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Making use of partial knowledge about hidden
states in HMMs: an approach based on belief

functions
Emmanuel Ramasso, Thierry Denoeux

Abstract—This paper addresses the problem of parameter
estimation and state prediction in Hidden Markov Models
(HMMs) based on observed outputs and partial knowledge of
hidden states expressed in the belief function framework. The
usual HMM model is recovered when the belief functions are
vacuous. Parameters are learnt using the Evidential Expectation-
Maximization algorithm, a recently introduced variant of the
Expectation-Maximization algorithm for maximum likelihood
estimation based on uncertain data. The inference problem, i.e.,
finding the most probable sequence of states based on observed
outputs and partial knowledge of states, is also addressed.
Experimental results demonstrate that partial information about
hidden states, when available, may substantially improve the
estimation and prediction performances.

Index Terms—Hidden Markov Models, Dempster-Shafer The-
ory, Evidence Theory, Evidential Expectation-Maximisation
(E2M) algorithm, Uncertain data, Soft labels, Partially supervised
learning.

I. INTRODUCTION

Hidden Markov Models (HMMs) are powerful tools for
sequential data modeling and analysis. For several decades,
many complex applications have been successfully addressed
using HMMs, such as word sequence discovery in speech
recordings [20], motion sequence recognition in videos [30],
gene finding in DNA sequences [16], prognosis of ball bearing
degradation [11], [21] or financial time series forecasting [5].

A HMM is a simple dynamic Bayesian network composed
of observed random variables (outputs) Xt and latent discrete
random variables (hidden states) Yt, where t is a discrete time
index [20] (Figure 1). The sequence of states Y1, Y2, . . . is a
Markov chain and the distribution of the output Xt at time t,
as well as the distribution of Xt conditional on all Xu, only
depend on Yt. We note that this simple model has recently
been extended to “pairwise” [18] and “triplet” Markov chains
[19]. However, only the basic HMM will be considered in this
paper.

In the standard setting, the outputs are observed until some
time T while the states remain hidden. The model parameters
(i.e., the probability distribution of Y1, the state transition
probabilities and the parameters of the conditional probability
distributions of Xt given Yt, referred to as emission probabil-
ities) can then be estimated using an iterative procedure called
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Fig. 1. Graphical representation of a Hidden Markov Model.

the Baum-Welch algorithm [1], [20], which is a particular
instance of the Expectation-Maximization (EM) algorithm.

In this paper, we consider a different situation in which the
states are not completely hidden but are partially observed.
Partial observations of hidden states may be available in a
wide range of applications. For instance, in speech recognition,
partial information on words or phonemes may be available
from the analysis of lip motion. In behavior analysis, video se-
quences may be labeled with some imprecision or uncertainty.
In machine diagnosis and prognosis applications, experts may
express probability judgements on the machine condition at
different time steps, etc.

Here, partial knowledge about hidden states will be assumed
to be described using the the Dempster-Shafer theory of
belief functions [26], a formal framework for representing
and reasoning with uncertain information. This theory com-
bines logical and probabilistic approaches to uncertainty and
includes the set-membership and probabilistic frameworks as
special cases. In particular, it allows the representation of weak
knowledge up to complete ignorance: the usual HMM model
will thus be recovered as a special case.

In this context, we will solve the two classical problems
related to HMMs, i.e.,

1) Estimating the model parameters based on observations
of outputs and partial information on states (learning)
and

2) Finding the most likely sequence of states, given the
observed outputs and partial information on states (in-
ference).

The latter problem will be solved by a variant of the Viterbi
algorithm, while the former will be addressed using a method-
ology for statistical inference based on uncertain observations
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first introduced in [7] in the special case of Gaussian mixture
models and exposed in a very general setting in [10]. As
HMMs can be seen as generalizations of mixture models
[3], the results presented in this paper somehow extend those
presented in [7], with more mathematical intricacies due to
the sequential nature of the model. The main features of this
approach are:

1) The representation of uncertain observations using belief
functions;

2) The definition of a generalized likelihood criterion that
can be interpreted in terms of degree of conflict between
the statistical model and the observations.

3) An extension of the EM algorithm, called the Evidential
EM (E2M) algorithm, which under very general condi-
tions converges to a local maximum of this criterion.

The rest of the paper is organized as follows. Section II
presents the necessary background on belief functions and the
E2M algorithm. The core of our contribution is described in
Section III and Section IV reports experimental results. Section
V concludes the paper.

II. BACKGROUND ON BELIEF FUNCTIONS

This section recalls the necessary background notions on
the Dempster-Shafer theory of belief functions (Subsection
II-A) and its application to statistical estimation using the E2M
algorithm (Subsection II-B).

A. Basic concepts

Let Y be a variable taking values in a finite domain Ω,
called the frame of discernment. Uncertain information about
Y may be represented by a mass function m on Ω, defined
as a function from the powerset of Ω, denoted by 2Ω, to the
interval [0, 1], such that∑

A⊆Ω

m(A) = 1. (1)

Function m is said to be normalized if m(∅) = 0, a condition
that will be assumed in the rest of this paper. Any subset A
of Ω such that m(A) > 0 is called a focal element of m. Two
special cases are of interest:

1) If m has a single focal element A, it is said to be logical
and denoted as mA. Such a mass function encodes a
piece of evidence that tells us that Y ∈ A, and nothing
else. There is a one-to-one correspondence between
subsets A of Ω and logical mass functions mA: logical
mass functions are thus equivalent to sets.

