splitting, impose consideration of two

kinds of configurations with regard to origin localization. When the origin is placed out-

side the anisotropic objet, the method uses a generalized form of the differential method

equations. But, in the opposite case, this extended differential method is combined with a

semi-analytical one describing the field in one anisotropic homogeneous region. The suitable

relations to propagate fields in modulated area by the S-algorithm are thus exposed in this

case. The numerical application of the method on an anisotropic circular cylinder is in good

agreement with results obtained by Monzon et al [17, 18]. The case of an anisotropic ellip-

tical cylinder is then studied. It reveals that a balanced convergence requires two different

harmonic numbers of both truncated developments of the combined methods.

Our future works will deal with finding modes in optical fibers made of anisotropic media

by using the present methods. In fact, one of the advantages of the methods is to consider an

anisotropic cylinder with an arbitrary cross-section. So, we will be particularly interested in

liquid crystal photonic crystal fibers. They are particularly interesting since their properties

of index-guiding may be tuned by this kind of anisotropic material. The method will be

reinforced by the consideration of symmetry.
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List of Figure Captions

Fig. 1. (Color online) Schematic representation of two kinds of anisotropic cylinders studied.

Fig. 2. (Color online) Configuration Cin: Anisotropic cylinder containing the origin.

Fig. 3. (Color online) Configuration Cout: Anisotropic cylinder non containing the origin.

Fig. 4. (Color online) Anisotropic circular cylinder non containing the origin.

Fig. 5. (Color online) Comparison between DCS calculated with CAM and ADM for a biaxial

medium.

Fig. 6. (Color online) Diffracted field maps for anisotropic circular cylinder computed with

ADM for N = 60. τ is the relative error between CAM and MDA field maps (average relative

error computed at each point of field maps).

Fig. 7. (Color online) Comparison between DCS calculated with CAM and ADM for an

unaxial medium.

Fig. 8. (Color online) Study of DCS for anisotropic elliptical cylinders with different values

of the semi-major axis a. The semi-minor axis b is fixed at 1.

Fig. 9. (Color online) σH(270o)versus NADM for different values of NCAM and for a = 1.1.

13



MODULATED AREA

MODULATED AREA

HOMOGENEOUS

HOMOGENEOUS

HOMOGENEOUS

HOMOGENEOUS

AREA

AREA

AREA

AREA

SS

Cylinder containing the origin Cylinder non containing the origin

Fig. 1. (Color online) Schematic representation of two kinds of anisotropic

cylinders studied.
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Fig. 2. (Color online) Configuration Cin: Anisotropic cylinder containing the

origin.
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Fig. 9. (Color online) σH(270o)versus NADM for different values of NCAM and

for a = 1.1.
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