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Abstract— Nanosciences have recently proposed a lot of
proofs of concept of innovative nanocomponents and especially
nanosensors. Going from the current proofs of concept on this
scale to reliable industrial systems requires the emergence of a
new generation of manufacturing methods able to move, posi-
tion and sort micro-nano-components. We propose to develop
’No Weight Robots-NWR’ that use non-contact transmission
of movement (e.g. dielectrophoresis, magnetophoresis) to ma-
nipulate micro-nano-objects which could enable simultaneous
high throughput and high precision. This article deals with a
control methods which enables to follow a high speed trajectory
based on visual servoing. The non-linear direct model of the
NWR is introduced and the calculation of the inverted model
is described. This inverted model is used in the control law to
determine the control parameter in function of the reference
trajectory. The method proposed has been validated on an
experimental setup whose time calculation has been optimized
to reach a control period of 1 ms. Future works will be
done on the study of smaller components e.g. nanowires, in
order to provide high speed and reliable assembly methods for
nanosystems.

I. INTRODUCTION

This article deals with the closed loop control of a non-
contact dielectrophoresis system which can be considered
as an original robotic structure compared to the current
industrial robot. The first industrial robot UNIMATE [1]
based on standard joints was commercialized in 1961
(see figure 1). Nowadays more than one million of robots
are in use all over the world. In the 1980’s the use of
compliant structures in robotics [2] was started to enable
high precision positioning making them, at present, the
most widely used structure for microscale robots [3], [4].
However, transmission of movement in such robots is
obtained via the movements of mechanical parts which
largely limits throughput due to inertial effects. In the
2000’s, LightWeight Robots [5], [6] have been developed
by KUKA[7] to reduce robot inertia. However, the impact
of inertia is still important in the small scales (micro-nano)
where the inertia of the object is highly negligible compared
to the one of the robots. A new consist in developing
robots that use non-contact transmission of movement
to manipulate micro-nano-objects [8], [9], [10]. Besides
eliminating the inertia of a robotic structure, this approach
also eliminates friction and adhesion (between the tweezer
and the component) which highly reduce robot performance
and life time.

These ’No Weight Robots’ NWR are at the cross-road
between parallel robot and current non-contact manipulation.
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Firstly, NWR consists of moving components by applying
forces coming from several physical field sources which
have a similar effect to parallel robotics [11], [12] where
the platform is moved by several mechanical forces coming
from several robotic legs. The use of non-contact forces,
rather than mechanical forces, changes the robot design
drastically. In this regard, existing robotic approaches
cannot be transferred to NWR. Secondly, current non-
contact manipulation has been achieved mostly by open
loop for object positioning or self-assembly [13-20] .
The only exception concerns laser trapping which has
been experimented in closed-loop by Arai et al. [19],
[20]. However, laser trapping induces forces around
tens of picoNewtons limiting the achievable throughput.
The dielectrophoresis proposed in this paper generate
forces around thousand times higher [21], [22]. Providing
closed loop control strategies will enable active and
reprogrammable trajectory control and guarantee the final
position of a manipulated object.

This paper introduces a numerical model of a micro-
bead’s behaviour in a dielectrophoresis system, in the next
section a closed loop control strategy is presented then
the experimental setup is presented as well as experimental
results.

Fig. 1. Movement transmission used in robotics: (i) standard joints used in
a majority of robots; (ii) compliant joints based on mechanical deformation
used in high precision positionning systems; (iii) the third alternative:
movement transmission based on non contact forces

II. DIRECT DYNAMIC MODEL OF A
DIELECTROPHORESIS-BASED SYSTEM

In this section, we present a 3D dynamic model of a bead
driven by a dielectrophoretic force. This model is used in
the trajectory control law to determine the voltage to applied
in function of the trajectory reference. As we consider only
beads and no dephasing, electrorotation is not considered.