2) If all focal elements of m are singletons, then m is said
to be Bayesian. There is a one-to-one correspondence
between probability distributions p : Ω → [0, 1] and
Bayesian mass functions m such that m({ω}) = p(ω),
for all ω ∈ Ω: Bayesian mass functions are thus
equivalent to probability distributions.

To each normalized mass function m, we may associate
belief and plausibility functions from 2Ω to [0, 1] defined as

follows:

Bel(A) =
∑
B⊆A

m(B) (2a)

Pl(A) =
∑

B∩A6=∅

m(B), (2b)

for all A ⊆ Ω. These two functions are linked by the
relation Pl(A) = 1 − Bel(A), for all A ⊆ Ω. Each quantity
Bel(A) may be interpreted as the degree to which the evidence
supports A, while Pl(A) can be interpreted as the degree
to which the evidence does not refute A. The following
inequalities always hold: Bel(A) ≤ Pl(A), for all A ⊆ Ω.
If m is Bayesian, then function Bel is equal to Pl and is a
probability measure. The function pl : Ω → [0, 1] such that
pl(ω) = Pl({ω}) is called the contour function associated to
m.

Let m1 and m2 be two mass functions induced by indepen-
dent items of evidence. Their degree of conflict [26] is defined
by

κ =
∑

B∩C=∅

m1(B)m2(C). (3)

If κ < 1, m1 and m2 are not totally conflicting and they can
be combined using Dempster’s rule [26] to form a new mass
function defined as:

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C) (4)

for all A ⊆ Ω, A 6= ∅ and (m1⊕m2)(∅) = 0. Dempster’s rule
is commutative, associative, and it admits as neutral element
the vacuous mass function defined as m(Ω) = 1.

Let us now assume that m1 is Bayesian. Its contour function
is a probability distribution p1 defined by p1(ω) = m1({ω})
for all ω ∈ Ω. Combining m1 with an arbitrary mass function
m2 with contour function pl2 yields a Bayesian mass function
m1 ⊕m2 with contour function p1 ⊕ pl2 defined by

(p1 ⊕ pl2)(ω) =
p1(ω)pl2(ω)∑

ω′∈Ω p1(ω′)pl2(ω′)
. (5)

(We note that, without ambiguity, the same symbol ⊕ is used
for mass functions and contour functions). The degree of
conflict between p1 and pl2 is

κ = 1−
∑
ω′∈Ω

p1(ω′)pl2(ω′). (6)

It is equal to one minus the mathematical expectation of
pl2 with respect to p1. Finally, we may also note that, if
m2 is logical and such that m2(A) = 1, then p1 ⊕ pl2 is
the probability distribution obtained by conditioning p1 with
respect to A.

B. E2M algorithm

Let Z be a discrete random vector taking values in ΩZ, with
probability mass function pZ(·;θ) depending on an unknown
parameter θ ∈ Θ. Let z denote a realization of Z, referred
to as the complete data. If z was perfectly observed, then the
likelihood function given z would be defined as the function
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from Θ to [0, 1] such that:

L(θ; z) = pZ(z;θ), ∀θ ∈ Θ. (7)

Let us now assume that z is not precisely observed, but it is
known for sure that z ∈ A for some A ⊆ ΩZ. The likelihood
function given such imprecise data is now:

L(θ;A) = pZ(A;θ) =
∑
z∈A

pZ(z;θ), ∀θ ∈ Θ. (8)

More generally, our knowledge of z may be not only
imprecise, but also uncertain; it can then be described by
a mass function m on ΩZ with focal elements A1, . . . , Ar
and corresponding masses m(A1), . . . ,m(Ar). In [10] it was
proposed to extend the likelihood function (8) given such
uncertain data by computing the weighted sum of the terms
L(θ;Ai) with coefficients m(Ai), which leads to the following
expression:

L(θ;m) =

r∑
i=1

m(Ai)L(θ;Ai). (9)

Using (8) and exchanging the order of summations over i and
z, we get

L(θ;m) =
∑
z∈ΩZ

pZ(z;θ)
∑
Ai3z

m(Ai) (10a)

=
∑
z∈ΩZ

pZ(z;θ)pl(z). (10b)

The likelihood L(θ;m) thus only depends on m through
its associated contour function pl. For this reason, we may
write indifferently L(θ;m) or L(θ; pl). By comparing (10)
with (6), we can see that L(θ;m) equals one minus the
degree of conflict between pZ(·;θ) and m. Consequently,
maximizing L(θ;m) with respect to θ amounts to minimizing
the conflict between the parametric model and the uncertain
observations. We may also observe from (10) that L(θ; pl)
can be alternatively defined as the mathematical expectation
of pl(Z), given θ:

L(θ; pl) = Eθ [pl(Z)] . (11)

To maximize the likelihood function L(θ; pl) given uncer-
tain data pl, it was proposed in [9], [10] to adapt the EM
algorithm [8] as follows.