A. Dielectrophoresis force similator

In order to compute the electric field and then the dielec-
trophoretic force applied to a micro-object in an electrode
structure, a numerical simulator is needed. This numerical
simulator must be able to compute the dielectrophoretic force
generated by very complex geometries in a very short time.
For one hand, corresponding analytic equations are very
complex and hard to be established. For a second hand,
the finite element modeling (FEM) solution is limited to a
long computation time and specially when electric voltage
changes frequently. Thus, we propose to use the hybrid
numeric simulator proposed in [16] gathering the ability of
the FEM solution to simulate complex electrodes geometry
and the short computation time of the analytical equations.
According to [23], the dielectrophoretic force

−→
F DEP applied

to the micro-bead’s center X(x, y, z) with respect to the
electric field

−→
E (X,U) can be written as:

−→
F DEP (X,U) = 2πεmr

3Re[K(ω)]∇(
−→
E 2(X,U)), (1)

where

K(ω) =
ε∗p − ε∗m
ε∗p + 2ε∗m

, (2)

and ε∗p and ε∗m are respectively the complex permittivity of
the particle and the medium with:

ε∗ = ε+ j
σ

ω
, (3)

ε is the relative permittivity, σ is the conductivity and ω
is the angular velocity of the electric field. Thus, if we
consider a configuration of n electrodes, by applying n− 1
sinusoidal electric voltages identified by there magnitudes
U = [U1, ...Un−1] and there angular velocity ω, the electric
field

−→
E (X,U) can be computed using the hybrid method

described in [16]. This hybrid method consists in computing
the electric field

−→
E (X,U) by integrating the surface charge

density on the electrodes. In fact the electric charge density
Q and the magnitudes of the applied voltages U on the
electrodes are linearly related:

Q =

n−1∑
i=1

CiUi, (4)

where Ui is the magnitude of the applied voltage on the
ith electrode and Ci is the elementary inter-capacitance
between the electrodes influenced by the ith electrode.
The inter-capacitance between the electrodes depends only
on the geometric shape of the electrodes and the electric
permittivity of the medium. The Ci is simulated using FEM
software. These simulations are executed in preprocessing
which reduces the total time of the force computation. If
we consider the planar electrodes drawn in the figure 2 (red
lines), the number of electrodes n is equal to 4 and they are
placed in the x, y plane.

To compute the electric charge density Q with respect
to the applied voltages U = [U1, U2, U3], n − 1 = 3
FEM simulations are required. The figures 2(a) and 2(b)

show the elementary inter-capacitances C1 and C3. The
figure 2(c) shows how the electric charge density Q is
analytically computed with respect to the applied voltages
U = [75V, 0, 75V ] and the elementary inter-capacitances C1

and C3.

(a) Elementary inter-
capacitance C1.

(b) Elementary inter-
capacitance C3.

(c) The computed charge density C = 75×C1 +
75× C3.

Fig. 2. The electric charge density computed on the electrodes by applying
the following electric voltages: U = [75V, 0, 75V ].

Once the matrix of the electric charge density Q is
computed, the electric field can be calculated analytically
in a point X(x, y, z) in the medium. In fact, with each value
Qi,j of the computed matrix Q corresponds a xi,j , yi,j point
on the electrodes (zi,j = 0 because of the electrodes are in
the x, y plane). Thus, the expression of the electric field

−→
E

at the point X(x, y, z) is:

−→
E (x, y, z) =

∑
i

∑
j

Qi,j
−→r

4πεm‖−→r ‖3

 , (5)

where r = [x − xi,j , y − yi,j , z], and the DEP force can be
also computed analytically with respect to (1). The figure
3 resumes the DEP modeling simulator (DMS) block. The
block’s inputs are the geometric shape of the electrodes, the
applied voltages and the micro-bead’s current position. This
block generates the computed x, y and z components of the
dielectrophoretic force applied to the micro-bead in its center.

B. 3D direct dynamic model

The inertia of a micro-bead in a dielectrophoretic force
field can be neglected [9], [10]:

−→
F DEP (X) +

−→
F Drag(Ẋ) +

−→
P = 0. (6)



Fig. 3. DEP modeling simulator (DMS).