In the E-step, the conditional expectation of logL(θ;Z)
considered in the standard EM algorithm is now replaced by
the expectation with respect to pZ(·;θ(q)) ⊕ pl, denoted as
pZ(·|pl;θ(q)), where θ(q) is the current fit of parameter θ at
iteration q. We may remark that conditional expectation is re-
covered in the special case where m is a logical mass function.
Using (5), the probability mass function pZ(·|pl;θ(q)) has the
following expression:

pZ(z|pl;θ(q)) =
pZ(z;θ(q))pl(z)

L(θ(q); pl)
, (12)

where L(θ(q); pl) is given by (10). At iteration q, the following

function is thus computed:

Q(θ,θ(q)) = Eθ(q) [log(L(θ;Z))|pl] (13a)

=

∑
z∈ΩZ

log(L(θ; z))pX(z;θ(q))pl(z)

L(θ(q); pl)
.(13b)

The M-step is unchanged and requires the maximization of
Q(θ,θ(q)) with respect to θ. The E2M algorithm alternately
repeats the E- and M-steps above until the increase of
observed-data likelihood becomes smaller than some thresh-
old.

As shown in [10], the E2M algorithm inherits the mono-
tonicity property of the EM algorithm, which under broad con-
ditions ensures convergence to a local maximum of L(θ; pl).
This algorithm has been applied to mixture models with partial
information on class labels [7] and/or uncertain attributes [10]
and to partially supervised Independent Factor Analysis [6].

III. PARTIALLY HIDDEN MARKOV MODELS

In this section, we consider the HMM model introduced
in Section I and we assume that partial knowledge of hidden
states Yt is available in the form of mass functions mt for
each t ∈ {1, . . . , T}. The resulting model can be called
a Partially Hidden Markov Model (PHMM). The notations
will first be introduced in Subsection III-A. The learning and
inference problems will then be tackled in Subsections III-B
and III-C, respectively. Finally, a comparison between the
model introduced in this section and related work will be
performed in Subsection III-D.

A. Model and notations

A HMM can be described by the following parameters:
• Prior probabilities ΠΠΠ = {π1, . . . , πk, . . . , πK}, where
πk = P (Y1 = k) is the probability that the system was
in state k at t = 1 and K is the number of states;

• Transition probabilities AAA = [ak`], where

ak` = P (Yt = `|Yt−1 = k), (k, `) ∈ {1, . . . ,K}2
(14)

is the probability for the system to be in state ` at time
t given that it was in state k at t− 1, with

∑
` ak` = 1;

• Parameters ΦΦΦ = {φφφ1, . . . ,φφφj , . . . ,φφφK} of the emission
probability distributions in each state:

pk(xt;φφφk) = p(xt|Yt = k;φφφk), k ∈ {1, . . . ,K}.
(15)

All these parameters can be arranged in a vector θθθ =
{A,ΠΠΠ,ΦΦΦ}.

Let x = (x1, . . . , xT ) denote the observed output sequence
and y = (y1, . . . , yT ) the corresponding sequence of hidden
states. To express the different probability distributions as
functions of the parameters, let Ytk denote the binary variable
that equals 1 if the system was in state k at time t and 0
otherwise. With this notation, we have

p(y1;ΠΠΠ) =

K∏
k=1

πytkk , (16a)
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p(yt|yt−1;A) =

K∏
k=1

K∏
`=1

a
y(t−1,k)yt`
k` (16b)

and

p(xt|yt;ΦΦΦ) =

K∏
k=1

pk(xt;φφφk)ytk . (16c)

The likelihood function given the complete data z = (x,y) is
thus

L(θ; z) = p(z;θ) =

p(y1;ΠΠΠ)

(
T∏
t=2

p(yt|yt−1;A)

)
T∏
t=1

p(xt|yt;ΦΦΦ) =

(
K∏
k=1

πy1kk

) T∏
t=2

∏
k,`

a
y(t−1,k)yt`
k`


(

T∏
t=1

K∏
k=1

pk(xt;φφφk)ytk

)
. (17)

In this paper, we assume that partial knowledge about the
state yt at each time t is available in the form of a mass
function mt on Ω. The observations thus consist in the output
sequence x1, . . . , xT as in the usual HMM model and a
sequence of mass functions m1, . . . ,mT with corresponding
contour functions pl1, . . . , plT , referred to as uncertain (soft)
labels [7]. Combining these T mass functions using Demp-
ster’s rule yields a mass function on the product space ΩT

with contour function

pl(y) =

T∏
t=1

pl(yt). (18)

Since x is precisely observed, we have pl(x′,y) = pl(y) if
x′ = x and pl(x′,y) = 0 otherwise, for all (x′,y). The
generalized likelihood function (10) then has the following
expression:

L(θ;x, pl) =
∑
y

L(θ;x,y)pl(y). (19)

As suggested in [9], there is a formal analogy between the
above model and the following probabilistic model. Consider
a HMM whose output at each time t is a pair (Xt, Ut), where
Ut is a Bernoulli random variable such that P (Ut = 1|Yt =
k) = pltk and

p(xt, Ut = 1|Yt = k) =

p(xt|Yt = k)P (Ut = 1|Yt = k) = pk(xt)pltk, (20)

for each k ∈ {1, . . . ,K}. Let U = (U1, . . . , UT ) and u =
(1, . . . , 1). The conditional probability of observing U = u
given that the system is in state k is

P (U = u|Yt = k) =

T∏
t=1

P (Ut = 1|Yt = k) =

T∏
t=1

pltk,

(21)

for each k ∈ {1, . . . ,K}. The likelihood function after
observing X = x and U = u is

L(θ;x,u) = p(x,u;θ) (22a)

=
∑
y

p(x,u|y)p(y) (22b)

=
∑
y

p(x|y)p(u|y)p(y) (22c)

=
∑
y

p(x,y)pl(y), (22d)

which is equal to L(θ;x, pl) from (19). This result shows that
this artificial probabilistic model (with fictitious variables Ut
taking value 1) is formally equivalent to the one considered
here. This purely formal analogy will be instrumental in
proving the results presented in the two following subsections.