In the micron scale the Stokes approach of the viscosity
friction is valid,

−→
F Drag(Ẋ) becomes:

−→
F Drag(Ẋ) = −6πνR

−→̇
X, (7)

where ν is the dynamic viscosity and R the radius of the
micro-bead. The dynamic equation is thus:

−→̇
X =

−→
F DEP (X) +

−→
P

6πνR
=

−→
F D(X)

6πνR
, (8)

where
−→
F D is the driving force, sum of the dielectrophoretic

force and the weight.
The diagram in the figure 4 illustrates the 3D direct

dynamic modelling. Having the applied electric voltages and
the electrodes geometry as input, the direct modelling sim-
ulator computes the corresponding micro-bead’s trajectory.
In generally, the micro-bead’s behavior in dielectrophoretic
force field is characterized by its high dynamics and nonlin-
earity. This numeric simulator is experimentally validated in
[16] where we have shown that the dynamics of the micro-
bead is less than 3ms. Moreover the behaviour of the micro-
bead is subjected to a high nonlinearity and especially when
the micro-bead approaches the electrodes.

Fig. 4. A dynamic modeling and DMS are used to compute the micro-
bead’s 3D trajectory.

III. HIGH SPEED CONTROL STRATEGY

As mentioned above, the dielectrophoretic-based system
is characterized by the high speed motion of the micro-
object, which makes it compatible for a high speed control
system. Thus to use the dielectrophoretic force to control
the position of a micro-object in such system two main
aspect must be considered. The first one is the high speed
of the micro-object’s motion, where the control system must
be theoretically at least twice faster than the time constant

of the system. The second one is the high non-linearity of
the generated force with respect to the applied voltages and
the micro-object’s position. For these reasons, classic control
low, such as PID controler are not efficient. In this study we
propose to consider the dielectrophoretic system as a robotic
manipulator where the dynamic model presented above is the
direct dynamic model (DDM). The inverse dynamic model
will be used later to control the micro-object’s velocity and
position. The computation of the DDM presented in (4), (5)
and (8) is quite long and it takes several milliseconds even
when using a high-speed computing processor, e.g. if we
use a 1MHz control system, at least 104 CPU clock are
needed, witch mean that 10ms are required to complete the
computation. In orer to imrpove the calculation time in the
controler a 3D simplified model has been developed.

A. 3D simplified model

In order to reduce the complexity of the computation, we
will consider that the electrodes surface is planar in the x, y
plane. The 3D dielectrophoretic dynamic modeling simulator
is designed to run on a classic PC with high performance
(typically GHz) and it is not optimized to be integrated
directly into a controller card with lower calculation perfor-
mance (typically MHz). Thus, a simplification of the 3D
simulator is proposed. We assume that the micro-bead will
move only in a limited space above the electrodes surface in a
parallelipedic workspace. The simplified 3D DDM (SDDM)
uses a similar approach to the 3D DDM presented above.
In this SDDM, a database of the elementary spacial force is
created. This database links the 3D dielectrophoretic force
directly to the applied voltages, which will reduce sufficiently
the computation time. Using the linear relationship between
the electric field

−→
E and the applied voltages U , the dielec-

trophoretic force can be written as a second order equation
with respect to the electric voltages. Using the electrodes
configuration presented in the figure 5, and the following
electric voltages vector:

U = [u1, u2, u3] = [V1 − V4, V2 − V4, V3 − V4], (9)

the driving force [FDx
, FDy

, FDz
] can be written as the

following:

FDx = fx1u
2
1 + fx2u

2
2 + fx3u

2
3

+ fx12u1u2 + fx13u1u3 + fx23u2u3

FDy = fy1u
2
1 + fy2u

2
2 + fy3u

2
3

+ fy12u1u2 + fy13u1u3 + fy23u2u3

FDz
= −mg + fz1u

2
1 + fz2u

2
2 + fz3u

2
3

+ fz12u1u2 + fz13u1u3 + fz23u2u3 (10)

u1, u2 and u3 are the varying voltages and fxij , fyij and fzij
are spacial functions in x, y and z. Discrete values of these
functions will be computed in a x, y and z grid points using
the 3D simulator and stored in a database and a quadratic in-
terpolation is used to evaluate these functions in an arbitrary
(x, y, z) point inside the parallelipedic workspace. Using this



numeric model, the SDDM becomes: ẋ
ẏ
ż

 =
1

6πνR

 FDx
(U)

FDy (U)
FDz (U)

 (11)

Fig. 5. Geometry of the electrodes and applied voltages: definition of
control parameters ux and uy .