B. Learning

The problem considered in this section is to estimate (learn)
parameter θ, given the output sequence x and fixed uncertain
labels pl1, . . . , plT , by maximizing the generalized likelihood
function (19).

In order to implement the E-step if the E2M recalled in
Subsection II-B, we need to compute the expectation of the
complete data log-likelihood with respect to the probability
distribution p(z|x, pl;θ(q)) obtained by combining p(z;θ(q))
with pl(z) using Dempster’s rule or, equivalently, by combin-
ing p(z;θ(q)) with pl(y) and conditioning on x. By taking the
logarithm of (17), we get

logL(θ; z) =

K∑
k=1

y1k log πj+

T∑
t=2

∑
k,`

yt−1,kyt` log aij +

T∑
t=1

K∑
k=1

ytk log pk(xt;φφφk). (23)

Hence,

Q(θ,θ(q)) = Eθ(q) [L(θ;Z)|x, pl] =
K∑
k=1

γ
(q)
1k log πj +

T∑
t=2

∑
k,`

ξ
(q)
t−1,t,k,` log aij+

T∑
t=1

K∑
k=1

γ
(q)
tk log pk(xt;φφφk), (24)

with γ
(q)
tk = Eθ(q) [Yt,k|x, pl] and ξ

(q)
t−1,t,k,` =

Eθ(q)(Yt−1,kYt`|x, pl).
To compute γ(q)

tk and ξ(q)
t−1,t,k,`, we can follow the same line

of reasoning as for standard HMMs [20][3, Chapter 13]. The
following proposition is proved in Appendix:

Proposition 1: We have

γ
(q)
tk =

α
(q)
tk β

(q)
tk

L(θ(q);x, pl)
, (25)

ξ
(q)
t−1,t,k,` =

α
(q)
t−1,k p`(xt;φφφ

(q)
` )plt` a

(q)
k` β

(q)
t`

L(θ(q);x, pl)
(26)
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and

L(θ;x, pl) =

K∑
k=1

αTk. (27)

where the variables α(q)
tk and β(q)

tk can be computed recursively
as follows:

α
(q)
1k = π

(q)
k pl1k pk(x1;φφφ(q)), (28a)

α
(q)
t,k = pk(xt;φφφ

(q))pltk
∑
`

α
(q)
t−1,` a

(q)
`k , (28b)

for t = 2, . . . , T and

β
(q)
Tk = 1, (29a)

β
(q)
t,k =

∑
`

β
(q)
t+1,` p`(xt+1;φφφ(q)) plt+1,` a

(q)
k` (29b)

for t = T − 1, . . . , 1. �

The M-step of the E2M algorithm is similar to that of
the EM algorithm in the standard case. Maximization of
Q(θ,θ(q)) with respect to ΠΠΠ and A is achieved using ap-
propriate Lagrange multipliers, which leads to:

π
(q+1)
k = γ

(q)
1k (30a)

a
(q+1)
k` =

T∑
t=2

ξ
(q)
t−1,t,k,`

T∑
t=2

K∑
`′=1

ξ
(q)
t−1,t,k,`′

. (30b)

Update equations resulting from the maximization of
Q(θ,θ(q)) with respect to ΦΦΦ depend on the form of the emis-
sion probability distributions. For instance, in the case of Gaus-
sian emission densities, we have pk(xt;φφφk) = N (µk,Σk) and
the update equations are [20]:

µµµ
(q+1)
k =

T∑
t=1

γ
(q)
tk xt

T∑
t=1

γ
(q)
tk

, (31a)

ΣΣΣ
(q+1)
k =

T∑
t=1

γ
(q)
tk (xt −µµµ(q+1)

k )(xt −µµµ(q+1)
k )′

T∑
t=1

γ
(q)
tk

.(31b)

We can remark that the consideration of partial knowledge
on hidden states does not result in any increase in the complex-
ity of the learning algorithm. Equations (28a)-(29b) correspond
to a variant of the so-called forward-backward algorithm
[20][3, Chapter 13], whose computational complexity scales
like O(K2T ), and updating the parameters through Equations
(30)-(31) can be performed in O(KT ) operations, so that the
overall complexity of one iteration of the E2M algorithm is
O(K2T ). However, the number of iterations needed by the
E2M algorithm to achieve convergence can be expected to
be influenced by the supplied knowledge on hidden states,

faster convergence being achieved when more informative
and accurate labels are provided. This phenomenon will be
demonstrated experimentally in Subsection IV-B.

Several issues need to be addressed to make the algo-
rithm work in practice. As in the usual forward-backward
algorithm, the terms α

(q)
t,k and β

(q)
t,k have to be rescaled to

prevent them from converging exponentially to zero. The
means and covariances of the Gaussian distributions can be
initialized using a clustering procedure such as the K-means
algorithm. Alternatively, we may pick K points randomly in
{x1, . . . , xT } to initialize the means and use the whole dataset
to initialize the covariances. Prior and transition probabilities
can be estimated using uncertain labels using a process similar
to that described in [25], [22]:

π
(0)
k ∝ pl1(k) (32a)

a
(0)
k` ∝

T∑
t=2

plt−1(k) · plt(`). (32b)

If several training sequences are available, the results are
simply averaged as done with usual HMMs [20].

C. Inference

The inference process as considered here consists in finding
the most likely state sequence (y∗1 , . . . , y

∗
T ) given observed

outputs (x1, . . . , xT ) and partial knowledge about states,
encoded as contour functions pl1, . . . , plT . This problem is
important problem in many applications in which the states
have a well-defined meaning such as speech [20], image [19],
video [30] or signal [21] segmentation.

In the standard HMM model, the Viterbi algorithm makes
it possible to retrieve the most probable sequence of hidden
states given observations in TK2 operations instead of KT

for greedy search [28], [12]. Thanks to the formal analogy
with a probabilistic model as explained in Section III-A, the
Viterbi algorithm can be directly applied in the case where
partial knowledge about hidden state is available.

Let δt(k;θ) denote the highest probability of a sequence
(x1:t,u1:t,y1:t) up to time t and ending in state k:

δt(k;θ) = max
y1:t−1

p(x1:t,u1:t,y1:t−1, yt = k;θ). (33)

These probabilities can be iteratively computed by:

δt(k;θ) = max
`

[δt−1(`;θ)P (Yt = k|Yt−1 = `)]

p(xt, Ut = 1|Yt = k) =

max
`

[δt−1(`;θ) a`k] pk(xt;φk)pltk, (34)

for t = 2, . . . , T , starting from δ1(k;θ) = πkpk(x1;φk)pl1k.
The highest probability for the complete sequence is then

P ∗ = max
k

δT (k;θ). (35)

By keeping track of the argument maximizing the expression
in (34):

ψt(k) = arg max
`

[δt−1(`;θ)a`k] (36)

for each t and k, the best state sequence can be retrieved by
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backtracking as follows:

y∗t−1 = ψt(y
∗
t ), t = T, . . . , 2. (37)

Note that similar equations were obtained in [25] for a
different model called Evidential HMM, using a different
process based on conditioning.

D. Related work

Before presenting numerical experiments with the model
introduced above, it is interesting to compare it with some
previous extensions of HMMs in the belief function frame-
work.

In [13] and [2], the authors extend, respectively, hidden
Markov chains and hidden Markov fields by allowing the
output vectors Xt (corresponding to sensor measurements)
to have a conditional probability distribution p(xt|Yt ∈ A),
for each A ⊆ Ω. This extension provides a way to model
partial sensor information. For instance, in a remote sensing
application, Ω might have two elements: “forest” and ”water”,
and Xt might represent the information from an optical sensor.
The conditional density p(xt|Yt ∈ Ω) might then model the
distribution of the sensor data in spots hidden by clouds. The
authors then build a mass function mx on the product space
ΩT induced by the sensor measurements x = (x1, . . . , xT )
and combine it with the Markov probability distribution p(y)
of Y using Dempster’s rule. They show that the result is a
Markov probability distribution, which allows them to use
classical segmentation methods.

In [15], the authors propose to model a nonstationary
Markov chain (Y1, . . . , YT ), with ill-known distribution, by
an evidential Markov chain, defined as a mass function m0 on
ΩT such that m(A) = 0 if A 6∈ (2Ω)T and

m0(A1× . . .×AT ) = m0(A1)m0(A2|A1) . . .m0(AT |AT−1)
(38)

for all (A1, . . . , AT ) ∈ (2Ω)T (see also [27]). They show
that the combined mass function m0 ⊕mx, where mx is the
Bayesian mass function induced by sensor measurements, is
the conditional distribution p(y|x) defined by p(x,y), where
p(x,y) is the marginal distribution of a triplet Markov chain
[17]. Hence, p(y|x) is computable in time linear in the
number of observations. Furthermore, the authors propose a
variant of the EM algorithm for estimating the parameters of
the (stationary) evidential Markov chain and of the emission
probability distributions.

The two above models are combined in [4], where the
authors propose to model jointly the nonstationarity of the
state sequence by an evidential Markov chain, and the im-
precision of sensor measurements by conditional probability
distributions p(xt|Yt ∈ A) for each A ⊆ Ω. Once again, they
show that hidden states can be restored in linear time with
respect to T , and they provide an algorithm for estimating
the model parameters. In [19], the author considers even more
general models consisting of pairwise Markov chains in which
the hidden state sequence is modeled by an evidential Markov
chain and sensors provide evidential information.

By comparing this previous work with the contribution
presented in this paper, it is clear that they pursue different

goals: in [2], [15], [19], [4], the authors extend the HMM
to model situations in which we have less information that
would be required to use the standard HMM (due to par-
tial sensor information and/or nonstationarity of the hidden
state sequence). In contrast, in our approach, we consider a
standard HMM model (seen as a data generation mechanism),
which is supplemented by belief functions that encode partial
knowledge of hidden states, collected after the data have been
generated. We thus handle situations in which we have more
information than is usually assumed when using HMMs.

From a mathematical point of view, and adopting the
terminology of Ref. [19], the inference algorithm presented in
Subsection III-C can be seen as the Dempster’s combination
of the Markov distribution p(y), a non Markovian mass
function defined by (18) and a Bayesian mass function induced
by the emission probability distribution p(x|y). It would be
interesting to study more precisely the formal relationship
between this model and the very general models introduced
in [19]. The use of partial information, such as considered
in this paper, in extensions of HMMs such as pairwise or
triplet Markov chains, or even in the more general models
introduced in [19], is also an interesting perspective. These
research topics go beyond the scope of this paper and are left
for further research.