Consequently, the computation time is reduced and few
arithmetic iterations are executed in a very short time, even
with the interpolation procedure. Indeed, 60 CPU clock
cycles are needed to compute the 3 components of the dielec-
trophoretic force in a grid point, and 270 CPU clock cycle in
an interpolated position. Thus if we consider that the micro-
bead’s time response is 3ms and for a successful tracking 5
control sequence are generated, a controller card with 1MHz
clock takes 0.2ms to compute the dielectrophoretic force
using the SDDM.

B. 3D inverse dynamic model

The behavior of a micro-bead in a dielectrophoretic system
is characterized by its high dynamics as presented above and
the nonlinearity of the generated force with respect to the
applied voltages as shown in the equation (11). The analytic
inversion of the SDDM (11) is not possible due to the strong
coupling between the control variables u1, u2 and u3 and
the generated force. One way to solve this problem is to
use the Newton-Raphson numeric method which is able to
find the values of the control variables with respect to a
required value of the force. Newton-Raphson is a method
for finding successively better approximations to the roots
of a real-valued functions. By sampling the SDDM (11) and
knowing the trajectory [x̂(t), ŷ(t), ẑ(t)] with respect to the
time we are able to compute the appropriate control variable
U(t) using the Newton-Raphson method as illustrated in the
figure 6:

By sampling the dynamic equation (11) using a sampling
period T we obtain: x̂k+1

ŷk+1

ẑk+1

 =
T

6πνR

 FDx
(Uk)

FDy
(Uk)

FDz
(Uk)

+

 xk
yk
zk

 (12)

where x̂k+1, ẑk+1 and ẑk+1 are the next trajectory point at
the date kT . Applying the Newton-Raphson method to this

Fig. 6. The Newton-Raphson method is used to find the control variables
u1, u2 and u3

model consists in finding iteratively a series of u1 u2 and
u3. At the date kT we have:

Uk+1 = Uk − J−1(Uk)

 fx(Uk)
fy(Uk)
fz(Uk)


where U0 are the last computed control variable, J is the
Jacobian matrix:

J =


∂fx
∂u1

∂fx
∂u2

∂fx
∂u3

∂fy
∂u1

∂fy
∂u2

∂fy
∂u3

∂fz
∂u1

∂fz
∂u2

∂fz
∂u3

 (13)

and

fx(U) = FDx
(U)− 6πνR(x̂k+1 − xk)

fy(U) = FDy
(U)− 6πνR(ŷk+1 − yk)

fz(U) = FDz
(U)− 6πνR(ẑk+1 − zk) (14)

The iterations clasically stops when:

‖u1l+1
− u1l‖ 6 δu and ‖u2l+1

− u2l‖ 6 δu and
‖u3l+1

− u3l‖ 6 δu (15)

where δu is an error threshold.

IV. EXPERIMENTATIONS AND RESULTS

A. Experimental set-up

In an experimental point of view, the main challenge is to
build a control loop able to guarantee a high frequency calcu-
lation which requires to optimize the position measurement,
the controller, the voltages generator. In micro-scale the
most used position sensor is the camera. Thus using vision
as feedback,the camera must be a high speed acquisition
camera with a high speed communication protocol. As for
the voltage generator, the digital analogical converter must
have a very short latency (response time) controlled via
also a fast communication protocol. These conditions direct
us to a very limited choice. Among the different existing
solutions we chose for the position sensor the ”Photonfocus”
camera with Camera Link communication protocol,capable
to acquire more than 1000 ips (images per second), in ROI
mode (Region of Interest). The frame is grabbed using a
PCI (Peripheral Component Interconnect) frame grabber, and
the communication time in real time is less then 10µs also
in ROI mode. As for the voltages generation we use the



National Instruments ”analog output NI PCI−6733”
with a response time less then 1µs using PCI interface.
Thus to connect the camera and the voltages generator to
the hight speed real time control unit, the controller must
have a Camera Link frame grabber attached to a PCI port
and an other PCI port for the NI module. The most practical
solution is to use the real time Unix. By installing a real time
patched kernel in a unix distribution we can create periodic
tasks with a deterministic period less than 1µs. Thus using a
classic PC, having at least 2 PCI slots we can establish a
high speed control system capable to communicate with the
camera and the voltages generator. The diagram presented in
the figure 7 illustrates the closed loop chain.