IV. EXPERIMENTS

In this section, the benefits of using partial knowledge
on hidden states using the approach describe above are first
demonstrated with simulated data in Subsection IV-A. Exper-
imental results with engine condition data are then reported in
Subsection IV-B.

A. Simulated data

We consider in this subsection data generated using a HMM
with three states and three-dimensional Gaussian emission
probability distributions pk(xt;φφφk) = N (µk,Σk). The param-
eters were fixed as follows:

ΠΠΠ = (1/3, 1/3, 1, 3)′, A =

 0.6 0.3 0.1
0.1 0.6 0.3
0.1 0.3 0.6

 ,

µ1 = (2, 0, 0)′, µ2 = (0, 2, 0)′, µ3 = (0, 0, 2)′,

Σ1 = Σ2 = Σ3 = I.

Three different experiments were carried out with this model
to study the influence of soft label imprecision, labeling error,
and partial information on states when segmenting a new
output sequence.

1) Influence of label imprecision: To study how the im-
precision of knowledge on hidden states influences the per-
formances of the learning procedure described in Subection
III-B, we proceeded as follows. A learning sequence (x,y)
of length T was generated using the above model. Uncertain
labels were then generated as follows:

pltk =

{
1 if yt = k,

ν otherwise,
(39)
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where ν is a nonspecificity coefficient, which quantifies the
imprecision of the contour function plt. The value ν = 1
corresponds to the classical HMM model, in which we have
no information on hidden states, whereas the value ν = 0
corresponds to the supervised learning situation, in which
the states are observed precisely. The model was trained
using observed outputs x and uncertain labels pl1, . . . , plT as
explained in Subection III-B. The E2M algorithm was run 10
times with random initial values of the parameters, and the
best solution according to the observed-data likelihood was
retained.

To assess the quality of learning, we used a test dataset
of 1000 observations from the same distribution. The most
probable state sequence was computed using the Viterbi algo-
rithm, assuming no prior knowledge of hidden states in the
test sequence. The difference between the true and predicted
state sequences was assessed using the adjusted Rand index
(ARI) [14]. We recall that this commonly used clustering
performance measure is a corrected-for-chance version of the
Rand index, which equals 0 on average for a random partition,
and 1 when comparing two identical partitions.

The whole experiment (training and test data generation,
learning) was repeated 30 times. The results are shown in
Figure 2 for T = 100 and T = 300. We can see that the quality
of the results degrades gracefully from the fully supervised
(ν = 0) to the fully unsupervised (ν = 1) case. When a longer
sequence is used for training (T = 300), the influence of
partial knowledge of hidden states is less important. However,
even very imprecise labels (ν = 0.9) can still improve the
robustness of the results, as can be seen from the smaller
dispersion of ARI values.

2) Influence of labeling error: In the previous experiment,
information on hidden states was assumed to be always exact,
i.e., the true state had the largest plausibility value. To simulate
the more realistic situation in which information on states may
be wrong, we proceeded as proposed in [7] and [10]. At each
time step t, an error probability qt was drawn randomly from a
beta distribution with mean ρ and standard deviation 0.2. With
probability qt, the state yt was then replaced by a completely
random value ỹk (with a uniform distribution over Ω). The
plausibilities pltk were then determined as

pltk = P (yt = k|ỹt) =

{
qt/K + 1− qt if ỹt = k,

qt/K otherwise.
(40)

We can remark than the uncertain labels generated in this way
are all the more imprecise that the error probability is high: in
particular, we have pltk = ytk when qt = 0 and pltk = 1/K
for all k when qt = 1.

Training and test data sets were generated as in the previous
section, and results were evaluated in the same way. For each
randomly generated data set, the E2M algorithm was run with
uncertain labels plik, noisy labels ỹik and no information on
states.

Figure 3 shows the ARI as a function of mean error ρ
for T = 100 (left) and T = 300 (right). As expected, a
degradation of the segmentation quality is observed when the
mean error probability ρ increases, with the ARI tending to
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Fig. 2. Boxplots of the adjusted Rand index as a function of the nonspecificity
coefficient ν over 30 repetitions, for learning datasets of T = 100 (left) and
T = 300 (right) observations.

a value close to zero as ρ tends to 1 when noisy labels are
used for training. More importantly, Figure 3 shows that the
use of partial information on states in the form of uncertain
labels allows us to reach better segmentation results than those
obtained using noisy labels. In particular, results never get
worse than those obtained in the unsupervised case. These
results show that our method is able to exploit additional
information on observation uncertainty, when such information
is available.

3) Influence of partial knowledge of state in the recognition
phase: As shown in Subsection III-C, the Viterbi algorithm
can be adapted to find the most likely state sequence for new
data, based on observed outputs and partial observation of
states provided by uncertain labels. To assess the influence of
partial knowledge on states in the test sequence, we carried
out the following experiment. Parameters were estimated using
a sequence of T = 300 observations with no information
of states, and uncertain labels were generated for the test
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(b) T = 300

Fig. 3. Average values (plus and minus one standard deviation) of the
adjusted Rand index over the 30 repetitions, as a function of the mean error
probability ρ for learning datasets of T = 100 (left) and T = 300 (right)
observations.

sequence of 1000 observations, with random labeling noise
simulated as explained previously. The modified Viterbi al-
gorithm described in Subsection III-C was used to segment
the test sequence. Again, the whole process was repeated 30
times.

The results are shown in Figure 4. When ρ = 0, the test
labels are known with no error and the ARI equals one. As the
mean error probability ρ tends to one, the ARI between true
and noisy labels tends to zero. However, using the observed
output sequence and the uncertain labels, the Viterbi algorithm
successfully exploit partially reliable information on states to
compute meaningful partitions of the test sequence, with ARI
values not exceeding those obtained with no information of
test labels.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

ad
ju

st
ed

 R
an

d 
in

de
x

 

 
uncertain labels
noisy labels

Fig. 4. Average values (plus and minus one standard deviation) of the
adjusted Rand index over the 30 repetitions, as a function of the mean error
probability ρ for test labels.

B. Machine condition data

As mentioned in Section I, uncertain information about
states is typically available a posteriori in machine super-
vision applications, where experts may express probabilistic
judgements about the machine condition at different times.
To demonstrate the ability of our method to exploit partial
information on states in this kind of applications, we used
realistic machine condition data generated by an engine degra-
dation simulator. The dataset, the experimental settings and the
obtained results are described below.

1) Data description: A turbofan engine degradation sim-
ulator was designed at the NASA Prognostics Center of
Excellence [24]. Several operating conditions (such as altitude
or temperature) and fault modes were considered to cover a
wide variety of situations. The simulation model was built
using the Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPSS) developed at the NASA Army Research
Laboratory. By modifying 13 health parameters in C-MAPSS,
the user can simulate the effects of faults and deterioration
in any of the engine’s five rotating components, including
fan, LPC (Low-Pressure Compressor), HPC (High-Pressure
Compressor), HPT (High-Pressure Turbine), and LPT (Low-
Pressure Turbine) [29].

A dataset created using this simulator was first proposed
to the 2008 Prognostics and Health Management (PHM) Data
Challenge competition; the data was only described as run-to-
failure time series with 21 dimensions, including temperature,
pressure, and speed at various points, from multiple instances
of an unspecified engineering system [29]. Data from the
same engine model were collected by running the simulation
several times under different flight conditions. No failure mode
information was provided. NASA provided four data sets
generated from four independent experiments with different
settings such that only instances in the same data set can be
considered from identical systems.

For each run of the simulation, the engine experienced
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Fig. 5. Features and states for the 100 time-series in the dataset.

complete run-to-failure operations, i.e., starting from brand
new (with different degrees of initial wear and manufacturing
variation), developing faults over a number of flights from one
location to another, and finally reaching the failure condition
measured by a set of predefined criteria. Depending on various
factors, the amount and rate of damage accumulation for each
engine instance are different, causing variable engine life.

2) Experimental settings: Only the first training dataset
composed of 100 time series was used in this experient.
Features 7, 9 and 16 were considered, which are among those
shown in [29] to be the most relevant. Each time series in
this dataset was manually segmented into four states [23]:
normal, transient, degrading and broken modes. These “true”
labels1 were used to assess the performances of our method in
segmenting the data, based on incomplete and partially reliable
prior information on states.

The first feature for the complete dataset and the corre-
sponding true states are represented in Figures 5(a) and 5(b),
respectively. These figures show that the modeling of these
time-series is difficult partly because of the great variability
of possible durations in each state, which makes the detection
of the functioning state quite difficult.

The performances of the PHMM learning algorithm was
studied as a function of the quantity and quality of the partial
information on states. The quantity of information was tuned
by varying the proportion N of labeled data between 0 %
(corresponding to unsupervised learning) and 100% (corre-
sponding to fully supervised learning), by 25 % increments.
The quality of labels was set by simulating labeling error as
in Section IV-A2 (noisy labels). The emission probabilities in
each state were assumed to be Gaussian and the parameters
were estimated using ten-fold cross-validation.

3) Results: Figure 6 shows the distribution of the ARI (over
15 runs of the algorithm with different random labels) for
different proportions N of labeled data and mean labeling
error probabilities ρ. As in the previous experiment, we can
observe that the performances are only mildly affected by
labeling error. The median value of the ARI also does not
depend much on the proportion of labeled data; however, the
number of outliers (trials with very low ARI values) is much
larger for small N : labeled data thus improve the robustness
of the learning algorithm to initial conditions.

Moreover, learning time increases with noise level, as
reported in Figure 7, which shows the number of iterations

1Available at http://www.femto-st.fr/∼emmanuel.ramasso/PEPS INSIS
2011 PHM by belief functions.html.
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Fig. 6. Adaptive Rand Index as a function of labeling error ρ for different
proportions N of labeled data. The dotted line corresponds to the unsupervised
case.
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Fig. 7. Number of iterations as a function of labeling error ρ for different
proportions N of labeled data.

of the E2M algorithm for different proportions N of labeled
data and mean labeling error probabilities ρ. As in Figure 6,
the unsupervised case corresponds to ρ = 1 for any value
of N . Interestingly, labeling 75 % of the data with a mean
error rate up to 80 % allows us to reach convergence in less
than 10 iterations, which is five times less than the number
of iterations required in the unsupervised case. With 25 % of
labeled data and a mean error rate of 60%, the gain in training
time is still around 50 %. These results show that even very
imprecise and uncertain information of states may drastically
reduce the training time for HMMs.

http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
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V. CONCLUSION

In classical statistics and data analysis, observations are
usually assumed to be precise and perfectly reliable. Latent
variable models such a HMMs include both observed and
unobserved (latent) variables. In some applications, however, a
human expert, an unreliable sensor or an indirect measurement
device may provide imprecise and/or partially reliable infor-
mation on some of the variables. We then need to represent
such partial information and exploit it for statistical inference.