Fig. 7. The closed loop chain. It illustrates each part of the loop with the
time taken to complete the chain.

To verify the time taken to measure the position and
apply the voltages, we will consider the time taken by each
elements of the loop. Starting by measuring the position, a
simple image processing algorithm is used to compute the
micro-bead’s position. It consist of computing the barycenter
of the thresholded image as the micro-bead is the only object
in the ROI. The execution time of this algorithm depends
on the size of the image. If we consider that the ROI is a
256x256 pixels window, the measured time to compute the
micro-bead’s position is 10µs. The second element in the
chain is the control variable (voltages) computation. Using
the SDDM presented above, the measured time taken by the
computer is 20µs. The communication measured between
the camera and the controller and the analog output is less
than 1µs. Thus the time from acquiring the image and
applying the voltages is about 30 ∼ 40µs. The camera
frequency is 1kHz, so the controller sampling time is fixed
to 1ms. Between two image acquisitions, the delay between
the acquired image and the applied voltages is very small
compared to the controller period, thus we can guarantee
that each 1ms a new voltages are applied with respect to a
new measured position.

B. Experimentations
In the experimental setup the electrodes presented in the

figure 8 are used. The electrodes are submerged in the

physical parameters notations values
vacuum permittivity ε0 8, 85 · 10−12CV −1m−1

particle permittivity εp 8, 4 · ε0
particle conductivity σp 10−12Sm−1

medium permittivity εm 24.9ε0
medium conductivity σm 1.35−11Sm−1

medium volumlic density Rm 789Kgm−3

frequency f 10KHz
Clausius-Mossotti Re[K(ω)] −0.42

TABLE I
PHYSICAL PARAMETER USED IN THE CONTROLLER.

ethanol instead of water in order to reduce the electrolyze
effect. The physical parameters used in the SDDM are
presented in the table I

Fig. 8. The electrodes used in the experiments. The microbead’s radius is
40µm

C. Discussions

The experiments show that the dielectrophoretic system is
capable of transport particle with high speed (1860µms−1)
using closed loop control (fig.9). However, when choosing
a faster trajectory reference (5600µms−1), the reference
velocity is greater than the maximum velocity (fig.10).
The controller computes the optimal voltages enabling the
maximum velocity. The bead is following the trajectory with
a dynamic error. The particularity of this system is that the
velocity is not limited by the voltage generators. Indeed,
because of the non-linear behavior of the dielectrophoretic
force, maximum velocity is not reached for the maximum
voltage, but for an optimal voltage lower than the saturation
voltage of our voltage generator. The maximal velocity is
defined by the electrodes geometry and the radius of the
microbead.

V. CONCLUSION

At the micro and nanoscales, robotic manipulation can be
based on non contact forces able to induce trajectory where
inertia can be neglected. This ”No Weight Robots -NWR”
can induce high speed trajectory which could of interest
in high throughput micro-nano-assembly. This paper has
proposed a high speed closed loop control methods based on
vision based control. The controller is based on a non-linear
model of the system optimized to be computed in less than
1ms. Experiments show the performance of the trajectory
control in high speed velocity (greater than 1000µm.s−1.
Future works will be focused on the manipulation of smaller
components dedicated to nanosystems.



Fig. 9. A x=y ramp trajectory from 0 to 40µm during 30ms. This figure
illustrates a fast controlled trajectory.

Fig. 10. A x=y ramp trajectory from 0 to 40µm during 10ms. This figure
illustrates the saturation of the system. The controller computes the optimal
voltages, but the reference trajectory is impossible to track.

0 ms 10 ms 

20 ms 30 ms 

100 µm 

Fig. 11. Examples of photos captured by the camera during the trajectory
control reported in figure 9. The microbead radius is 40 µm, the reference
trajectory is a x=y trajectory (see video enclosed).
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