In this paper, this problem has been addressed in the
particular case of HMMs. Partial knowledge of hidden states
has been assumed to be available and represented by belief
functions. The E2M algorithm, a variant of the EM algorithm
for evidential data, has been particularized for this model,
resulting in modified Baum-Welch update equations for param-
eter learning. The problem of finding the most probable state
sequence based on observed outputs and partial information
on states has also been solved using the variant of the Viterbi
algorithm.

The proposed approach was validated using both simulated
data and realistic engine condition data generated by the C-
MAPSS simulation software developed by NASA. The use
of partial information on states was shown to allow for
improved performances and faster convergence of the learning
algorithm in time series segmentation tasks. In particular, the
performances were shown to improve gradually when the
quantity and quality of data increase.

The proposed approach is very general and can be extended
to any continuous and/or discrete latent variable models,
including more general forms of dynamic Bayesian networks
such as, in particular, pairwise or triplet Markov chains. More
work is also needed to develop rigorous elicitation procedures
allowing us to capture expert opinions in the form of belief
functions. First steps in this direction have been reported in
[6].
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2(1):193–ñ218, 1985.

[15] P. Lanchantin and W. Pieczynski. Unsupervised restoration of hidden
non stationary Markov chain using evidential priors. IEEE Transactions
on Signal processing, 53(8):3091–3098, 2005.

[16] K. P. Murphy. Dynamic Bayesian Networks: Representation, inference
and learning. PhD thesis, UC Berkeley, 2002.

[17] W. Pieczynski. Chaı̂nes de Markov triplet, triplet Markov chains.
Comptes Rendus de l’Académie des Sciences – Mathématique, Série
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APPENDIX

Our proof of Proposition 1 is based on the formally
equivalent probabilistic model described in Subsection III-A.
Omitting θ(q) to simplify the notations, we have

γ
(q)
tk = p(Yt = k|x, pl) = p(Yt = k|x,u)

=
p(x,u|Yt = k)p(Yt = k)

p(x,u)
, (41)

where, as before, u denotes a realization of U assumed
to be a vector of 1’s. From (22a)-(22d), we can see that
the denominator in the previous expression is L(θ(q);x, pl).
Making use of conditional independence properties as well as
the product rule of probability, we obtain for the numerator of
(25):

p(x,u|Yt = k)p(Yt = k)

= p(x1:t,u1:t|Yt = k)p(xt+1:T ,ut+1:T |Yt = k)p(Yt = k)

= p(x1:t,u1:t, Yt = k)p(xt+1:T ,ut+1:T |Yt = k)

= α
(q)
tk β

(q)
tk , (42)

where we use the notation x1:t = (x1, . . . , xt) and a similar
notation for u1:t, and α(q)

tk and β(q)
tk are defined as

α
(q)
tk = p(x1:t,u1:t, Yt = k; θ(q)) (43)

and
β

(q)
tk = p(xt+1:T ,ut+1:T |Yt = k; θ(q)). (44)

These variables can be computed using the forward-backward
[20][3, Chapter 13]. Using the same line of reasoning as
followed in [3, p.620], it can be shown that

α
(q)
1k = p(x1, U1 = 1, Y1 = k;φφφ(q))

= π
(q)
k pl1k pt(x1;φφφ(q)), (45a)

and

α
(q)
t,k = p(xt, Ut = 1|Yt = k)∑

`

p(x1:t−1,u1:t−1, Yt−1 = `)p(Yt = k|Yt−1 = `)

= pk(xt;φφφ
(q))pltk

∑
`

α
(q)
t−1,` a

(q)
`k , (45b)

for t = 2, . . . , T .

Using (41) and (42) with t = T , we have

p(YT = k|x,u) =
p(x,u, Yt = k)β

(q)
Tk

p(x,u)
, (46)

which implies that β(q)
Tk = 1. Recursion equations for β(q)

t,k can

be obtained as

β
(q)
t,k =

∑
`

p(xt+2:T ,ut+2:T |Yt+1 = `)

p(xt+1, Ut+1 = 1|Yt+1 = `)p(Yt+1 = `|Yt = k)

=
∑
`

β
(q)
t+1,` p`(xt+1;φφφ(q)) plt+1,` a

(q)
k` . (47)

Now,

ξ
(q)
t−1,t,k,` = p(Yt−1 = k, Yt = `|x, pl) (48a)

= p(Yt−1 = k, Yt = `|x,U = u) (48b)

=
p(x,u|Yt−1 = k, Yt = `)p(Yt−1 = k, Yt = `)

p(x,u)
(48c)

=
α

(q)
t−1,k p`(xt;φφφ

(q)
` )plt` a

(q)
k` β

(q)
t`

p(x,u)
, (48d)

where we have made use of the following conditional inde-
pendence property:

p(x,u|Yt−1 = k, Yt = `) =

p(x1:t−1u1:t−1|Yt−1 = k)p(xt, Ut = 1|Yt = `)

p(xt+1:T ,ut+1:T |Yt = `). (49)

Finally, from (25), we get:

L(θ;x, pl) = p(x,u;θ) =

K∑
k=1

αtkβtk (50)

for any t. In particular, taking t = T , we get:

L(θ;x, pl) =

K∑
k=1

αTk, (51)

which completes the proof.
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